首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
Isolation of specific genomic regions retaining molecular interactions is necessary for their biochemical analysis. Here, we established a novel method, engineered DNA-binding molecule-mediated chromatin immunoprecipitation (enChIP), for purification of specific genomic regions retaining molecular interactions. We showed that enChIP using the CRISPR system efficiently isolates specific genomic regions. In this form of enChIP, specific genomic regions are immunoprecipitated with antibody against a tag(s), which is fused to a catalytically inactive form of Cas9 (dCas9), which is co-expressed with a guide RNA (gRNA) and recognizes endogenous DNA sequence in the genomic regions of interest. enChIP–mass spectrometry (enChIP–MS) targeting endogenous loci identified associated proteins. enChIP using the CRISPR system would be a convenient and useful tool for dissecting chromatin structure of genomic regions of interest.  相似文献   

2.
The 3D folding structure formed by different genomic regions of a chromosome is still poorly understood. So far, only relatively simple geometric features, like distances and angles between different genomic regions, have been evaluated. This work is concerned with more complex geometric properties, i.e., the complete shape formed by genomic regions. Our work is based on statistical shape theory and we use different approaches to analyze the considered structures, e.g., shape uniformity test, 3D point-based registration, Fisher distribution, and 3D non-rigid image registration for shape normalization. We have applied these approaches to analyze 3D microscopy images of the X-chromosome where four consecutive genomic regions (BACs) have been simultaneously labeled by multicolor FISH. We have acquired two sets of four consecutive genomic regions with an overlap of three regions. From the experimental results, it turned out that for all data sets the complete structure is non-random. In addition, we found that the shapes of active and inactive X-chromosomal genomic regions are statistically independent. Moreover, we reconstructed the average 3D structure of chromatin in a small genomic region (below 4 Mb) based on five BACs resulting from two overlapping four BAC regions. We found that geometric normalization with respect to the nucleus shape based on non-rigid image registration has a significant influence on the location of the genomic regions.  相似文献   

3.
Simple Sequence Repeats (SSRs) represent short tandem duplications found within all eukaryotic organisms. To examine the distribution of SSRs in the genome of Brassica rapa ssp. pekinensis, SSRs from different genomic regions representing 17.7 Mb of genomic sequence were surveyed. SSRs appear more abundant in non-coding regions (86.6%) than in coding regions (13.4%). Comparison of SSR densities in different genomic regions demonstrated that SSR density was greatest within the 5'-flanking regions of the predicted genes. The proportion of different repeat motifs varied between genomic regions, with trinucleotide SSRs more prevalent in predicted coding regions, reflecting the codon structure in these regions. SSRs were also preferentially associated with gene-rich regions, with peri-centromeric heterochromatin SSRs mostly associated with retrotransposons. These results indicate that the distribution of SSRs in the genome is non-random. Comparison of SSR abundance between B. rapa and the closely related species Arabidopsis thaliana suggests a greater abundance of SSRs in B. rapa, which may be due to the proposed genome triplication. Our results provide a comprehensive view of SSR genomic distribution and evolution in Brassica for comparison with the sequenced genomes of A. thaliana and Oryza sativa.  相似文献   

4.
Besides the complete genome, different partial genomic sequences of Hepatitis E virus (HEV) have been used in genotyping studies, making it difficult to compare the results based on them. No commonly agreed partial region for HEV genotyping has been determined. In this study, we used a statistical method to evaluate the phylogenetic performance of each partial genomic sequence from a genome wide, by comparisons of evolutionary distances between genomic regions and the full-length genomes of 101 HEV isolates to identify short genomic regions that can reproduce HEV genotype assignments based on full-length genomes. Several genomic regions, especially one genomic region at the 3′-terminal of the papain-like cysteine protease domain, were detected to have relatively high phylogenetic correlations with the full-length genome. Phylogenetic analyses confirmed the identical performances between these regions and the full-length genome in genotyping, in which the HEV isolates involved could be divided into reasonable genotypes. This analysis may be of value in developing a partial sequence-based consensus classification of HEV species.  相似文献   

5.
To identify genomic regions involved in the regulation of fundamental physiological processes such as photosynthesis and respiration, a population of Solanum pennellii introgression lines was analyzed. We determined phenotypes for physiological, metabolic, and growth related traits, including gas exchange and chlorophyll fluorescence parameters. Data analysis allowed the identification of 208 physiological and metabolic quantitative trait loci with 33 of these being associated to smaller intervals of the genomic regions, termed BINs. Eight BINs were identified that were associated with higher assimilation rates than the recurrent parent M82. Two and 10 genomic regions were related to shoot and root dry matter accumulation, respectively. Nine genomic regions were associated with starch levels, whereas 12 BINs were associated with the levels of other metabolites. Additionally, a comprehensive and detailed annotation of the genomic regions spanning these quantitative trait loci allowed us to identify 87 candidate genes that putatively control the investigated traits. We confirmed 8 of these at the level of variance in gene expression. Taken together, our results allowed the identification of candidate genes that most likely regulate photosynthesis, primary metabolism, and plant growth and as such provide new avenues for crop improvement.  相似文献   

6.
7.
Nosil P  Feder JL 《Molecular ecology》2012,21(12):2829-2832
Genetic differentiation during adaptive divergence and speciation is heterogeneous among genomic regions. Some regions can be highly differentiated between populations, for example, because they harbour genes under divergent selection or those causing reproductive isolation and thus are resistant to gene flow. Other regions might be homogenized by gene flow and thus weakly differentiated. Debates persist about the number of differentiated regions expected under divergence with gene flow, and their causes, size, and genomic distribution. In this issue of Molecular Ecology, a study of freshwater stickleback used next-generation sequencing to shed novel insight into these issues (Roesti et al. 2012). Many genomic regions distributed across the genome were strongly differentiated, indicating divergence with gene flow can involve a greater number of loci than often thought. Nonetheless, differentiation of some regions, such as those near the centre of chromosomes where recombination is reduced, was strongly accentuated over others. Thus, divergence was widespread yet highly heterogeneous across the genome. Moreover, different population pairs varied in patterns of differentiation, illustrating how genomic divergence builds up across stages of the speciation process. The study demonstrates how variation in different evolutionary processes, such as selection and recombination rate, can combine to result in similar genomic patterns. Future work could focus on teasing apart the contributions of different processes for causing differentiation, a task facilitated by experimental manipulations.  相似文献   

8.
Although the major food-borne pathogen Campylobacter jejuni has been isolated from diverse animal, human and environmental sources, our knowledge of genomic diversity in C. jejuni is based exclusively on human or human food-chain-associated isolates. Studies employing multilocus sequence typing have indicated that some clonal complexes are more commonly associated with particular sources. Using comparative genomic hybridization on a collection of 80 isolates representing diverse sources and clonal complexes, we identified a separate clade comprising a group of water/wildlife isolates of C. jejuni with multilocus sequence types uncharacteristic of human food-chain-associated isolates. By genome sequencing one representative of this diverse group (C. jejuni 1336), and a representative of the bank-vole niche specialist ST-3704 (C. jejuni 414), we identified deletions of genomic regions normally carried by human food-chain-associated C. jejuni. Several of the deleted regions included genes implicated in chicken colonization or in virulence. Novel genomic insertions contributing to the accessory genomes of strains 1336 and 414 were identified. Comparative analysis using PCR assays indicated that novel regions were common but not ubiquitous among the water/wildlife group of isolates, indicating further genomic diversity among this group, whereas all ST-3704 isolates carried the same novel accessory regions. While strain 1336 was able to colonize chicks, strain 414 was not, suggesting that regions specifically absent from the genome of strain 414 may play an important role in this common route of Campylobacter infection of humans. We suggest that the genomic divergence observed constitutes evidence of adaptation leading to niche specialization.  相似文献   

9.
High-throughput bisulfite sequencing is widely used to measure cytosine methylation at single-base resolution in eukaryotes. It permits systems-level analysis of genomic methylation patterns associated with gene expression and chromatin structure. However, methods for large-scale identification of methylation patterns from bisulfite sequencing are lacking. We developed a comprehensive tool, CpG_MPs, for identification and analysis of the methylation patterns of genomic regions from bisulfite sequencing data. CpG_MPs first normalizes bisulfite sequencing reads into methylation level of CpGs. Then it identifies unmethylated and methylated regions using the methylation status of neighboring CpGs by hotspot extension algorithm without knowledge of pre-defined regions. Furthermore, the conservatively and differentially methylated regions across paired or multiple samples (cells or tissues) are identified by combining a combinatorial algorithm with Shannon entropy. CpG_MPs identified large amounts of genomic regions with different methylation patterns across five human bisulfite sequencing data during cellular differentiation. Different sequence features and significantly cell-specific methylation patterns were observed. These potentially functional regions form candidate regions for functional analysis of DNA methylation during cellular differentiation. CpG_MPs is the first user-friendly tool for identifying methylation patterns of genomic regions from bisulfite sequencing data, permitting further investigation of the biological functions of genome-scale methylation patterns.  相似文献   

10.
11.
Microbial genes that are “novel” (no detectable homologs in other species) have become of increasing interest as environmental sampling suggests that there are many more such novel genes in yet-to-be-cultured microorganisms. By analyzing known microbial genomic islands and prophages, we developed criteria for systematic identification of putative genomic islands (clusters of genes of probable horizontal origin in a prokaryotic genome) in 63 prokaryotic genomes, and then characterized the distribution of novel genes and other features. All but a few of the genomes examined contained significantly higher proportions of novel genes in their predicted genomic islands compared with the rest of their genome (Paired t test = 4.43E-14 to 1.27E-18, depending on method). Moreover, the reverse observation (i.e., higher proportions of novel genes outside of islands) never reached statistical significance in any organism examined. We show that this higher proportion of novel genes in predicted genomic islands is not due to less accurate gene prediction in genomic island regions, but likely reflects a genuine increase in novel genes in these regions for both bacteria and archaea. This represents the first comprehensive analysis of novel genes in prokaryotic genomic islands and provides clues regarding the origin of novel genes. Our collective results imply that there are different gene pools associated with recently horizontally transmitted genomic regions versus regions that are primarily vertically inherited. Moreover, there are more novel genes within the gene pool associated with genomic islands. Since genomic islands are frequently associated with a particular microbial adaptation, such as antibiotic resistance, pathogen virulence, or metal resistance, this suggests that microbes may have access to a larger “arsenal” of novel genes for adaptation than previously thought.  相似文献   

12.
Major histocompatibility complex (MHC) class I and NK cell receptor gene regions are a paradigm of genomic plasticity as they reveal a considerable degree of diversity, exemplified by high allelic polymorphism, genomic duplications and contractions, and formation of gene families. Both genetic components show signs of rapid evolution due to strong selective pressure to combat pathogens. Comparative analyses of these genomic regions in various primates revealed considerable differences, reflecting species-specific adaptations to pathogenic threat or different strategies to combat infections. MHC and NK receptor genomic diversity in populations are important factors that determine susceptibility or resistance to a variety of diseases including autoimmune and infectious diseases as well as reproductive success.  相似文献   

13.
The migratory and stationary ecotypes of Atlantic cod are two ecological forms that differ by migratory behavior. Recent studies have revealed extended genomic regions associated with local adaptations of the ecotypes. In this study, a panel of markers was created to identify the variants of these genomic regions.  相似文献   

14.
Genome scans have become a common approach to identify genomic signatures of natural selection and reproductive isolation, as well as the genomic bases of ecologically relevant phenotypes, based on patterns of polymorphism and differentiation among populations or species. Here, we review the results of studies taking genome scan approaches in plants, consider the patterns of genomic differentiation documented and their possible causes, discuss the results in light of recent models of genomic differentiation during divergent adaptation and speciation, and consider assumptions and caveats in their interpretation. We find that genomic regions of high divergence generally appear quite small in comparisons of both closely and more distantly related populations, and for the most part, these differentiated regions are spread throughout the genome rather than strongly clustered. Thus, the genome scan approach appears well-suited for identifying genomic regions or even candidate genes that underlie adaptive divergence and/or reproductive barriers. We consider other methodologies that may be used in conjunction with genome scan approaches, and suggest further developments that would be valuable. These include broader use of sequence-based markers of known genomic location, greater attention to sampling strategies to make use of parallel environmental or phenotypic transitions, more integration with approaches such as quantitative trait loci mapping and measures of gene flow across the genome, and additional theoretical and simulation work on processes related to divergent adaptation and speciation.  相似文献   

15.
Extensive sonication of formaldehyde-crosslinked chromatin can generate DNA fragments averaging 200 bp in length (range 75–300 bp). Fragmentation is largely random with respect to genomic region and nucleosome position. ChIP experiments employing such extensively fragmented samples show 2- to 4-fold increased enrichment of protein binding sites over control genomic regions, when compared to samples sonicated to a more conventional size range (300–500 bp). The basis of improved fold enrichments is that immunoprecipitation of protein-bound regions is unaffected by fragment size, whereas immunoprecipitation of control genomic regions decreases progressively along with reduced fragment size due to fewer nonspecific binding sites. The use of extensively sonicated samples improves mapping of protein binding sites, and it extends the dynamic range for quantitative measurements of histone density. We show that many yeast promoter regions are virtually devoid of histones.  相似文献   

16.
Despite considerable excitement over the potential functional significance of copy-number variants (CNVs), we still lack knowledge of the fine-scale architecture of the large majority of CNV regions in the human genome. In this study, we used a high-resolution array-based comparative genomic hybridization (aCGH) platform that targeted known CNV regions of the human genome at approximately 1 kb resolution to interrogate the genomic DNAs of 30 individuals from four HapMap populations. Our results revealed that 1020 of 1153 CNV loci (88%) were actually smaller in size than what is recorded in the Database of Genomic Variants based on previously published studies. A reduction in size of more than 50% was observed for 876 CNV regions (76%). We conclude that the total genomic content of currently known common human CNVs is likely smaller than previously thought. In addition, approximately 8% of the CNV regions observed in multiple individuals exhibited genomic architectural complexity in the form of smaller CNVs within larger ones and CNVs with interindividual variation in breakpoints. Future association studies that aim to capture the potential influences of CNVs on disease phenotypes will need to consider how to best ascertain this previously uncharacterized complexity.  相似文献   

17.
Cross-hybridization of repetitive sequences in genomic and expression arrays is reported to be suppressed with repeat-blocking nucleic acids (Cot-1 DNA). Contrary to expectation, we demonstrated that Cot-1 also enhanced non-specific hybridization between probes and genomic targets. When added to target DNA, Cot-1 enhanced hybridization (2.2- to 3-fold) to genomic probes containing conserved repetitive elements. In addition to repetitive sequences, Cot-1 was found to be enriched for linked single copy (sc) sequences. Adventitious association between these sequences and probes distort quantitative measurements of the probes hybridized to desired genomic targets. Quantitative microarray hybridization studies using Cot-1 DNA are also susceptible to these effects, especially for probes that map to genomic regions containing conserved repetitive sequences. Hybridization measurements with such probes are less reproducible in the presence of Cot-1 than for probes derived from sc regions or regions containing divergent repeat elements, a finding with significant ramifications for genomic and expression microarray studies. We mitigated the requirement for Cot-1 either by hybridizing with computationally defined sc probes lacking repeats or by substituting synthetic repetitive elements complementary to sequences in genomic probes.  相似文献   

18.
To study the genomic divergence between human and chimpanzee, large-scale genomic sequence alignments were performed. The genomic sequences of human and chimpanzee were first masked with the RepeatMasker and the repeats were excluded before alignments. The repeats were then reinserted into the alignments of nonrepetitive segments and entire sequences were aligned again. A total of 2.3 million base pairs (Mb) of genomic sequences, including repeats, were aligned and the average nucleotide divergence was estimated to be 1.22%. The Jukes-Cantor (JC) distances (nucleotide divergences) in nonrepetitive (1.44 Mb) and repetitive sequences (0.86 Mb) are 1.14% and 1.34%, respectively, suggesting a slightly higher average rate in repetitive sequences. Annotated coding and noncoding regions of homologous chimpanzee genes were also retrieved from GenBank and compared. The average synonymous and nonsynonymous divergences in 88 coding genes are 1.48% and 0.55%, respectively. The JC distances in intron, 5' flanking, 3' flanking, promoter, and pseudogene regions are 1.47%, 1.41%, 1.68%, 0.75%, and 1.39%, respectively. It is not clear why the genetic distances in most of these regions are somewhat higher than those in genomic sequences. One possible explanation is that some of the genes may be located in regions with higher mutation rates.  相似文献   

19.
20.
Germ Cell Tumors (GCT) have a high cure rate, but we currently lack the ability to accurately identify the small subset of patients who will die from their disease. We used a combined genomic and expression profiling approach to identify genomic regions and underlying genes that are predictive of outcome in GCT patients. We performed array-based comparative genomic hybridization (CGH) on 53 non-seminomatous GCTs (NSGCTs) treated with cisplatin based chemotherapy and defined altered genomic regions using Circular Binary Segmentation. We identified 14 regions associated with two year disease-free survival (2yDFS) and 16 regions associated with five year disease-specific survival (5yDSS). From corresponding expression data, we identified 101 probe sets that showed significant changes in expression. We built several models based on these differentially expressed genes, then tested them in an independent validation set of 54 NSGCTs. These predictive models correctly classified outcome in 64–79.6% of patients in the validation set, depending on the endpoint utilized. Survival analysis demonstrated a significant separation of patients with good versus poor predicted outcome when using a combined gene set model. Multivariate analysis using clinical risk classification with the combined gene model indicated that they were independent prognostic markers. This novel set of predictive genes from altered genomic regions is almost entirely independent of our previously identified set of predictive genes for patients with NSGCTs. These genes may aid in the identification of the small subset of patients who are at high risk of poor outcome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号