首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This work reports the influence of the high acidity and high phenolic content in apple musts on the development of alcoholic and malolactic fermentations and on the final chemical and microbiological composition of the ciders. Four different musts were obtained by pressing several varieties and proportions of cider apples from the Basque Country (Northern Spain). Specially acidic and phenolic varieties were selected. Three musts were obtained in experimental stations and the fourth one, in a cider factory following usual procedures. The evolution of these musts was monitored during five months by measuring 18 parameters throughout eight samplings. In the most acidic of the three experimental musts, yeasts were added to complete the alcoholic fermentation. In the rest of the musts, alcoholic and malolactic fermentations took place spontaneously due to natural microflora and no chemical was added to control these processes. Malolactic fermentation (MLF) finished before alcoholic fermentation in the three tanks obtained in experimental stations, even in the most acidic and phenolic one (pH 3.18, 1.78 g tannic acid/l). After four months, these ciders maintained low levels of lactic acid bacteria (10(4)CFU/ml) and low content of acetic acid (<0.60 g/l). Both fermentations began simultaneously in the must obtained in the cider factory, but MLF finished 10 days after alcoholic fermentation. Subsequently, this must maintained a high population of lactic acid bacteria (>10(6)CFU/ml), causing a higher production of acetic acid (>1.00 g/l) than in the other ciders. These results show the possible advantages of MLF finishing before alcoholic fermentation.  相似文献   

2.
During malolactic fermentation (MLF), lactic acid bacteria influence wine aroma and flavour by the production of volatile metabolites and the modification of aroma compounds derived from grapes and yeasts. The present study investigated the impact of different MLF inoculation strategies with two different Oenococcus oeni strains on cool climate Riesling wines and the volatile wine aroma profile. Four different timings were chosen for inoculation with bacteria to conduct MLF in a Riesling must/wine with a high acidity (pH 2.9–3.1). Treatments with simultaneous inoculation showed a reduced total fermentation time (alcoholic and malolactic) compared to the sequential inoculations. No negative impact of simultaneous alcoholic and malolactic fermentation on fermentation success and on the final wine volatile aroma composition was observed. Compared to sequential inoculation, wines with co-inoculation tended to have higher concentrations of ethyl and acetate esters, including acetic acid phenylethylester, acetic acid 3-methylbutylester, butyric acid ethylester, lactic acid ethylester and succinic acid diethylester. Results of this study provide some alternatives to diversify the number of wine styles by safely conducting MLF in low-pH, cool-climate white musts with potential high alcohol content.  相似文献   

3.
Yeast cryotolerance may be advantageous for cider making, where low temperatures are usually employed. Here, we crossed the cryotolerant S. eubayanus with a S. cerevisiae wine strain and assessed the suitability of the hybrids for low-temperature cider fermentation. All strains fermented the juice to 5% ABV, but at different rates; hybrid strains outperformed S. cerevisiae, which was sensitive to low temperatures. The best hybrid fermented similarly to S. eubayanus. S. eubayanus produced sulphurous off flavours which masked a high concentration of fruity ester notes. This phenotype was absent in the hybrid strains, resulting in distinctly fruitier ciders. Aroma was assessed by an independent consumer panel, which rated the hybrid ciders as identical to the wine strain cider. Both were significantly more pleasant than the S. eubayanus cider. Interspecific hybridization can apparently be used effectively to improve low-temperature fermentation performance without compromising product quality.  相似文献   

4.
Malolactic fermentation (MLF) is an integral step in red winemaking, which in addition to deacidifying wine can also influence the composition of volatile fermentation-derived compounds with concomitant affects on wine sensory properties. Long-established winemaking protocols for MLF induction generally involve inoculation of bacteria starter cultures post alcoholic fermentation, however, more recently there has been a trend to introduce bacteria earlier in the fermentation process. For the first time, this study shows the impact of bacterial inoculation on wine quality parameters that define red wine, including wine colour and phenolics, and volatile fermentation-derived compounds. This study investigates the effects of inoculating Shiraz grape must with malolactic bacteria at various stages of alcoholic fermentation [beginning of alcoholic fermentation (co-inoculation, with yeast), mid-alcoholic fermentation, at pressing and post alcoholic fermentation] on the kinetics of MLF and wine chemical composition. Co-inoculation greatly reduced the overall fermentation time by up to 6 weeks, the rate of alcoholic fermentation was not affected by the presence of bacteria and the fermentation-derived wine volatiles profile was distinct from wines produced where bacteria were inoculated late or post alcoholic fermentation. An overall slight decrease in wine colour density observed following MLF was not influenced by the MLF inoculation regime. However, there were differences in anthocyanin and pigmented polymer composition, with co-inoculation exhibiting the most distinct profile. Differences in yeast and bacteria metabolism at various stages in fermentation are proposed as the drivers for differences in volatile chemical composition. This study demonstrates, with an in-depth analysis, that co-inoculation of yeast and bacteria in wine fermentation results in shorter total vinification time and produces sound wines, thus providing the opportunity to stabilise wines more rapidly than traditional inoculation regimes permit and thereby reducing potential for microbial spoilage.  相似文献   

5.
The initial conversion of grape must to wine is an alcoholic fermentation (AF) largely carried out by one or more strains of yeast, typically Saccharomyces cerevisiae. After the AF, a secondary or malolactic fermentation (MLF) which is carried out by lactic acid bacteria (LAB) is often undertaken. The MLF involves the bioconversion of malic acid to lactic acid and carbon dioxide. The ability to metabolise l-malic acid is strain specific, and both individual Oenococcus oeni strains and other LAB strains vary in their ability to efficiently carry out MLF. Aside from impacts on acidity, LAB can also metabolise other precursors present in wine during fermentation and, therefore, alter the chemical composition of the wine resulting in an increased complexity of wine aroma and flavour. Recent research has focused on three main areas: enzymatic changes during MLF, safety of the final product and mechanisms of stress resistance. This review summarises the latest research and technological advances in the rapidly evolving study of MLF and investigates the directions that future research may take.  相似文献   

6.
Interspecific hybrids are commonplace in agriculture and horticulture; bread wheat and grapefruit are but two examples. The benefits derived from interspecific hybridisation include the potential of generating advantageous transgressive phenotypes. This paper describes the generation of a new breed of wine yeast by interspecific hybridisation between a commercial Saccharomyces cerevisiae wine yeast strain and Saccharomyces mikatae, a species hitherto not associated with industrial fermentation environs. While commercially available wine yeast strains provide consistent and reliable fermentations, wines produced using single inocula are thought to lack the sensory complexity and rounded palate structure obtained from spontaneous fermentations. In contrast, interspecific yeast hybrids have the potential to deliver increased complexity to wine sensory properties and alternative wine styles through the formation of novel, and wider ranging, yeast volatile fermentation metabolite profiles, whilst maintaining the robustness of the wine yeast parent. Screening of newly generated hybrids from a cross between a S. cerevisiae wine yeast and S. mikatae (closely-related but ecologically distant members of the Saccharomyces sensu stricto clade), has identified progeny with robust fermentation properties and winemaking potential. Chemical analysis showed that, relative to the S. cerevisiae wine yeast parent, hybrids produced wines with different concentrations of volatile metabolites that are known to contribute to wine flavour and aroma, including flavour compounds associated with non-Saccharomyces species. The new S. cerevisiae x S. mikatae hybrids have the potential to produce complex wines akin to products of spontaneous fermentation while giving winemakers the safeguard of an inoculated ferment.  相似文献   

7.
In Saccharomyces cerevisiae, branched-chain amino acid transaminases (BCAATases) are encoded by the BAT1 and BAT2 genes. BCAATases catalyse the transfer of amino groups between those amino acids and alpha-keto-acids. alpha-Keto-acids are precursors for the biosynthesis of higher alcohols, which significantly influence the aroma and flavour of yeast-derived fermentation products. The objective of this study was to investigate the influence of BAT-gene expression on general yeast physiology, on aroma and flavour compound formation and on the sensory characteristics of wines and distillates. For this purpose, the genes were overexpressed and deleted in a laboratory strain, BY4742, and overexpressed in an industrial wine yeast strain, VIN13. The data show that, with the exception of a slow growth phenotype observed for the BAT1 deletion strain, the fermentation behaviour of the strains was unaffected by the modifications. The chemical and sensory analysis of fermentation products revealed a strong correction between BAT gene expression and the formation of many aroma compounds. The data suggest that the adjustment of BAT gene expression could play an important role in assisting winemakers in their endeavour to produce wines with specific flavour profiles.  相似文献   

8.
This study aimed to construct new yeast hybrid strains for introducing flavor and aroma diversity to ciders. The inactivated protoplasts of Saccharomyces cerevisiae and Candida krusei were electric-induced fused under the optimized electric condition of pulse field density 2200 V/cm, pulse time 20 μs, pulse number 2 times and pulse interval 1 s, and 69 fusants were initially obtained. By performing Durham's fermentation for ten generations, 9 stable hybrid strains were screened. The chemical analysis showed that the alcoholic degree of ciders fermented by R2, R4, R5, R6 and R8 achieved about 12% (v/v), which was statistically the same level as the one fermented by parental strain WF1. The GC–MS results showed different strain generated totally different aroma profiles. R4 produced significant higher concentration of 2-methyl-butanoic acid ethyl ester, 2-methyl-1-propanol, 3-methyl-butanol acetate, 1-butanol, acetic acid hexyl ester, 1-hexanol and 1-octanol. The 9 hybrid yeast strains and parental strains were further compared through fuzzy comprehensive evaluation combining sensory score and aroma components content. The results showed that the hybrid R4 scored highest and displayed desirable properties of both parents.  相似文献   

9.
Yeast extract addition to reconstituted apple juice had a positive impact on the development of the malolactic starter culture used to ensure malolactic fermentation in cider, using active but non-proliferating cells. In this work, the reuse of fermentation lees from cider is proposed as an alternative to the use of commercial yeast extract products. Malolactic enzymatic assays, both in whole cells and cell-free extracts, were carried out to determine the best time to harvest cells for use as an inoculum in cider. Cells harvested at the late exponential phase, the physiological stage of growth corresponding to the maximum values of specific malolactic activity, achieved a good rate of malic acid degradation in controlled cider fermentation. Under the laboratory conditions used, malic acid degradation rates in the fermentation media turned out to be near 2.0 and 2.5 times lower, compared with the rates obtained in whole-cell enzymatic assays, as useful data applicable to industrial cider production.  相似文献   

10.
Sun  Yue  Li  Erhu  Qi  Xiaotao  Liu  Yanlin 《Annals of microbiology》2015,65(2):911-919
Mixed inoculation of Saccharomyces cerevisiae strains is used in winemaking for achieving high sensory quality of the wine. However, information on the diversity and population of yeasts during inoculated fermentation is very limited. In this study, we evaluated the effect of mixed inocula with different inoculation timing on the yeast community during fermentations of Cabernet Sauvignon. Grape must was inoculated with pure cultures of S. cerevisiae RC212 or S. cerevisiae R312, and simultaneous and sequential inoculation of both strains. Wallersterin Laboratory Nutrient (WLN) medium and sequence of the 26S rDNA D1/D2 domain were used to compare the diversity of yeast species. Five species, including Candida diversa, Hanseniaspora opuntiae, H. uvarum, Issatchenkia orientalis and I. terricola, were identified in the grape must, with Issatchenkia sp. being predominant (67.5 %). Three to four species were involved in each fermentation treatment. The fermentations by mixed inocula presented more yeast species than by pure inocula. Interdelta sequence typing was used to identify S. cerevisiae strains. Ten genotypes were identified among 322 isolated S. cerevisiae strains. Their distribution varied among different stages of fermentations and different inoculation treatments. The inoculated strains were not predominant, while indigenous genotypes I, III, and V showed strong competitiveness during fermentation. In general, this study provided information on the change of population structure and genetic diversity of yeasts in fermentations inoculated with pure and mixed S. cerevisiae strains.  相似文献   

11.
Aims: To isolate indigenous Oenococcus oeni strains suitable as starters for malolactic fermentation (MLF), using a reliable polyphasic approach. Methods and Results: Oenococcus oeni strains were isolated from Nero di Troia wines undergoing spontaneous MLF. Samples were taken at the end of alcoholic fermentation and during MLF. Wine samples were diluted in a sterile physiological solution and plated on MRS and on modified FT80. Identification of O. oeni strains was performed by a polymerase chain reaction (PCR) experiment using strain‐specific primers. Strains were further grouped using a multiplex RAPD‐PCR analysis. Then, six strains were inoculated in two wine‐like media with two different ethanol concentrations (11 and 13% vol/vol) with a view to evaluate their capacity to grow and to perform MLF. In addition, a quantitative PCR (qRT‐PCR) approach was adapted to monitor the physiological state of the strains selected. Conclusion: A positive correlation between the malolactic activity performance and the ability to develop and tolerate stress conditions was observed for two selected O. oeni strains. Significance and Impact of the Study: The results reported are useful for the selection of indigenous MLF starter cultures with desired oenological traits from typical regional wines. It should be the base for the improvement in organoleptic quality of typical red wine.  相似文献   

12.
Six Saccharomyces cerevisiae strains from cachaça fermentation were characterized for biomass, ethanol, glycerol, and acetic acid yields, as well as productivity. Three strains presenting the best fermentation parameters were selected for cachaça production. The experiments were carried out in an industrial distillery that distills this beverage in a stainless steel column, and in a traditional distillery that uses copper alembic for distillation. The permanence of the selected strains was studied by restriction fragment analysis of mitochondrial DNA. Strains UFMG-A1007 and UFMG-A2097 were prevalent in the vats during the 5 days of the fermentation period. Non-Saccharomyces strains were isolated during the entire fermentation period. In general, the cachaças produced in the stainless steel column had the highest concentrations of volatile acidity, acetaldehyde, esters, and higher alcohols. Both cachaças did not differ statistically in aroma, taste, and overall impression. The use of these indigenous S. cerevisiae strains as starter ferment could improve the sensory attributes of both industrial and traditional cachaças.  相似文献   

13.
During fermentation, the yeast Saccharomyces cerevisiae produces a broad range of aroma-active substances, which are vital for the complex flavour of beer. In order to obtain insight into the influence of high-gravity brewing and fermentation temperature on flavour formation, we analysed flavour production and the expression level of ten genes (ADH1, BAP2, BAT1, BAT2, ILV5, ATF1, ATF2, IAH1, EHT1 and EEB1) during fermentation of a lager and an ale yeast. Higher initial wort gravity increased acetate ester production, while the influence of higher fermentation temperature on aroma compound production was rather limited. In addition, there is a good correlation between flavour production and the expression level of specific genes involved in the biosynthesis of aroma compounds. We conclude that yeasts with desired amounts of esters and higher alcohols, in accordance with specific consumer preferences, may be identified based on the expression level of flavour biosynthesis genes. Moreover, these results demonstrate that the initial wort density can determine the final concentration of important volatile aroma compounds, thereby allowing beneficial adaptation of the flavour of beer.  相似文献   

14.
[背景]酵母菌在葡萄酒酿造中起到重要的作用,接种商业活性干酵母(active dry yeast,ADY)进行葡萄酒酿造在国内较为普遍,然而商业酿酒酵母(Saccharomyces cerevisiae)对我国本土酵母菌资源的影响及二者竞争关系的相关报道不多.[目的]比较商业酿酒酵母在不同品种葡萄酒工业化生产中的定殖差...  相似文献   

15.
In this research work we investigated changes in volatile aroma composition associated with four commercial Oenococcus oeni malolactic fermentation (MLF) starter cultures in South African Shiraz and Pinotage red wines. A control wine in which MLF was suppressed was included. The MLF progress was monitored by use of infrared spectroscopy. Gas chromatographic analysis and capillary electrophoresis were used to evaluate the volatile aroma composition and organic acid profiles, respectively. Significant strain-specific variations were observed in the degradation of citric acid and production of lactic acid during MLF. Subsequently, compounds directly and indirectly resulting from citric acid metabolism, namely diacetyl, acetic acid, acetoin, and ethyl lactate, were also affected depending on the bacterial strain used for MLF. Bacterial metabolic activity increased concentrations of the higher alcohols, fatty acids, and total esters, with a larger increase in ethyl esters than in acetate esters. Ethyl lactate, diethyl succinate, ethyl octanoate, ethyl 2-methylpropanoate, and ethyl propionate concentrations were increased by MLF. In contrast, levels of hexyl acetate, isoamyl acetate, 2-phenylethyl acetate, and ethyl acetate were reduced or remained unchanged, depending on the strain and cultivar evaluated. Formation of ethyl butyrate, ethyl propionate, ethyl 2-methylbutryate, and ethyl isovalerate was related to specific bacterial strains used, indicating possible differences in esterase activity. A strain-specific tendency to reduce total aldehyde concentrations was found at the completion of MLF, although further investigation is needed in this regard. This study provided insight into metabolism in O. oeni starter cultures during MLF in red wine.  相似文献   

16.
Four of five apple cultivars (Golden Delicious, Red Delicious, McIntosh, Macoun, and Melrose) inoculated with Escherichia coli O157:H7 promoted growth of the bacterium in bruised tissue independent of the date of harvest (i.e., degree of apple ripening) or the source of the apple (i.e., tree-picked or dropped fruit). Apple harvest for this study began 4 September 1998 and ended 9 October, with weekly sampling. Throughout this study, freshly picked (<2 days after harvest) McIntosh apples usually prevented the growth of E. coli O157:H7 for 2 days. Growth of E. coli O157:H7 did occur following 6 days of incubation in bruised McIntosh apple tissue. However, the maximum total cell number was approximately 80-fold less than the maximum total cell number recovered from Red Delicious apples. When fruit was stored for 1 month at 4°C prior to inoculation with E. coli O157:H7, all five cultivars supported growth of the bacterium. For each apple cultivar, the pH of bruised tissue was significantly higher and °Brix was significantly lower than the pH and °Brix of undamaged tissue regardless of the source. In freshly picked apples, changes in the pH did not occur over the harvest season. Bruised Golden Delicious, McIntosh, and Melrose apple tissue pHs were not significantly different (tree-picked or dropped), and the °Brix values of McIntosh, Macoun, and Melrose apple tissue were not significantly different. Single-cultivar preparations of cider did not support growth of E. coli, and the cell concentration of inoculated cider declined over an 11-day test period. The rate of decline in E. coli cell concentration in the McIntosh cider was greater than those in the other ciders tested. The findings of this study suggested that the presence of some factor besides, or in addition to, pH inhibited E. coli growth in McIntosh apples.  相似文献   

17.
Several indigenous Saccharomyces strains from musts were isolated in the Jerez de la Frontera region, at the end of spontaneous fermentation, in order to select the most suitable autochthonous yeast starter, during the 2007 vintage. Five strains were chosen for their oenological abilities and fermentative kinetics to elaborate a Sherry base wine. The selected autochthonous strains were characterized by molecular methods: electrophoretic karyotype and random amplified polymorphic DNA-polymerase chain reaction (RAPD-PCR) and by physiological parameters: fermentative power, ethanol production, sugar consumption, acidity and volatile compound production, sensory quality, killer phenotype, desiccation, and sulphur dioxide tolerance. Laboratory- and pilot-scale fermentations were conducted with those autochthonous strains. One of them, named J4, was finally selected over all others for industrial fermentations. The J4 strain, which possesses exceptional fermentative properties and oenological qualities, prevails in industrial fermentations, and becomes the principal biological agent responsible for winemaking. Sherry base wine, industrially manufactured by means of the J4 strain, was analyzed, yielding, together with its sensory qualities, final average values of 0.9 g/l sugar content, 13.4 % (v/v) ethanol content and 0.26 g/l volatile acidity content; apart from a high acetaldehyde production, responsible for the distinctive aroma of “Fino”. This base wine was selected for “Fino” Sherry elaboration and so it was fortified; it is at present being subjected to biological aging by the so-called “flor” yeasts. The “flor” velum formed so far is very high quality. To the best of our knowledge, this is the first study covering from laboratory to industrial scale of characterization and selection of autochthonous starter intended for alcoholic fermentation in Sherry base wines. Since the 2010 vintage, the indigenous J4 strain is employed to industrially manufacture a homogeneous, exceptional Sherry base wine for “Fino” Sherry production.  相似文献   

18.
Inoculating grape musts with wine yeast and lactic acid bacteria (LAB) concurrently in order to induce simultaneous alcoholic fermentation (AF) and malolactic fermentation (MLF) can be an efficient alternative to overcome potential inhibition of LAB in wines because of high ethanol concentrations and reduced nutrient content. In this study, the simultaneous inoculation of yeast and LAB into must was compared with a traditional vinification protocol, where MLF was induced after completion of AF. For this, two suitable commercial yeast-bacterium combinations were tested in cool-climate Chardonnay must. The time courses of glucose and fructose, acetaldehyde, several organic acids, and nitrogenous compounds were measured along with the final values of other key wine parameters. Sensory evaluation was done after 12 months of storage. The current study could not confirm a negative impact of simultaneous AF/MLF on fermentation success and kinetics or on final wine parameters. While acetic acid concentrations were slightly increased in wines after simultaneous AF/MLF, the differences were of neither practical nor legal significance. No statistically significant differences were found with regard to the final values of pH or total acidity and the concentrations of ethanol, acetaldehyde, glycerol, citric and lactic acids, and the nitrogen compounds arginine, ammonia, urea, citrulline, and ornithine. Sensory evaluation by a semiexpert panel confirmed the similarity of the wines. However, simultaneous inoculation led to considerable reductions in overall fermentation durations. Furthermore, differences of physiological and microbiological relevance were found. Specifically, we report the vinification of “super-dry” wines devoid of glucose and fructose after simultaneous inoculation of yeast and bacteria.  相似文献   

19.
AIMS: Physiological comparison of two indigenous Oenococcus oeni strains, U1 and F3 isolated in the same area (Valpolicella, Italy) in order to select a performant starter for MLF in wine. METHODS AND RESULTS: Growth rate, sugar and malate metabolism in FT80 media at pH 5.3 and 3.5 were analysed. The amount of total protein synthesized and the level of expression of the small Hsp Lo18 were evaluated by radiolabelling and immunodetection experiments after heat (42 degrees C), acid (pH 3.5) and ethanol (12% v/v) stresses. Strain U1 showed significantly lower specific growth rate and growth yield in acid conditions than strain F3. However, strain U1 had a higher malate consumption capacity at pH 3.5 than strain F3, in relation with an higher malolactic activity determined on whole cells. Strain U1 exhibited about half the total protein synthesis level than strain F3, but both strains expressed Lo18 similarly. Evaluation of malolactic fermentation (MLF) performance by microvinification trials was carried out. Strain U1 was able to complete MLF, whereas strain F3 degraded malic acid partially when inoculated in Amarone wine. CONCLUSIONS: Considering its performances in microvinifications experiments, strain U1 could be a good candidate for malolactic starter as an alternative to deficient commercial starters.  相似文献   

20.
AIMS: To study the diversity and dynamics of indigenous Saccharomyces wine populations during Malbec spontaneous fermentation, a representative Patagonian red wine, at both industrial and laboratory scale. METHODS AND RESULTS: Two molecular techniques, including restriction fragment length polymorphism of mitochondrial (mt) DNA and polymorphism of amplified delta interspersed element sequences, were used for characterization of indigenous yeasts at strain level. The mtDNA restriction patterns showed the major discriminative power; however, by combining the two molecular approaches it was possible to distinguish a larger number of strains and, therefore, draw more representative conclusions about yeast diversity. Although a great diversity of wild Saccharomyces cerevisiae strains was observed, only nine represented more than half of the total Saccharomyces yeast biota analysed; five of these were common and took over the Malbec must fermentation in both vinifications. CONCLUSIONS: Many different indigenous S. cerevisiae strains were identified; nevertheless, the dominant strains in both industrial and laboratory vinification processes were just a few and the same. SIGNIFICANCE AND IMPACT OF THE STUDY: Small-scale fermentation appears to be a valuable tool in winemaking, one especially helpful in evaluating microbiological aspects of as well as possible interactions between inoculated selected strains and native strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号