首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Acetes chinensis is an underutilized shrimp species thriving in the Bo Hai Gulf of China. In a previous study, we had used the protease from Bacillus sp. SM98011 to digest this kind of shrimp and found that the oligopeptide-enriched hydrolysate possessed antioxidant activity and high angiotensin I-converting enzyme (ACE) inhibitory activity with an IC50 value of 0.97 mg/ml. In this paper, by ultrafiltration, gel permeation chromatography and reversed-phase high-performance liquid chromatography (RP-HPLC), five peptides with high ACE inhibitory activity were purified from the shrimp hydrolysates and their sequences were identified by amino acid composition analysis and molecular weight (MW) analysis. Three of them, FCVLRP (a), IFVPAF (f) and KPPETV (j), were novel ACE inhibitory peptides. Their IC50 values were 12.3 microM, 3.4 microM and 24.1 microM, respectively, and their recoveries were 30 mg/100 g (solid basis of shrimp), 19 mg/100 g and 33 mg/100 g, respectively. Lineweaver-Burk plots for the three novel peptides showed that they are all competitive inhibitors. To test the ACE inhibitory activity of peptide a, f, j after they were digested by digestive enzymes in vivo, 12 derived peptides from FCVLRP and IFVPAF were synthesized based on their amino acid sequences and the cleavage sites of digestive enzymes. No digestive enzyme cleavage site was found in KPPETV. The IC50 values of the derived peptides were determined and the result showed that except for VPAF, FC and FCVL, the ACE inhibitory activity of the other nine derived peptides did not significantly change when compared with their original peptides. Surprisingly, five peptides had lower IC50 values than their original peptides, particularly for RP (IC50 value = 0.39 microM), which is about 30 times lower than its original peptide and almost the lowest IC50 value for ACE inhibitory peptides reported. Therefore, the novel peptides identified from A. chinensis hydrolysates probably still maintain a high ACE inhibitory activity even if they are digested in vivo. This is the first report about novel ACE inhibitory peptides from hydrolysates of marine shrimp A. chinensis. The novel peptides from hydrolysate of A. chinensis and some of their derived peptides with high ACE inhibitory activity probably have potential in the treatment of hypertension or in clinical nutrition.  相似文献   

2.
Angiotensin I converting enzyme (ACE) inhibitory peptides can induce antihypertensive effects after oral administration. By means of an ACE inhibitory peptide database, containing about 500 reported sequences and their IC(50) values, the different proteins in pea and whey were quantitatively evaluated as precursors for ACE inhibitory peptides. This analysis was combined with experimental data from the evolution in ACE inhibitory activity and protein degradation during in vitro gastrointestinal digestion. Pea proteins produced similar in silico scores and were degraded early in the in vitro digestion. High ACE inhibitory activity was observed after the simulated stomach phase and augmented slightly in the simulated small intestine phase. The major whey protein beta-lactoglobulin obtained the highest in silico scores, which corresponded with the fact that degradation of this protein in vitro only occurred from the simulated small intestine phase on and resulted in a 10-fold increase in the ACE inhibitory activity. Whey protein obtained total in silico scores of about 124 ml/mg, compared to 46 ml/mg for pea protein, indicating that whey protein would be a richer source of ACE inhibitory peptides than pea protein. Although beta-lactoglobulin is only partially digested, a higher ACE inhibitory activity was indeed found in the whey (IC(50) = 0.048 mg/ml) compared to the pea digest (IC(50) = 0.076 mg/ml). In silico gastrointestinal digestion of the highest scoring proteins in pea and whey, vicilin and albumin PA2, and beta-lactoglobulin, respectively, directly released a number of potent ACE inhibitory peptides. Several other ACE inhibitory sequences resisted in silico digestion by gastrointestinal proteases. Briefly, the quantitative in silico analysis will facilitate the study of precursor proteins on a large scale and the specific release of bioactive peptides.  相似文献   

3.
Mung bean protein isolates were hydrolyzed for 2 h by Alcalase. The generated hydrolysate showed angiotensin I-converting enzyme (ACE) inhibitory activity with the IC(50) value of 0.64 mg protein/ml. Three kinds of novel ACE inhibitory peptides were isolated from the hydrolysate by Sephadex G-15 and reverse-phase high performance liquid chromatography (RP-HPLC). These peptides were identified by amino acid composition analysis and matrix assisted-laser desorption/ionization time-of-flight tandem mass spectrometry (MALDI-TOF MS/MS), as Lys-Asp-Tyr-Arg-Leu, Val-Thr-Pro-Ala-Leu-Arg and Lys-Leu-Pro-Ala-Gly-Thr-Leu-Phe with the IC(50) values of 26.5 microM, 82.4 microM and 13.4 microM, respectively.  相似文献   

4.
Acetes chinensis is an underutilized shrimp species thriving in Bo Hai Gulf of China. Its hydrolysate digested with protease SM98011 has been previously shown to have high angiotensin I-converting enzyme (ACE) inhibitory activity (He et al., J Pept Sci 12:726-733, 2006). In this article, A. chinensis were fermented by Lactobacillus fermentum SM 605 and the fermented sauce presented high ACE inhibitory activity. The minimum IC(50) value (3.37 +/- 0.04 mg/mL) was achieved by response surface methodology with optimized process parameters such as fermentation time of 24.19 h, incubation temperature at 38.10 degrees C, and pH 6.12. Three ACE inhibitory peptides are purified by ultrafiltration, gel filtration, and reverse-phase high performance liquid chromatography. Identified by mass spectrometry, their amino acid sequences are Asp-Pro, Gly-Thr-Gly, and Ser-Thr, with IC(50) values of 2.15 +/- 0.02, 5.54 +/- 0.09, and 4.03 +/- 0.10 microM, respectively. Also, they are all novel ACE inhibitory peptides. Compared with protease digestion, fermentation is a simpler and cheaper method to produce ACE inhibitory peptides from shrimp A. chinensis.  相似文献   

5.
Isolation of bioactive compounds and commercialization of marine microalgae sources are interesting targets in future marine biotechnology. Cultured biomass of the marine microalga, Nannochloropsis oculata, was used to purify angiotensin-I converting enzyme (ACE) inhibitory peptides using proteases including pepsin, trypsin, α-chymotrypsin, papain, alcalase, and neutrase. The pepsin hydrolysate exhibited the highest ACE inhibitory activity, compared to the other hydrolysates and then was separated into three fractions (F1, F2, and F3) using Sephadex G-25 gel filtration column chromatography. First fraction (F1) showed the highest ACE inhibitory activity and it was further purified into two fractions (F1-1 and F1-2) using reverse-phase high-performance liquid chromatography. The IC50 value of purified ACE inhibitory peptides were 123 and 173 μM and identified as novel peptides, Gly-Met-Asn-Asn-Leu-Thr-Pro (GMNNLTP; MW, 728 Da) and Leu-Glu-Gln (LEQ; MW, 369 Da), respectively. In addition, nitric oxide production level (%) was significantly increased by the purified peptide (Gly-Met-Asn-Asn-Leu-Thr-Pro) compared to the purified peptide (Leu-Glu-Gln) and other treated pepsin hydrolysate fractions on human umbilical vein endothelial cells (HUVECs). Cell viability assay showed no cytotoxicity on HUVECs with the treated purified peptides and fractions. These results suggest that the isolated peptides from cultured marine microalga, N. oculata protein sources may have potentiality to use commercially as ACE inhibitory agents in functional food industry.  相似文献   

6.
Angiotensin I converting enzyme (ACE)-inhibitory peptides were screened from a random peptide-displayed phage library using ACE-coupled liposomes. Among four kinds of inhibitory peptides selected by biopanning with two different elution strategies, a peptide (LSTLRSFCA) showed the highest inhibitory activity with an IC(50) value of 3microM. By measuring inhibitory activities of fragments of the peptide, it was found that the RSFCA region was a functional site to inhibit strongly the ACE catalytic activity, and particularly both Arg and Cys residues were essential for the strong inhibitory activity. The inhibitory activity of RRFCA was slightly increased, while that of the RSFRA, in which the Cys residue was replaced by Arg, was decreased to greater extent in comparison with the inhibitory activity of RSFCA. Taking into account the results obtained from the SPOT analysis, it was suggested that the Arg and Phe residues in RSFCA were important for a specific interaction with ACE, and the Cys residue inhibited the ACE activity. The cystein-based ACE-inhibitory peptides have not been isolated from processed food materials. These findings suggested that the biopanning method utilizing protein-coupled liposomes and random peptide libraries might have a possibility to screen new functional peptides that are not found in processed food materials.  相似文献   

7.
Angiotensin I-converting enzyme (ACE) inhibition is one of the mechanisms by which reduction in blood pressure is exerted. Whey proteins are a rich source of ACE inhibitory peptides and have shown a blood pressure reduction effect i.e. antihypertensive activity. The aim of this work was to develop a simplified process using a combination of adsorption and microfiltration steps for the production of hydrolysates from whey with high ACE inhibitory activity and potency; the latter was measured as the IC50, which is the peptide concentration required to reduce ACE activity by half. This process integrates the selective separation of β-lactoglobulin- and casein-derived peptides (CDP) from rennet whey and their hydrolysis, which results in partially pure, less complex hydrolysates with high bioactive potency. Hydrolysis was carried out with protease N "Amano" in a thermostatically controlled membrane reactor operated in a batch mode. By applying the integrative approach it was possible to produce from the same feedstock two different hydrolysates that exhibited high ACE inhibition. One hydrolysate was mainly composed of casein-derived peptides with IC50=285 μg/mL. In this hydrolysate we identified the well-known potent ACE-inhibitor and antihypertensive tripeptide Ile-Pro-Pro (IPP) and another novel octapeptide Gln-Asp-Lys-Thr-Glu-Ile-Pro-Thr (QDKTEIPT). The second hydrolysate was mainly composed of β-lactoglobulin derived peptides with IC50=28 μg/mL. This hydrolysate contained a tetrapeptide (Ile-Ile-Ala-Glu) IIAE as one of the two major peptides. A further advantage to this process is that enzyme activity was substantially increased as enzyme product inhibition was reduced.  相似文献   

8.
Angiotensin I converting enzyme (ACE) inhibitory peptide was isolated from the marine rotifer, Brachionus rotundiformis. ACE inhibitory peptides were separated from rotifer hydrolysate prepared by Alcalase, α-chymotrypsin, Neutrase, papain, and trypsin. The Alcalase hydrolysate had the highest ACE inhibitory activity compared to the other hydrolysates. The IC50 value of Alcalase hydrolysate for ACE inhibitory activity was 0.63 mg/ml. We attempted to isolate ACE inhibitory peptides from Alcalase prepared rotifer hydrolysate using gel filtration on a Sephadex G-25 column and high performance liquid chromatography on an ODS column. The IC50 value of purified ACE inhibitory peptide was 9.64 μM, and Lineweaver–Burk plots suggest that the peptide purified from rotifer protein acts as a competitive inhibitor against ACE. Amino acid sequence of the peptide was identified as Asp-Asp-Thr-Gly-His-Asp-Phe-Glu-Asp-Thr-Gly-Glu-Ala-Met, with a molecular weight 1538 Da. The results of this study suggest that peptides derived from rotifers may be beneficial as anti-hypertension compounds in functional foods resource.  相似文献   

9.
The latent production of angiotensin I-converting enzyme (ACE) Inhibitors from tartary buckwheat (BW) was investigated, and the peptides responsible for ACE inhibition characterized. Intact buckwheat was found to exhibit ACE inhibitory activity having an IC50 value of 3.0 mg/ml. The activity of the protein fraction (IC50: 0.36 mg protein/ml) was not enhanced by pepsin treatment. Pepsin, followed by chymotrypsin and trypsin hydrolysis, resulted in a significant increase in the ACE inhibitory activity (IC50: 0.14 mg protein/ml). The rutin contained in the buckwheat did not exhibit any ACE inhibition. A single oral administration of BW digest lowered the systolic blood pressure of a spontaneously hypertensive rat. Thus, BW proteins offer a potential resource for producing ACE inhibitory peptides during the digestion process. From the di-/tri-peptide fraction (DTPF) of the BW digest, inhibitory peptides were identified. The magnitude (%) of the total ACE inhibitory contribution of each identified peptide, relative to the overall inhibition of the DTPF, was about 41%.  相似文献   

10.
The effect of enzymatic hydrolysis by Savinase on the interfacial properties and antihypertensive activity of shrimp waste proteins was evaluated. The physicochemical characterization, interfacial tension, and surface characteristics of shrimp waste protein hydrolysates (SWPH) using different enzyme/substrate (E/S) (SWPH5 (SWPH using E/S = 5), SWPH15 (SWPH using E/S = 15), and SWPH40 (SWPH using E/S = 40)) were also studied. SWPH5, SWPH15, and SWPH40 had an isoelectric pH around 2.07, 2.17, and 2.54 respectively. SWPH5 exhibited the lowest interfacial tension (68.96 mN/m) followed by SWPH15 (69.36 mN/m) and SWPH40 (70.29 mN/m). The in vitro ACE inhibitory activity of shrimp waste protein hydrolysates showed that the most active hydrolysate was obtained using an enzyme/substrate of 15 U/mg (SWPH15). SWPH15 had a lower IC50 value (2.17 mg/mL) than that of SWPH5 and SWPH40 (3.65 and 5.7 mg/mL, respectively). This hydrolysate was then purified and characterized. Fraction F1 separated by Sephadex G25 column which presents the best ACE inhibition activity was then separated by reversed‐phase high performance liquid chromatography. Four ACE inhibitory peptides were identified and their molecular masses and amino acid sequences were determined using ESI–MS and ESI–MS/MS, respectively. The structures of the most potent peptides were SSSKAKKMP, HGEGGRSTHE, WLGHGGRPDHE, and WRMDIDGDIMISEQEAHQR. The structural modeling of anti‐ACE peptides from shrimp waste through docking simulations results showed that these peptides bound to ACE with high affinity.  相似文献   

11.
Proteases are involved in various biological functions. Thus, inhibition of their activities is scientifically interesting and medically important. However, there is no systematic method established to date to generate endopeptidase inhibitory peptides. Here, we report a general system to identify endopeptidase inhibitory peptides based on the use of in vitro evolution. Using this system, we generated peptides that inhibit cathepsin E (CE) specifically at a submicromolar IC50. This system generates protease inhibitor peptides utilizing techniques of cDNA display, selection-by-function, Y-ligation-based block shuffling, and others. We further demonstrated the importance and effectiveness of a secondary library for obtaining small-sized and active peptides. CE inhibitory peptides generated by this method were characterized by a small size (8 to 12 aa) and quite different sequences, suggesting that they bind to different sites on CE. Typical CE inhibitory peptide aptamers obtained here (Pi101; SCGG IIII SCIA) have half an inhibition activity (Ki; 5 nM) of pepstatin A (potent CE inhibitor) without inhibiting cathepsin D (structurally similar to CE). The general applicability of this system suggests that it may be useful to identify inhibitory peptides for various kinds of proteases and that it may therefore contribute to protein science and drug discovery. The peptide binding to a protein is discussed in comparison with the antibody binding to an antigen.  相似文献   

12.
Tauzin J  Miclo L  Gaillard JL 《FEBS letters》2002,531(2):369-374
Angiotensin-I-converting enzyme (ACE) inhibitory activity of a tryptic digest of bovine alpha(S2)-casein (alpha(S2)-CN) was extensively investigated. Forty-three peptide peaks were isolated and tested. Seven casokinins (i.e. CN-derived ACE inhibitory peptides) were identified and their IC50 values were determined. Four peptides exhibited an IC50 value lower than 20 microM. Peptides alpha(S2)-CN (f174-181) and alpha(S2)-CN (f174-179) had IC50 values of 4 microM. Surprisingly, deletion of the C-terminal dipeptide of two of these casokinins did not significantly alter their inhibitory activity.  相似文献   

13.
The fruiting body of Tricholoma giganteum has many pharmaceutical uses and has long been utilized as a home remedy in Asia. This study describes the extraction and characterization of the first angiotensin I-converting enzyme (ACE) inhibitory peptide from T. giganteum. The maximum ACE inhibitory activity (IC50: 0.31 mg) was obtained when the fruiting body of T. giganteum was extracted with distilled water at 30 degrees C for 3 h. After the purification of ACE inhibitory peptides with ultrafiltration, Sephadex G-25 column chromatography, and reverse-phase HPLC, an active fraction with an IC50 of 0.04 mg and a yield of 0.3% was obtained. The ACE inhibitory peptide was a novel tripeptide, showing very low similarity to other ACE inhibitory peptide sequences, and was sequenced as Gly-Glu-Pro. The purified ACE inhibitor from T. giganteum competitively inhibited ACE, and it maintained inhibitory activity even after incubation with proteases. ACE inhibitor from T. giganteum showed a clear antihypertensive effect in spontaneously hypertensive rats (SHR), at a dosage of 1 mg/kg.  相似文献   

14.
In order to clarify the potential physiological function of royal jelly (RJ), we report here the gastrointestinal enzyme production of antihypertensive peptides from RJ. Intact RJ and its protein fraction did not retard the action of angiotensin I-converting enzyme (ACE) activity at all. However, development of ACE inhibition power of RJ was newly observed by pepsin hydrolysis (IC(50)=0.358 mg protein/mL), and the subsequent trypsin and chymotrypsin hydrolyses (IC(50)=0.099 mg protein/mL). Single oral administration of this gastrointestinal RJ hydrolysate (1 g/kg dose) in 10-week spontaneously hypertensive rat resulted in a significant reduction of systolic blood pressure of 22.7 plus minus 3.6 mmHg at 2 hr (P<0.05 vs. 0 hr by one-way ANOVA, n=7). Then, the RJ hydrolysate was fractionated with gel permeation chromatography to obtain the di- and tri-peptides (DTP) fraction. As a result of isolation from the DTP fraction by reversed phase-high performance liquid chromatography, eleven ACE inhibitory peptides were isolated from the DTP-RJ hydrolysate. Some of the ACE inhibitors were derived from the RJ-glycoprotein; eight peptides with the IC(50) value of <10 &mgr;M were identified from natural resources for the first time. Consequently, RJ protein was thought to be a good resource of ACE inhibitory peptides produced by the gastrointestinal enzyme hydrolyses.  相似文献   

15.
Angiotensin I-converting enzyme (ACE) inhibitory activity was observed in a tofuyo (fermented soybean food) extract with an IC(50) value of 1.77 mg/ml. Two ACE inhibitors were isolated to homogeneity from the extract by adsorption and gel filtration column chromatography, and by reverse-phase high-performance liquid chromatography (HPLC). The purified substances reacted with 2,4,6-trinitrobenzensulfonic acid sodium salt. The amino acid sequences of these inhibitors determined by Edman degradation were Ile-Phe-Leu (IC(50), 44.8 microM) and Trp-Leu (IC(50), 29.9 microM). The Ile-Phe-Leu sequence is found in the alpha- and beta-subunits of beta-conglycinin, while the Trp-Leu sequence is in the B-, B1A- and BX-subunits of glycinin from soybean. Both of the peptides are non-competitive inhibitors. The inhibitory activity of Trp-Leu was completely preserved after a treatment with pepsin, chymotrypsin or trypsin. Even after successive digestion by these gastrointestinal proteases, the activity remained at 29% of the original value.  相似文献   

16.
A fast at-line method was developed for the identification of ACE inhibiting (ACEI) peptides in protein hydrolysates. The method consists of activity measurements of fractions collected from a two-dimensional HPLC fractionation of the peptide mixture followed by MS identification of the peptides in the inhibiting fractions. The inhibition assay is based on the inhibiting effect of ACEI peptides on the hydrolytic scission of the substrate Hippuric acid-His-Leu (HHL) during the ACE-catalysed hydrolysis reaction. A fast LC method was developed for the quantification of Hippuric acid (H) and Hippuric acid-Histidine-Leucine (HHL), allowing a large number of fractions to be analysed within a reasonable time period. The method is sensitive and uses only standard laboratory equipment. The limit of detection is 0.34 microM for the known ACEI peptide IPP. This is sufficiently sensitive for the identification of only moderately active peptides and/or ACEI peptides present at low concentrations. The relative standard deviation of the inhibition assay was 12% measured over a time period of 2 months. The IC50 value of IPP measured with the assay was 5.6 microM, which is comparable to the values of 5 microM and 5.15 microM reported in literature for the standard Matsui method. The assay was successfully applied in the identification of ACEI peptides in enzymatically hydrolysed caseinate samples. Two new, not earlier published ACEI peptides were identified; MAP (beta-casein f102-104) and ITP (alpha-s2-casein f119-121) with IC50 values of 3.8 microM and 50 microM, respectively.  相似文献   

17.
Yu Y  Hu J  Miyaguchi Y  Bai X  Du Y  Lin B 《Peptides》2006,27(11):2950-2956
Animal blood is potentially an untapped source of drugs and value-added food production. More than 400 million pigs are slaughtered each year but porcine blood is usually discarded in China. This study describes the isolation and characterization of angiotensin I-converting enzyme (ACE) inhibitory peptides derived from porcine hemoglobin. The most active hydrolysate was obtained from the peptic digestion of porcine hemoglobin. After the purification of ACE-inhibitory peptides with Sephadex LH-20 gel chromatography and reversed-phase high-performance liquid chromatography (RP-HPLC) on C(18) column, two active fractions were obtained. They were analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/MS) and electrospray ionization tandem mass spectrometry (ESI-MS/MS). They were LGFPTTKTYFPHF and VVYPWT, corresponding to the 34-46 fragment of the alpha chain and the 34-39 fragment of the beta chain of porcine hemoglobin, with IC(50) values of 4.92 and 6.02 microM, respectively. They were the first found from porcine hemoglobin; in particular, LGFPTTKTYFPHF was a novel ACE-inhibitory peptide. In addition, the purified ACE inhibitors both competitively inhibited ACE, and maintained inhibitory activity even after incubation with gastrointestinal proteases. This suggests that these peptides might have a potential antihypertensive effect.  相似文献   

18.
Angiotensin-converting enzyme (ACE) plays a major role in the regulation of blood pressure. A diagnostic assay to measure angiotensin-converting enzyme (ACE) activity was transformed into an enzyme inhibition assay and optimised, which led to a more sensitive and less expensive assay. By this spectrophotometric method, ACE inhibition is measured using the substrate furanacryloyl-Phe-Gly-Gly and as ACE source rabbit lung acetone extract. The optimised as well as the original ACE inhibition assay were used to verify the ACE inhibitory activity of captopril. The ACE inhibition assay was further validated by enalapril, its active derivative enalaprilat and the ACE-inhibitory peptide Ala-Leu-Pro-Met-His-Ile-Arg, corresponding to a tryptic fragment of bovine beta-lactoglobulin. Sigmoid curves could be fit adequately to the data points representing ACE inhibition in function of inhibitor concentration. IC(50) values for these compounds corresponded well with literature data. Furthermore, pea and whey protein hydrolysates obtained by digestion with trypsin showed ACE inhibitory activity in the ACE inhibition assay. Hence, this optimised assay is suitable to screen for ACE inhibitory peptides derived from food proteins with a possible antihypertensive effect in vivo.  相似文献   

19.
He H  Chen X  Sun C  Zhang Y  Gao P 《Bioresource technology》2006,97(3):385-390
Marine organisms are potentially an untapped source of drugs and value-added food production. Currently, Acetes chinensis is an underutilized shrimp species with low commercial value from the Bo Hai Gulf of China. In this paper, the shrimp was digested by a crude protease from Bacillus sp. SM98011 and filtered through a 3 kDa ultrafiltration membrane. Biological functions of the hydrolysate and ultrafiltrate were then assayed. The analyses showed that 41% of the oligopeptides in the ultrafiltrate had a molecular mass lower than 3 kDa. The antioxidant activities of the hydrolysate and ultrafiltrate were determined through the scavenger activity of the hydroxyl radical, with inhibitions of 42.38% and 67.95%, respectively. The hydrolysate and ultrafiltrate also had good Angiotensin-I-converting enzyme (ACE) inhibitory activity, with IC50 values of 0.98 mg/ml and 0.22 mg/ml, respectively. In addition, Chitin and chitosan were recovered from the hydrolytic sediment using a much smaller volume of strong acids and bases than is normally needed. With this method, we have shown that A. chinensis can be utilized to generate a high value-added product, and have revealed its hidden potential in the production of functional foods and ACE inhibitory peptides.  相似文献   

20.
为了探究黑水虻Hermetia illucens幼虫蛋白及酶解产物的抗氧化活性,以鲜活黑水虻幼虫冻虫为原料,采用碱提酸沉法提取黑水虻蛋白,通过碱性蛋白酶、菠萝蛋白酶、风味蛋白酶、木瓜蛋白酶对其蛋白质溶液进行酶解,分别从2,2′-联氮-双-3-乙基苯并噻唑啉-6-磺酸(ABTS)自由基、羟自由基、1,1-二苯基-2-三硝基苯肼(DPPH)自由基3个方面对黑水虻蛋白及其酶解液的抗氧化能力进行测定。结果表明:黑水虻幼虫蛋白及4种酶解后的蛋白肽具有较好的抗氧化活性,其中黑水虻幼虫蛋白对ABTS自由基、羟自由基、DPPH自由基的半抑制浓度(IC50)分别为2.91、0.232、0.764 mg/mL,而酶解过后的蛋白肽具有更强的抗氧化活性,对ABTS自由基、羟自由基、DPPH自由基的最低半抑制浓度(IC50)分别为0.295、0.082、0.354 mg/mL。本研究初步证明了酶解制备抗氧化肽的可行性,为昆虫蛋白资源的利用和无抗饲料的研制提供了新的研究思路。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号