首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
[3H]Inositol uptake by HL60 cells was measured during DMSO-induced differentiation towards neutrophils. The values for Km (53.2 microM) and Vmax (5.3 pmol/min per 10(6) cells) obtained for control HL60 cells are in good agreement with previously published figures for this cell line. Inositol transport into HL60 cells was an active, saturable and specific process which was unaffected by extracellular glucose concentrations. Inositol transport rates changed during DMSO-induced differentiation of HL60 cells towards neutrophils. An increase in inositol transport rates occurred during the first 4 days of exposure to 0.9% DMSO and was concommitant with the period leading to growth arrest and prior to the acquisition of the differentiated phenotype. These changes preceded the rise in intracellular inositol concentration from 10.9 to 132.7 microM seen between day 1 and day 5. After 4 days exposure to DMSO the rate of inositol transport fell to a value of 3.2 +/- 0.3 pmol/min per 10(6) cells at day 7, this was accompanied by a small reduction in intracellular inositol from a peak value of 132.7 to 112 microM. The inositol transport rate, thus, appears to closely accompany changes in the intracellular concentration of inositol. Inositol transport in human peripheral blood neutrophils was an order of magnitude slower than the value for uninduced HL60 cells, but the Km for inositol transport was similar in both cell types and was unchanged during HL60 differentiation. This suggests that changes in inositol transport rate are achieved by the modulation of a commonly expressed inositol transporter, one consequence of which is the alteration of intracellular inositol concentrations.  相似文献   

2.
HL60 cells were adapted to grow in a serum-free medium containing 1 mg l-1 inositol, in which they differentiated normally towards neutrophils (in 0.9% by volume dimethylsulphoxide) and towards monocytes (in 10 nM phorbol myristate acetate). Cells that had been equilibrium-labelled with [2-3H]myo-inositol contained a complex pattern of inositol metabolites, several of which were at relatively high concentrations. These included InsP5 and InsP6, which were present at concentrations of about 25 microM and 60 microM, respectively. Striking and different changes occurred in the levels of some of the inositol polyphosphates as the cells differentiated towards either neutrophils or monocytes. Most notable were a large but gradual accumulation of Ins(1,3,4,5,6)P5 as HL60 cells decreased in size and acquired neutrophil characteristics, and much more rapid and sequential declines in InsP4, InsP5 and InsP6 as the cells started to take on monocyte character. There was a marked accumulation of free inositol and of phosphatidylinositol in the cells during neutrophil differentiation, probably caused at least in part by an increased rate of inositol uptake providing an increased intracellular inositol supply. The same accumulation of Ins(1,3,4,5,6)P5 occurred during neutrophil differentiation, whether it was induced by dimethylsulphoxide or by a combination of retinoic acid and a T-lymphocyte cell line-derived differentiation factor. Ins(1,4,5)P3, a physiological intracellular mediator of Ca2+ release from membrane stores, did not change in concentration during these differentiation processes. These observations suggest that some of the more abundant cellular inositol polyphosphates play some important, but not yet understood, role either in the processes of haemopoietic differentiation or in the expression of differentiated cell character in myeloid cells.  相似文献   

3.
A homogeneous population of undifferentiated myeloid blast cells was purified from human fetal liver by rosette sedimentation of erythroblasts and macrophages, after coating these cells with monoclonal antibodies, followed by a cell elutriation step. The undifferentiated blast cells were maintained in culture, in a serum-free medium containing 1 mg l-1 inositol, by the presence of a high concentration of interleukin-3 (100 U ml-1). This allowed equilibrium labelling of cells with [2-3H]myo-inositol and analysis of the concentrations of inositol metabolites. The myeloid blast cells contained high concentrations of an unidentified inositol metabolite, possibly sn-glycero-3-phospho-1-inositol (GroPIns, 22 microM), inositol monophosphate (InsP, 16 microM), an unidentified inositol bisphosphate (InsP2, 9.4 microM), inositol pentakisphosphate (InsP5, 37 microM) and inositol hexakisphosphate (InsP6, 31 microM). These high concentrations are similar to those reported in the promyeloid cell line, HL60. Treatment of the blast cells with 10 nM phorbol myristate acetate (PMA) resulted in rapid differentiation of 48% of the cells towards monocytes. Notable changes in the levels of inositol metabolites included an increase in the putative GroPIns peak (to 73 microM) and decreases in the concentrations of InsP4 (from 4 microM to 1 microM) and InsP5 (to 21 microM). These changes in response to PMA, with the exception of the rise in the putative GroPIns, are similar to those reported in HL60 cells undergoing monocyte differentiation. These observations suggest that the abundant inositol polyphosphates may have an as yet unknown role in myeloid differentiation.  相似文献   

4.
5.
Immunoprecipitated retinoblastoma protein from HL60 cells migrated as a series of bands during electrophoresis. The heterogeneity appeared to be generated by phosphorylation of the retinoblastoma protein. Treatment of the cells with the phorbol ester, tetradecanoyl phorbol acetate (TPA), resulted in both a loss of the heterogeneity of the pRB species and a significant decrease in the level of pRB phosphorylation. These changes accompanied differentiation of the HL60 cells into macrophages. Treatment of the cells with dibutyryl cAMP also resulted in dephosphorylation of pRB as well as cell cycle arrest, although no recognizable differentiation occurred. These results are consistent with a model in which TPA and dibutyryl cAMP dependent pathways can activate pRB by altering its phosphorylation.  相似文献   

6.
Bacterial monogalactosyldiacylglycerol M874B (MGDAG), which protects against oxygen radicals, was found to increase the growth of the human promyelocytic leukemia cell HL60 when added to the cell culture, but suppresses the 12-O-tetradecanoyl phorbol-13-acetate-induced differentiation. Analogous MGDAG, S365B had weak, but similar effects. These activities were not observed with analogous plant glyceroglycolipids and diacylglycerol.  相似文献   

7.
MicroRNAs (miRNAs) are highly conserved small non-coding RNAs that regulate gene expression through translational repression by base-pairing with partially complementary mRNAs. The expression of a set of miRNAs is known to be regulated developmentally and spatially, and is involved in differentiation or cell proliferation in several organisms. However, the expression profiles of human miRNAs during cell differentiation remain largely unknown. In an effort to expand our knowledge of human miRNAs, we investigated miRNAs during 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced differentiation of human leukemia cells (HL-60) into monocyte/macrophage-like cells. Several hundred RNAs ranging from 18 to 26 nucleotides were isolated from HL-60 cells with or without TPA-induction, and subsequently characterized by sequencing, database searching, and expression profiling. By removing non-miRNA sequences, we found three novel and 38 known miRNAs expressed in HL-60 cells. These miRNAs could be further classified into subsets of miRNAs that responded differently following TPA induction, either being up-regulated or down-regulated, suggesting the importance of regulated gene expression via miRNAs in the differentiation of HL-60 cells.  相似文献   

8.
Phorbol 12-myristate 13-acetate (PMA) induces the differentiation of the human promyelocytic cell line, HL60, towards adherent macrophage-like cells within 2 days. We have examined the early effects of PMA on inositol phosphates and on diacylglycerol production, two second messengers derived from inositol lipids. In proliferating HL60 cells, PMA induced a time- and concentration-dependent decrease in inositol phosphate levels. Maximal effects were seen after 1 h at 10 nM PMA. PMA also induced the translocation of protein kinase C from the cytosol to the membrane. Comparison between the differentiating effects of several phorbol esters and of 1-oleoyl-2-acetylglycerol with their ability to inhibit inositol phosphate formation suggests that the two effects are correlated.  相似文献   

9.
10.
In HL60 cells, inositol transport is sodium-dependent but functionally independent of Na+/K+ ATPase activity. This observation has implications for the currently proposed theory for the development of diabetic complications.  相似文献   

11.
12.
13.
Abstract. Terminal cell differentiation results in an irreversible arrest in the G1 phase of the cell cycle and loss of the capacity for cell renewal. In the murine erythroleukaemia cell line (MELC), commitment to erythroid differentiation was found also to be preceded by an early, transient, phase of inhibition of growth due to prolongation of the G1 phase. We determined the effect of differentiation-inducing agents on the growth kinetics of a human promyelocytic cell line (HL60) which undergoes differentiation into mature granulocyte. At concentrations of inducers optimal for cell differentiation, an early, transient stimulation of cell multiplication was found. DNA synthesis was enhanced in HL60 cells as early as 5 hr after exposure to inducer. Nevertheless, HL60 cell maturation eventually also resulted in a loss of the multiplication ability. The duration of exposure to inducer required for irreversible loss of the potential for self-renewal was determined by the fall in the cloning efficiency of induced cells; the results indicate that it preceded the switch-off of the replication mechanism; the majority of the cells lost their ability to form large colonies at the time of peak DNA synthesis and were able to complete an additional two to three cell cycles at a rate similar to uninduced cells. These changes occurred before HL60 cells became committed and might play a pivotal role in the process of cell differentiation.  相似文献   

14.
15.
16.
17.
18.
19.
The metabolism of inositol 1- and 4-monophosphates in HL60 promyelocytic leukaemia cells was studied. LiCl, BeCl2 and NaF inhibited the hydrolysis of both monophosphates with half maximal inhibition occurring at 1.2 mM, 0.3 microM, 0.25 mM (Ins 1P) and 0.14 mM, 0.56 microM, 0.28 mM (Ins 4P) respectively. Lithium was an uncompetitive inhibitor with respect to both substrates. Ins 4P inhibited the hydrolysis of Ins 1P in a concentration dependent manner, suggesting that it acts as a competing substrate for the same enzyme. Half maximal inhibition occurred at 120 microM Ins 4P. The lithium sensitive activity responsible for the metabolism of both monophosphates was present in a soluble fraction made from the cells. Taken together these data suggest that Ins 1P and Ins 4P are hydrolysed by a single soluble enzyme activity which is sensitive to inhibition by lithium, beryllium and fluoride.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号