首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Asexual worms of an exclusively fissiparous strain (the OH strain) of the planarian Dugesia ryukyuensis keep developing hermaphroditic reproductive organs and eventually undergo sexual reproduction instead of asexual reproduction, namely fission, if they are fed with sexually mature worms of an exclusively oviparous planarian, Bdellocephala brunnea, suggesting that the sexually mature worms has a sexualizing substance(s). The fully sexualized worms no longer need the feeding on sexual worms to maintain the sexuality. Here, we demonstrate that the sexualized worms produce enough of their own sexualizing substance similar to that contained in B. brunnea. In case of surgical ablation of the sexualized worms, the fragments with sexual organs regenerate to become sexual, while those without sexual organs, namely head fragments, regenerate to return to the asexual state. The asexual regenerants from the sexualized worms are also fully sexualized by being fed with B. brunnea. Additionally, it was reported that head region in sexually mature worms lacks the putative sexualizing substance necessary for complete sexualization (Sakurai, 1981). These results suggest that the fragments without sexual organ lack enough of an amount of the putative sexualizing substance and the sexuality is maintained by the sexualizing substance contained in the sexualized worms.  相似文献   

2.
Homologs of nanos are required for the formation and maintenance of germline stem cell (GSC) systems and for gametogenesis in many metazoans. Planarians can change their reproductive mode seasonally, alternating between asexual and sexual reproduction; they develop and maintain their somatic stem cells (SSCs) and GCSs from pluripotent stem cells known as neoblasts. We isolated a nanos homolog, Dr-nanos, from the expressed sequence tags (ESTs) of the sexualized form of Dugesia ryukyuensis. We examined the expression of Dr-nanos in asexual and sexualized planarians by in situ hybridization and analyzed its function using RNA interference (RNAi) together with a planarian sexualization assay. A nanos homolog, Dr-nanos, was identified in the planarian D. ryukyuensis. Dr-nanos expression was observed in the ovarian primordial cells of the asexual worms. This expression increased in proportion to sexualization and was localized in the early germline cells of the ovaries and testes. In X-ray-irradiated worms, the expression of Dr-nanos decreased to a large extent, indicating that Dr-nanos is expressed in some subpopulations of stem cells, especially in GSCs. During the sexualization process, worms in which Dr-nanos was knocked down by RNAi exhibited decreased numbers of oogonia in the ovaries and failed to develop testes, whereas the somatic sexual organs were not affected. We conclude that Dr-nanos is essential for the development of germ cells in the ovaries and testes and may have a function in the early stages of germ cell specification, but not in the development of somatic sexual organs.  相似文献   

3.
We have investigated sexualization of asexual worms in the planarian Dugesia ryukyuensis. During sexualization there is a point from which an animal cannot return to the asexual state (point-of-no-return). To isolate the genes related to the point-of-no-return, we performed differential screening and isolated one novel gene that was expressed specifically in yolk glands of the worms after the point-of-no-return and named it Dryg. It encoded 655 amino acids with a predicted molecular mass of 79 kDa. We performed a series of experiments using Dryg as a molecular marker in the yolk gland. At first, we monitored how the yolk gland was formed during sexualization. The expression in sexualizing worms at stage 3 is limited to a single type of cell that has characteristics of neoblasts, the totipotent somatic cells; however, the expression is observed in the yolk gland in sexualized worms. Furthermore, we monitored yolk glands for expression during regeneration. The original yolk glands seem to disappear after ablation, then new yolk glands appeared along the ventral nerve cords. Because this expression pattern looks like that of sexualizing worms at stage 3, we speculate that yolk gland cells may differentiate from neoblasts during regeneration as observed during sexualization.  相似文献   

4.
Asexual individuals in a fissiparous clone of the planarian Dugesia ryukyuensis develop hermaphroditic sexual organs and eventually undergo sexual reproduction instead of asexual reproduction if they are fed with the adults of Bdellocephala brunnea, an oviparous planaria. The experimental sexualization means that the adults of B. brunnea contain a putative sexualizing substance(s), which is the first candidate for the chemical(s) responsible for switching from asexual to sexual reproduction in metazoans. In the present study, the feeding experiment over two consecutive years revealed that the experimental sexualization has seasonal changes. In summer, the asexual individuals were not fully sexualized, though they developed a pair of ovaries. The developing ovaries degenerate if the feeding is stopped. On the contrary, in winter, they developed all the sexual organs. The sexual organs keep developing even if the feeding is stopped after a certain critical point named the point-of-no-return. It was demonstrated that the extreme difference of the sexualization was attributed to the seasonal change of the quality and/or quantity of the sexualizing substance contained in B. brunnea, as well as the minor change of the susceptibility to the sexualizing substance in the asexual individuals. On the other hand, the histological research of B. brunnea revealed that the degree of the maturation of the sexual organs varied extremely through a year. Taking these results into account, we suggest that the production of the sexualizing substance has no direct relation to any particular mature sexual organs.  相似文献   

5.
Although polyploids are common among plants and some animals, polyploidization often causes reproductive failure. Triploids, in particular, are characterized by the problems of chromosomal pairing and segregation during meiosis, which may cause aneuploid gametes and results in sterility. Thus, they are generally considered to reproduce only asexually. In the case of the Platyhelminthes Dugesia ryukyuensis, populations with triploid karyotypes are normally found in nature as both fissiparous and oviparous triploids. Fissiparous triploids can also be experimentally sexualized if they are fed sexual planarians, developing both gonads and other reproductive organs. Fully sexualized worms begin reproducing by copulation rather than fission. In this study, we examined the genotypes of the offspring obtained by breeding sexualized triploids and found that the offspring inherited genes from both parents, i.e., they reproduced truly bisexually. Furthermore, meiotic chromosome behavior in triploid sexualized planarians differed significantly between male and female germ lines, in that female germ line cells remained triploid until prophase I, whereas male germ line cells appeared to become diploid before entry into meiosis. Oocytes at the late diplotene stage contained not only paired bivalents but also unpaired univalents that were suggested to produce diploid eggs if they remained in subsequent processes. Triploid planarians may therefore form euploid gametes by different meiotic systems in female and male germ lines and thus are be able to reproduce sexually in contrast to many other triploid organisms.  相似文献   

6.
Asexual worms of fissiparous strain of the planarian Dugesia ryukyuensis switch from asexual to sexual reproduction, if they are fed with sexually mature worms of Bdellocephala brunnea. This suggests that the sexually mature worms have a sexualizing substance(s) that induces the sexuality in the asexual worms. Here, we found by analysis of the sexualization that the cessation of the fission, namely their asexual reproduction, occurs immediately after the acquisition of sexuality. This result suggests that the downstream mechanisms induced by the putative sexualizing substance in B. brunnea become responsible for the cessation of fission. We also found that the decapitation triggers fission in the worms even after the acquisition of sexuality if they are not sexually mature, while the fully sexualized worms never fission even though they are decapitated. This result suggests that the cessation of fission takes place via at least two steps: (1) the mechanisms associated with the cephalic system; (2) other mechanisms independent of cephalic control.  相似文献   

7.
A study was carried out on freshwater planarians of the genus Dugesia from three localities in northern Tunisia: Joumine, Chiba, and Lebna. The three populations are fissiparous under field conditions and do not possess reproductive organs, except for some cases of hyperplastic ovaries in the Joumine population. After five months of breeding under laboratory conditions, with water temparature between 18 and 25?°C and under short photoperiod, 8.33 to 26% of specimens from the Joumine stream became sexualized, together with considerable increase of body length and width. For the other two populations the sexualization rate was very small. Extended period of darkness apparently played a positive role in this sexualization. The phenomenon of sexualization is discussed in the context of reproductive strategies. Histological and karyological studies of the sexualized animals allowed identification of these usually fissiparous planarians as representatives of Dugesia sicula Lepori, 1948. The species is here reported for the first time from Tunisia. The populations are restricted to permanent water basins resulting from the construction of dams in large rivers.  相似文献   

8.
Many metazoans convert the reproductive modes presumably depending upon the environmental conditions and/or the phase of life cycle, but the mechanisms underlying the switching from asexual to sexual reproduction, and vice versa, remain unknown. We established an experimental system, using an integrative biology approach, to analyze the mechanism in the planarian, Dugesia ryukyuensis (Kobayashi et al., 1999). Worms of exclusively asexual clone (OH strain) of the species gradually develop ovaries, testes and other sexual organs, then copulate and eventually lay cocoons filled with fertilized eggs, if they are fed with sexually mature worms of Bdellocephala brunnea (an exclusively oviparous species). This suggests the existence of a sexualizing substance(s) in sexually mature worms. Random inbreeding of experimentally sexualized worms (acquired sexuals) produces an F1 population of spontaneous sexuals (innate sexuals) and asexuals in a ratio of approximately 2:1. All regenerants from various portions of innate sexuals become sexuals. In the case of acquired sexuals, head fragments without sexual organs regenerated into asexuals though regenerants from other portions became sexuals. Thus, we conclude that neoblasts, the totipotent stem cells in the planarians, of acquired sexuals remain "asexual" and the worms require external supply of a sexualizing substance for the differentiation of sexual organs and gametes. On the other hand, some, if not all, neoblasts in innate sexuals are somehow "sexual" and do not require external supply of a sexualizing substance for the eventual differentiation of themselves and/or other neoblasts into sexual organs and gametes. It is also shown that sexuality in acquired sexuals is maintained by the putative sexualizing substance(s) of their own. The sexualization is closely coupled with cessation of fission, and the worms seem to have an unknown way of controlling the karyotype. Our integrative approach integrates multiple fields of study, including classic breeding, regeneration, and genetics experiments, as well as karyotyping, and biochemical and molecular biological analyses; none of which would have revealed much about the intricate mechanisms that regulate sex and fission in these animals.  相似文献   

9.
10.
In eukaryotic cells, the major protein constituents of the chromatin are histones, which can be divided into five classes, identified as H1, H2A, H2B, H3 and H4. During normal spermatogenesis, a testis-specific H1t is expressed in primary spermatocytes and believed to facilitate histone to protamine exchanges during spermiogenesis. In equine testes we detected the H1 protein at 22kDa by western blot analysis while H1t was detected at 29kDa. H1 protein was found to be expressed in all germ cells up to elongating spermatids (Sc) at stage IV. In peripubertal animals, there was a prolonged expression up to elongating spermatids (Sd1) at stage V. A fragment of the equine H1t gene was cloned (GenBank Accession No. AJ865320). The mRNA expression of H1t was found at the level in spermatogonia and in primary spermatocytes up to mid-pachytene at stage VIII/I, whereas H1t protein was found to be expressed up to round spermatides (Sa/Sb1) at stage VIII/I. In peripubertal animals, the H1t protein expression was detected up to elongating spermatids (Sb2) at stage II. Analysis of testes of different ages (< or =2 years) and (> or =3 years) by real-time RT-PCR revealed an increase of H1t mRNA expression, with a wide range of individual variety between 2 and 4 years old animals indicating a stable expression in animals older than 4 years old. This is the first study to show the testis-specific H1t in the stallion and gives evidence that the well-known peripubertal infertility in the stallion may be related to an insufficient histone to protamine exchange. The pattern of protamine gene expression, however, has still to be elucidated.  相似文献   

11.
12.
精子发生过程中组蛋白甲基化和乙酰化   总被引:1,自引:0,他引:1  
Ge SQ  Li JZ  Zhang XJ 《遗传》2011,33(9):939-946
精子发生(Spermatogenesis)这一高度复杂的独特分化过程包括精原细胞发育为精母细胞、单倍体精细胞的形成和精子成熟,并以阶段特异性和睾丸特异性基因的表达、有丝分裂和减数分裂以及组蛋白向鱼精蛋白的转变为特征。表观遗传修饰在减数分裂重组、联会复合物的形成、姊妹染色体的结合、减数分裂后精子的变态、基因表达阻遏和异染色质形成过程中发挥着重要作用。其中具有一定组成形式、起抑制作用和/或激活作用的组蛋白甲基化和乙酰化标记,不仅保证了正确的染色体配对和二价染色体的成功分离,并且精确调节减数分裂特异性基因的适时表达。精子发生过程中组蛋白甲基化和/或乙酰化错误会直接影响表观遗传修饰的建立和维持,导致生精细胞异常甚至引发不育。文章旨在对精子发生过程中组蛋白甲基化和乙酰化表观遗传修饰的动态变化及其相关酶的调节机制进行综述,为进一步研究精子发生的表观遗传调控,预防男性不育疾病的发生提供基础资料。  相似文献   

13.
14.
Testis-specific transcriptional control   总被引:9,自引:0,他引:9  
Grimes SR 《Gene》2004,343(1):11-22
  相似文献   

15.
16.
Expression of the testis-specific histone TH2B, the phosphoprotein p19, and the transition proteins TP1 and TP2, was localized in the rat testis and quantified, using in situ hybridization of their mRNAs with radiolabeled probes and image analysis. In a first study, expression was assessed during testicular development between day 2 and day 65 postpartum. TH2B mRNAs appeared first in preleptotene spermatocytes (PL) on day 12 and in pachytene spermatocytes (PS) on day 18; p19 mRNAs were present in PS from day 18 onward, and TP1 and TP2 mRNAs were detected in round spermatids (RS) from day 32 onward. In the second trial, the expression of these four genes was studied throughout the cycle of spermatogenic epithelium in mature animals. TH2B mRNAs were localized in B spermatogonia at stage V, and in PL at stages VII and VIII but no longer in leptotene and zygotene spermatocytes. Thereafter, TH2B mRNAs were observed in PS from stages III–IV to XIII. The steady-state mRNA level per cell was high in PS with a maximum at stages IX–X. p19 mRNAs were present in PS from stages III–IV onward and in RS up to stages 1–2 of spermiogenesis. The maximum mRNA level per cell was observed in PS between stages VII and XIII. The presence of TP1 mRNAs was restricted to spermatids from steps 6 to 15–16 of spermiogenesis while TP2 mRNAs were detected in spermatids only between step 7 and step 13. The highest steady-state amounts of mRNAs were observed between step 7 and step 14 for TP1 and between step 10 and step 12 for TP2. Mol. Reprod. Dev. 51:22–35, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

17.
Nucleosomes are basic chromatin structural units that are formed by DNA sequences wrapping around histones. Global chromatin states in different cell types are specified by combinatorial effects of post-translational modifications of histones and the expression of histone variants. During mouse spermatogenesis, spermatogonial stem cells (SSCs) self-renew while undergo differentiation, events that occur in the company of constant re-modeling of chromatin structures. Previous studies have shown that testes contain highly expressed or specific histone variants to facilitate these epigenetic modifications. However, mechanisms of regulating the epigenetic changes and the specific histone compositions of spermatogenic cells are not fully understood. Using real time quantitative RT-PCR, we examined the dynamic expression of replication-dependent histone genes in post-natal mouse testes. It was found that distinct sets of histone genes are expressed in various spermatogenic cells at different stages during spermatogenesis. While gonocyte-enriched testes from mice at 2-dpp (days post partum) express pre-dominantly thirteen histone variant genes, SSC-stage testes at 9-dpp highly express a different set of eight histone genes. During differentiation stage when testes are occupied mostly by spermatocytes and spermatids, another twenty-two histone genes are expressed much higher than the rest, including previously known testis-specific hist1h1t, hist1h2ba and hist1h4c. In addition, histone genes that are pre-dominantly expressed in gonocytes and SSCs are also highly expressed in embryonic stem cells. Several of them were changed when embryoid bodies were formed from ES cells, suggesting their roles in regulating pluripotency of the cells. Further more, differentially expressed histone genes are specifically localized in either SSCs or spermatocytes and spermatids, as demonstrated by in situ hybridization using gene specific probes. Taken together, results presented here revealed that different combinations of histone variant genes are expressed in distinct spermatogenic cell types accompanying the progression of self-renewal and differentiation of SSCs, suggesting a systematic regulatory role histone variants play during spermatogenesis.  相似文献   

18.
The planarian Dugesia ryukyuensis reproduces both asexually and sexually, and can switch from one mode of reproduction to the other. We recently developed a method for experimentally switching reproduction of the planarian from the asexual to the sexual mode. We constructed a cDNA library from sexualized D. ryukyuensis and sequenced and analyzed 8,988 expressed sequence tags (ESTs). The ESTs were analyzed and grouped into 3,077 non-redundant sequences, leaving 1,929 singletons that formed the basis of unigene sets. Fifty-six percent of the cDNAs analyzed shared similarity (E-value<1E -20) with sequences deposited in NCBI. Highly redundant sequences encoded granulin and actin, which are expressed in the whole body, and other redundant sequences encoded a Vasa-like protein, which is known to be a component of germ-line cells and is expressed in the ovary, and Y-protein, which is expressed in the testis. The sexualized planarian expressed sequence tag database (http://planaria.bio.keio.ac.jp/planaria/) is an open-access, online resource providing access to sequence, classification, clustering, and annotation data. This database should constitute a powerful tool for analyzing sexualization in planarians.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号