首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Genetic isolates are exceptional resources for the detection of susceptibility genes for complex diseases because of the potential reduction in genetic and clinical heterogeneity. However, the outcome of these mapping efforts is dependent upon the demographic history of a given isolated population, with the most significant factors being a constant population size, the number of generations since founding, and the pathogenic loci and their allele frequencies among founders. Here we employed a cross-isolate genome-wide multipoint linkage study design using uniform genetic and clinical methods in four Daghestan ethnically and demographically diverse isolates with an aggregation of schizophrenia. Our previous population-genetics study showed that Daghestan has an extremely high genetic diversity between ethnic populations and a low genetic diversity within them. The isolates selected for this study include some with more than 200 and some with fewer than 100 generations of demographical history since their founding. Updated clinical data using DSM-IV criteria showed between-isolate differences in aggregation of distinct types of schizophrenia: one of the isolates had a predominant aggregation of disorganized schizophrenia, while the other three had predominantly paranoid schizophrenia. The summarized cross-isolate results indicated prominent within and between-isolate differences in clinical and genetic heterogeneity: the most ancient isolates have roughly twofold fewer incidences of distinct clinical phenotypes and fewer linked genomic regions compared to the demographically younger isolates, which exhibit higher clinical and genetic heterogeneity. Affected individuals in the demographically ancient isolate of ethnic Dargins (No. 6022) who suffered from disorganized schizophrenia showed the highest linkage evidence at 17p11-p12 (LOD=3.73), while isolates with a predominant aggregation of paranoid schizophrenia (Nos. 6005, 6011, and 6034) showed the highest linkage evidence at 22q11 (LOD=3.0 and 4.4). The unified clinical, genomic, and statistical design we used enabled us to separate the linked and unlinked pedigrees in an unbiased fashion for each genomic location. Overall maximized heterogeneity lod scores for the combined pedigrees ranging from 3.5 to 8.7 were found at 2p24, 10q26, 11q23, 12q24, 17p11-p12, 22q11, and 22q13. The cross-isolate homogeneity in linkage patterns may be ascribed to an identical-by-descent "metahaplotype" block with pathogenic loci derived from the Daghestan ethnic groups' common ancestral metapopulation, while the cross-isolate differences may reflect differences in gene drift and recombination events in the history of local isolates. The results obtained support the notion that mapping genes of any complex disease (e.g., schizophrenia) in demographically older genetic isolates may be more time and cost effective in comparison with demographically younger isolates, especially in genetically heterogeneous outbred populations, due to higher clinical and genetic homogeneity of the primary isolates. A study at higher genotyping density across the regions of interest and fluorescence in situ hybridization analyses are currently underway.  相似文献   

2.
Traditional models of genetic drift predict a linear decrease in additive genetic variance for populations passing through a bottleneck. This perceived lack of heritable variance limits the scope of founder-effect models of speciation. We produced 55 replicate bottleneck populations maintained at two male-female pairs through four generations of inbreeding (average F = 0.39). These populations were formed from an F2 intercross of the LG/J and SM/J inbred mouse strains. Two contemporaneous control strains maintained with more than 60 mating pairs per generation were formed from this same source population. The average level of within-strain additive genetic variance for adult body weight was compared between the control and experimental lines. Additive genetic variance for adult body weight within experimental bottleneck strains was significantly higher than expected under an additive genetic model This enhancement of additive genetic variance under inbreeding is likely to be due to epistasis, which retards or reverses the loss of additive genetic variance under inbreeding for adult body weight in this population. Therefore, founder-effect speciation processes may not be constrained by a loss of heritable variance due to population bottlenecks.  相似文献   

3.
Genome duplication resulting in polyploidy can have significant consequences for the evolution of mating systems. Most theory predicts that self‐fertilization will be selectively favored in polyploids; however, many autopolyploids are outcrossing or mixed‐mating. Here, we examine the hypothesis that the evolution of selfing is restricted in autopolyploids because the genetic cost of selfing (i.e., inbreeding depression) increases monotonically with successive generations of inbreeding. Using the herbaceous, autotetraploid plant Chamerion angustifolium, we generated populations with different inbreeding coefficients (F= 0, 0.17 and 0.36) through three consecutive generations of selfing and compared their magnitudes of inbreeding depression in a common environment. Mating system estimates for four natural populations confirmed that tetraploid selfing rates (sm= 0.25, SE = 0.02) are similar to those of diploids (sm= 0.12, SE = 0.12; F1,2= 1.34, P= 0.37) indicating that both cytotypes are predominantly outcrossing. Compared to an outbred control line, mean inbreeding depression for seed production, survival, and height (vegetative and total) in the inbred line differed among generations (inbreeding coefficients). Across all stages, inbreeding depression (relative to control) was positively related to generation (inbreeding coefficient). Although the initial costs of inbreeding in extant and newly synthesized polyploids may be low compared to diploids, the monotonic increase in inbreeding depression with repeated inbreeding may limit the extent to which selfing variants are favored.  相似文献   

4.
Habitat fragmentation is known to generally reduce the size of plant populations and increase their isolation, leading to genetic erosion and increased between-population genetic differentiation. In Flanders (northern Belgium) Primula vulgaris is very rare and declining. Populations have incurred strong fragmentation for the last decades and are now restricted to a few highly fragmented areas in an intensively used agricultural landscape. Previous studies showed that small populations of this long-lived perennial herb still maintained high levels of genetic variation and low genetic differentiation. This pattern can either indicate recent gene flow or represent historical variation. Therefore, we used polymorphic microsatellite loci to investigate genetic variation and structure in adult (which may still reflect historical variation) and seedling (recent generation, thus affected by current processes) life stages. The recent generation (seedlings) showed a significant loss of observed heterozygosity (H o) together with lower expected heterozygosity (H e), a trend for higher inbreeding levels (F IS) and higher differentiation (F ST) between populations compared to the adult generation. This might result from (1) a reduction in effective population size, (2) higher inbreeding levels in the seedlings, (3) a higher survival of heterozygotes over time due to a higher fitness of heterozygotes (heterosis) and/or a lower fitness of homozygotes (inbreeding depression), (4) overlapping generations in the adult life stage, or (5) a lack of establishment of new (inbred) adults from seedlings due to degraded habitat conditions. Combining restoration of both habitat quality and gene flow between populations may be indispensable to ensure a sustainable conservation of fragmented populations.  相似文献   

5.
Although genome scans have become a popular approach towards understanding the genetic basis of local adaptation, the field still does not have a firm grasp on how sampling design and demographic history affect the performance of genome scans on complex landscapes. To explore these issues, we compared 20 different sampling designs in equilibrium (i.e. island model and isolation by distance) and nonequilibrium (i.e. range expansion from one or two refugia) demographic histories in spatially heterogeneous environments. We simulated spatially complex landscapes, which allowed us to exploit local maxima and minima in the environment in ‘pair’ and ‘transect’ sampling strategies. We compared FST outlier and genetic–environment association (GEA) methods for each of two approaches that control for population structure: with a covariance matrix or with latent factors. We show that while the relative power of two methods in the same category (FST or GEA) depended largely on the number of individuals sampled, overall GEA tests had higher power in the island model and FST had higher power under isolation by distance. In the refugia models, however, these methods varied in their power to detect local adaptation at weakly selected loci. At weakly selected loci, paired sampling designs had equal or higher power than transect or random designs to detect local adaptation. Our results can inform sampling designs for studies of local adaptation and have important implications for the interpretation of genome scans based on landscape data.  相似文献   

6.
Genetic introgression has been suggested as a management tool for mitigating detrimental effects of inbreeding depression, but the role of introgression in species conservation has been controversial, partly because population-level impacts of genetic introgressions are not well understood. Concerns about potential inbreeding depression in the endangered Florida panther (Puma concolor coryi) led to the release of eight female Texas pumas (P. c. stanleyana) into the Florida panther population in 1995. We used long-term reproductive data (1995–2008) collected from 61 female Florida panthers to estimate and model reproduction probability (probability of producing a litter) and litter size, and to investigate the influence of intentional genetic introgression on these parameters. Overall, 6-month probability of reproduction (±1SE) was 0.232 ± 0.021 and average litter size was 2.60 ± 0.09. Although F1 admixed females had a lower reproduction probability than females with other ancestries, this was most likely because kittens born to F1 females survive better; consequently, these females are unavailable for breeding until kittens are independent. There was no evidence for the effect of ancestry on litter size or of heterozygosity on probability of reproduction or litter size. In contrast, earlier studies have shown that genetic introgression positively affected Florida panther survival. Our results, along with those of earlier studies, clearly suggest that genetic introgression can have differential effects on components of fitness and highlight the importance of examining multiple demographic parameters when evaluating the effects of management actions.  相似文献   

7.
Inbreeding depression may be common in nature, reflecting either the failure of inbreeding avoidance strategies or inbreeding tolerance when avoidance is costly. The combined assessment of inbreeding risk, avoidance and depression is therefore fundamental to evaluate the inbreeding strategy of a population, that is how individuals respond to the risk of inbreeding. Here, we use the demographic and genetic monitoring of 10 generations of wild grey mouse lemurs (Microcebus murinus), small primates from Madagascar with overlapping generations, to examine their inbreeding strategy. Grey mouse lemurs have retained ancestral mammalian traits, including solitary lifestyle, polygynandry and male‐biased dispersal, and may therefore offer a representative example of the inbreeding strategy of solitary mammals. The occurrence of close kin among candidate mates was frequent in young females (~37%, most often the father) and uncommon in young males (~6%) due to male‐biased dispersal. However, close kin consistently represented a tiny fraction of candidate mates (< 1%) across age and sex categories. Mating biases favouring partners with intermediate relatedness were detectable in yearling females and adult males, possibly partly caused by avoidance of daughter–father matings. Finally, inbreeding depression, assessed as the effect of heterozygosity on survival, was undetectable using a capture–mark–recapture study. Overall, these results indicate that sex‐biased dispersal is a primary inbreeding avoidance mechanism at the population level, and mating biases represent an additional strategy that may mitigate residual inbreeding costs at the individual level. Combined, these mechanisms explain the rarity of inbreeding and the lack of detectable inbreeding depression in this large, genetically diverse population.  相似文献   

8.
We investigated the mating system and population genetic structure of the invasive haplodiploid palm‐seed borer Coccotrypes dactyliperda in California. We focused on whether these primarily inbreeding beetles have a ‘mixed‐breeding’ system that includes occasional outbreeding, and whether local inbreeding coefficients (FIS) varied with dominant environmental factors. We also analysed the genetic structure of C. dactyliperda populations across local and regional scales. Based on the analysis of genetic variation at seven microsatellite loci in 1034 individual beetles from 59 populations, we found both high rates of inbreeding and plentiful evidence of mixed‐breeding. FIS ranged from ?0.56 to 0.90, the highest variability reported within any animal species. There was a negative correlation between FIS and latitude, suggesting that some latitude‐associated factor affecting mating decisions influenced inbreeding rates. Multiple regressions suggested that precipitation, but not temperature, may be an important correlate. Finally, we found highly significant genetic differentiation among sites, even over short geographic distances (< 1000 m).  相似文献   

9.
It has been hypothesized that natural selection reduces the “genetic load” of deleterious alleles from populations that inbreed during bottlenecks, thereby ameliorating impacts of future inbreeding. We tested the efficiency with which natural selection purges deleterious alleles from three subspecies of Peromyscus polionotus during 10 generations of laboratory inbreeding by monitoring pairing success, litter size, viability, and growth in 3604 litters produced from 3058 pairs. In P. p. subgriseus, there was no reduction across generations in inbreeding depression in any of the fitness components. Strongly deleterious recessive alleles may have been removed previously during episodes of local inbreeding in the wild, and the residual genetic load in this population was not further reduced by selection in the lab. In P. p. rhoadsi, four of seven fitness components did show a reduction of the genetic load with continued inbreeding. The average reduction in the genetic load was as expected if inbreeding depression in this population is caused by highly deleterious recessive alleles that are efficiently removed by selection. For P. p. leucocephalus a population that experiences periodic bottlenecks in the wild, the effect of further inbreeding in the laboratory was to exacerbate rather than reduce the genetic load. Recessive deleterious alleles may have been removed from this population during repeated bottlenecks in the wild; the population may be close to a threshold level of heterozygosity below which fitness declines rapidly. Thus, the effects of selection on inbreeding depression varied substantially among populations, perhaps due to different histories of inbreeding and selection.  相似文献   

10.
Natal sex‐biased dispersal has long been thought to reduce the risk of inbreeding by spatially separating opposite‐sexed kin. Yet, comprehensive and quantitative evaluations of this hypothesis are lacking. In this study, we quantified the effectiveness of sex‐biased dispersal as an inbreeding avoidance strategy by combining spatially explicit simulations and empirical data. We quantified the extent of kin clustering by measuring the degree of spatial autocorrelation among opposite‐sexed individuals (FM structure). This allowed us to systematically explore how the extent of sex‐biased dispersal, generational overlap, and mate searching distance, influenced both kin clustering, and the resulting inbreeding in the absence of complementary inbreeding avoidance strategies. Simulations revealed that when sex‐biased dispersal was limited, positive FM genetic structure developed quickly and increased as the mate searching distance decreased or as generational overlap increased. Interestingly, complete long‐range sex‐biased dispersal did not prevent the development of FM genetic structure when generations overlapped. We found a very strong correlation between FM genetic structure and both FIS under random mating, and pedigree‐based measures of inbreeding. Thus, we show that the detection of FM genetic structure can be a strong indicator of inbreeding risk. Empirical data for two species with different life history strategies yielded patterns congruent with our simulations. Our study illustrates a new application of spatial genetic autocorrelation analysis that offers a framework for quantifying the risk of inbreeding that is easily extendable to other species. Furthermore, our findings provide other researchers with a context for interpreting observed patterns of opposite‐sexed spatial genetic structure.  相似文献   

11.
Abstract We use 14 microsatellites to examine the genetic structure of a lion (Panthera leo L.) population in southern Tanzania. Heterozygosity levels were high (0.75 ± 0.08). Relatedness estimates showed that prides often had close relatives in neighbouring prides, whereas few relatives were found in prides not sharing a border. The drop‐off in relatedness with distance was highly significant. Female pridemates exhibited a higher mean relatedness (0.26 ± 0.07) to one another than did pride males (0.11 ± 0.07). Mean relatedness among females was significantly higher in small prides than in large ones. Prides exhibited significant inbreeding avoidance (FIL: ?0.11). Mating did not detectably differ from random across prides (FIT: ?0.02 ns). In addition to being recognizable behavioural and demographic units, prides were statistically distinct genetic units (FLT: 0.07). Some neighbouring prides grouped together both geographically and genetically, forming ‘superprides’ in the population (FZT = 0.05). Thus, although individual prides were genetically distinct, there was an important genetic structure above the level of social groups.  相似文献   

12.
Dogs are of increasing interest as models for human diseases, and many canine population-association studies are beginning to emerge. The choice of breeds for such studies should be informed by a knowledge of factors such as inbreeding, genetic diversity, and population structure, which are likely to depend on breed-specific selective breeding patterns. To address the lack of such studies we have exploited one of the world's most extensive resources for canine population-genetics studies: the United Kingdom (UK) Kennel Club registration database. We chose 10 representative breeds and analyzed their pedigrees since electronic records were established around 1970, corresponding to about eight generations before present. We find extremely inbred dogs in each breed except the greyhound and estimate an inbreeding effective population size between 40 and 80 for all but 2 breeds. For all but 3 breeds, >90% of unique genetic variants are lost over six generations, indicating a dramatic effect of breeding patterns on genetic diversity. We introduce a novel index Psi for measuring population structure directly from the pedigree and use it to identify subpopulations in several breeds. As well as informing the design of canine population genetics studies, our results have implications for breeding practices to enhance canine welfare.  相似文献   

13.
When recessive mutations are the primary cause of inbreeding depression, a negative relationship between the levels of prior inbreeding and inbreeding depression is expected. We tested this prediction using 15 populations chosen a priori to represent a wide range of prior inbreeding among four closely related taxa of the Mimulus guttatus species complex. Artificially selfed and outcrossed progeny were grown under controlled growth-chamber conditions, and inbreeding depression was estimated for each population as one minus the ratio of the fitness of selfed to outcrossed progeny. Estimates of inbreeding depression varied from 0% to 68% among populations. Inbreeding coefficients, estimated from electrophoretic assay of field-collected progenies, ranged from 0.02 to 0.76. All five fitness traits displayed a negative association between inbreeding depression and the inbreeding coefficient, but only height showed a statistically significant correlation. Inbreeding depression was also not correlated with the level of genetic variability. In addition, populations with similar levels of prior inbreeding showed significant differences of inbreeding depression, whereas populations with different levels of prior inbreeding showed similar inbreeding depression. Within populations, inbreeding depression did not differ between progeny selfed one versus two generations. Our results are weakly consistent with the recessive mutation model of inbreeding depression, but suggest that additional factors, including genotype-by-environment interaction and complex modes of inheritance, may influence the expression of inbreeding depression.  相似文献   

14.
I assessed the relationship between the level of inbreeding, F, and fitness, and the effects of nonmaternal and maternal components of inbreeding on fitness in Phacelia dubia. I conducted two generations of controlled crosses and tested the performance of the F2 progeny in field and artificial conditions covering the whole life cycle. Inbreeding significantly decreased the individual contribution of seeds to the next generation in the field, but this decrease apparently is not enough to explain the maintenance of gynodioecy. The inbred progeny contributes significantly to the population genetic structure of P. dubia. Fitness estimates and fitness components tended to decrease, usually monotonically, with F. However, nonmonotonic relationships were found in male fitness components and, in some families, in fitness estimates, seed production per fruit, and establishment. Most of the inbreeding depression takes place at the level of seed establishment in the field, but, in artificial conditions the effects of inbreeding were similar at fecundity and establishment. I studied maternal and nonmaternal components of inbreeding by testing the effects of the relatedness of maternal grandparents and parents on the performance of the progeny. Both components affected fitness. Inbreeding depression was conditioned by the level of inbreeding of the maternal plant, but this interaction varied at different fitness components. Also, the magnitude and even the direction of the relationship between fitness and F changed as a result of the combined effects of maternal and nonmaternal components of inbreeding. Such interactions can render convex or concave fitness functions, giving in the latter case the appearance of a false purging. Maternal effects of inbreeding can result from several processes: maternal investment perhaps with serial adjustments during seed development, purging of recessive deleterious genes, and nucleocytoplasmic interactions. These results illustrate the importance of maternal effects of inbreeding, and the complex effects of inbreeding on fitness. A full understanding of the fitness consequences of inbreeding and, therefore, their potential implications in the evolution of breeding systems, should take into account male and female components as well as transgenerational effects in the context of the particular environment in which fitness is evaluated.  相似文献   

15.
Understanding the relative importance of heterosis and outbreeding depression over multiple generations is a key question in evolutionary biology and is essential for identifying appropriate genetic sources for population and ecosystem restoration. Here we use 2455 experimental crosses between 12 population pairs of the rare perennial plant Rutidosis leptorrhynchoides (Asteraceae) to investigate the multi-generational (F1, F2, F3) fitness outcomes of inter-population hybridization. We detected no evidence of outbreeding depression, with inter-population hybrids and backcrosses showing either similar fitness or significant heterosis for fitness components across the three generations. Variation in heterosis among population pairs was best explained by characteristics of the foreign source or home population, and was greatest when the source population was large, with high genetic diversity and low inbreeding, and the home population was small and inbred. Our results indicate that the primary consideration for maximizing progeny fitness following population augmentation or restoration is the use of seed from large, genetically diverse populations.  相似文献   

16.
We established inbred laboratory lines of the satyrid Bicyclus anynana with one, three and 10 pairs of butterflies, which were subsequently allowed to increase freely to a maximum size of 300 butterflies. Minimally inbred control lines were established with 300 randomly selected virgin butterflies of equal sex ratio. We measured fecundity, egg weight, egg hatching, adult emergence, adult size, and the proportion of crippled adults in generations F2, F3, F5, and F7 (the latter two for the one pair bottleneck lines only). The most striking result was an unexpectedly large decrease in egg hatching with increase in inbreeding (25% per 10% increase in inbreeding). Such a level of inbreeding depression has not been reported previously for any insect. The distribution of egg hatching rate for individual clutches within inbred lines was markedly skewed, with a large fraction of clutches producing no eggs at all. This is interpreted as a relatively lower ratio of detrimental to lethal (or sterile) mutation loads than is found in Drosophila, the only insects for which mutation loads have been well characterized. Possible explanations for this severe inbreeding depression include a relatively high rate of mutation to recessive alleles with substantial damaging effects and infrequent episodes of inbreeding in nature. In the experiments, average egg hatching rate recovered rapidly between F2 and F7 in three of the six one-pair lines. We discuss the implications of these results for survival of populations through extreme bottlenecks in nature and in captivity.  相似文献   

17.
Genomic approaches permit direct estimation of inbreeding and its effect on fitness. We used genomic‐based estimates of inbreeding to investigate their relationship with eight adult traits in a captive‐reared Pacific salmonid that is released into the wild. Estimates were also used to determine whether alternative broodstock management approaches reduced risks of inbreeding. Specifically, 1,100 unlinked restriction‐site associated (RAD) loci were used to compare pairwise relatedness, derived from a relationship matrix, and individual inbreeding, estimated by comparing observed and expected homozygosity, across four generations in two hatchery lines of Chinook salmon that were derived from the same source. The lines are managed as “integrated” with the founding wild stock, with ongoing gene flow, and as “segregated” with no gene flow. While relatedness and inbreeding increased in the first generation of both lines, possibly due to population subdivision caused by hatchery initiation, the integrated line had significantly lower levels in some subsequent generations (relatedness: F2–F4; inbreeding F2). Generally, inbreeding was similar between the lines despite large differences in effective numbers of breeders. Inbreeding did not affect fecundity, reproductive effort, return timing, fork length, weight, condition factor, and daily growth coefficient. However, it delayed spawn timing by 1.75 days per one standard deviation increase in F (~0.16). The results indicate that integrated management may reduce inbreeding but also suggest that it is relatively low in a small, segregated hatchery population that maximized number of breeders. Our findings demonstrate the utility of genomics to monitor inbreeding under alternative management strategies in captive breeding programs.  相似文献   

18.
DAVID H. REED 《Molecular ecology》2009,18(22):4521-4522
The extent to which genetic diversity is lost from inbred populations is important for conservation biology, evolutionary ecology, and plant and animal breeding. This importance stems from the fact that the amount of genetic diversity a population has is expected to correlate with evolutionary potential. A population's ability to avert extinction during rapidly changing environmental conditions, or the magnitude of response to selection on a trait, depend on the ability of the genome to maintain potentially adaptive genetic variation in the face of random genetic drift. Although a few previous studies have demonstrated that the rate of inbreeding affects the amount of genetic diversity maintained, the elegant work of Demontis et al. , in this issue, clearly demonstrates that slow inbreeding maintains more genetic diversity than fast inbreeding and that the primary mechanism could be balancing selection. In their study, populations that took 19 generations, rather than one generation, to reach the same level of inbreeding maintained 10% higher levels of allelic richness and 25% higher levels of heterozygosity. The use of specifically chosen molecular markers not expected to be neutral makes this study especially noteworthy, as the study provides evidence concerning the mechanisms underlying the maintenance of genetic diversity in the face of inbreeding.  相似文献   

19.
Periodic and augmentative releases of natural enemies are often required to enhance biological control and integrated pest management programs. One requirement for these programs to be practical is that natural enemies can be easily and economically mass-reared. This study assessed the effects of dieton the quality of the F3 and F4laboratory-reared generations of the predatory thrips,Aleurodothrips fasciapennis. Diets were eggs and crawlers of the diaspidid scale Chrysomphalusaonidum and eggs of the pyralid moth Corcyracephalonica. It was found that both the F3 and F4 generations were not viable when reared on the eggs and crawlers of C. aonidum due to very low fecundity and, in the F4 generation, increased larval mortality. In contrast, thrips reared on the eggs of C. cephalonica were viable in both generations but an increase in larval mortality from the F3 to the F4 generation did result in are duction in viability. These results are discussed in terms of genetic, environmental and behavioural factors that may have influenced the quality of the thrips. It is concluded that genetic factors(inbreeding suppression, genetic drift or selection),the behaviour of scale crawlers and the predatory behaviour of thrips were probably of little value in explaining the results. The most likely explanation was that the diet supplied to thrips was of in adequatenutritional quality. It was not possible to distinguish whether this was due to low intrinsic quality of the prey or an indirect effect of experimental conditions on prey quality. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
Infectious disease has been shown to be a major cause of population declines in wild animals. However, there remains little empirical evidence on the genetic consequences of disease-mediated population declines, or how such perturbations might affect demographic processes such as dispersal. Devil facial tumour disease (DFTD) has resulted in the rapid decline of the Tasmanian devil, Sarcophilus harrisii, and threatens to cause extinction. Using 10 microsatellite DNA markers, we compared genetic diversity and structure before and after DFTD outbreaks in three Tasmanian devil populations to assess the genetic consequences of disease-induced population decline. We also used both genetic and demographic data to investigate dispersal patterns in Tasmanian devils along the east coast of Tasmania. We observed a significant increase in inbreeding (FIS pre/post-disease −0.030/0.012, P<0.05; relatedness pre/post-disease 0.011/0.038, P=0.06) in devil populations after just 2–3 generations of disease arrival, but no detectable change in genetic diversity. Furthermore, although there was no subdivision apparent among pre-disease populations (θ=0.005, 95% confidence interval (CI) −0.003 to 0.017), we found significant genetic differentiation among populations post-disease (θ=0.020, 0.010–0.027), apparently driven by a combination of selection and altered dispersal patterns of females in disease-affected populations. We also show that dispersal is male-biased in devils and that dispersal distances follow a typical leptokurtic distribution. Our results show that disease can result in genetic and demographic changes in host populations over few generations and short time scales. Ongoing management of Tasmanian devils must now attempt to maintain genetic variability in this species through actions designed to reverse the detrimental effects of inbreeding and subdivision in disease-affected populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号