首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lin B  Hiraiwa H  Pan CJ  Nordlie RC  Chou JY 《Human genetics》1999,105(5):515-517
Glycogen storage disease type 1 (GSD-1) is a group of autosomal recessive disorders caused by deficiencies in glucose-6-phosphatase (G6Pase) and the associated substrate/product transporters. Molecular genetic studies have demonstrated that GSD-1a and GSD-1b are caused by mutations in the G6Pase enzyme and a glucose-6-phosphate transporter (G6PT), respectively. While kinetic studies of G6Pase catalysis predict that the index GSD-1c patient is deficient in a pyrophosphate/phosphate transporter, the existence of a separate locus for GSD-1c remains unclear. We have previously shown that the G6Pase gene of the index GSD-1c patient is intact; we now show that the G6PT gene of this patient is normal, strongly suggesting the existence of a distinct GSD-1c locus.  相似文献   

2.
3.
Glycogen storage disease type 1 (GSD-1), also known as von Gierke disease, is a group of autosomal recessive metabolic disorders caused by deficiencies in the activity of the glucose-6-phosphatase (G6Pase) system that consists of at least two membrane proteins, glucose-6-phosphate transporter (G6PT) and G6Pase. G6PT translocates glucose-6-phosphate (G6P) from cytoplasm to the lumen of the endoplasmic reticulum (ER) and G6Pase catalyzes the hydrolysis of G6P to produce glucose and phosphate. Therefore, G6PT and G6Pase work in concert to maintain glucose homeostasis. Deficiencies in G6Pase and G6PT cause GSD-1a and GSD-1b, respectively. Both manifest functional G6Pase deficiency characterized by growth retardation, hypoglycemia, hepatomegaly, kidney enlargement, hyperlipidemia, hyperuricemia, and lactic acidemia. GSD-1b patients also suffer from chronic neutropenia and functional deficiencies of neutrophils and monocytes, resulting in recurrent bacterial infections as well as ulceration of the oral and intestinal mucosa. The G6Pase gene maps to chromosome 17q21 and encodes a 36-kDa glycoprotein that is anchored to the ER by 9 transmembrane helices with its active site facing the lumen. Animal models of GSD-1a have been developed and are being exploited to delineate the disease more precisely and to develop new therapies. The G6PT gene maps to chromosome 11q23 and encodes a 37-kDa protein that is anchored to the ER by 10 transmembrane helices. A functional assay for the recombinant G6PT protein has been established, which showed that G6PT functions as a G6P transporter in the absence of G6Pase. However, microsomal G6P uptake activity was markedly enhanced in the simultaneous presence of G6PT and G6Pase. The cloning of the G6PT gene now permits animal models of GSD-1b to be generated. These recent developments are increasing our understanding of the GSD-l disorders and the G6Pase system, knowledge that will facilitate the development of novel therapeutic approaches for these disorders.  相似文献   

4.
Glycogen storage disease type 1b (GSD-1b) is proposed to be caused by a deficiency in microsomal glucose 6-phosphate (G6P) transport, causing a loss of glucose-6-phosphatase activity and glucose homeostasis. However, for decades, this disorder has defied molecular characterization. In this study, we characterize the structural organization of the G6P transporter gene and identify mutations in the gene that segregate with the GSD-1b disorder. We report the functional characterization of the recombinant G6P transporter and demonstrate that mutations uncovered in GSD-1b patients disrupt G6P transport. Our results, for the first time, define a molecular basis for functional deficiency in GSD-1b and raise the possibility that the defective G6P transporter contributes to neutropenia and neutrophil/monocyte dysfunctions characteristic of GSD-1b patients.  相似文献   

5.
Glucose-6-phosphatase, an enzyme localized in the endoplasmic reticulum (ER), catalyzes the hydrolysis of glucose-6-phosphate (G6P) to glucose and inorganic phosphate. In humans, there are three differentially expressed glucose-6-phosphatase catabolic genes (G6PC1-3). Recently, it has been shown that mutations in the G6PC3 gene result in a syndrome associating congenital neutropenia and various organ malformations. The enzymatic function of G6PC3 is dependent on G6P transport into the ER, mediated by G6P translocase (G6PT). Mutations in the gene encoding G6PT result in glycogen storage disease type-1b (GSD-1b). Interestingly, GSD-1b patients exhibit a similar neutrophil dysfunction to that observed in G6PC3-deficient patients. To better understand the causes of neutrophil dysfunction in both diseases, we have studied the neutrophil nicotinamide adenine dinucleotide phosphate (NADPH) oxidase of patients with G6PC3 and G6PT syndromes. Unexpectedly, sodium dodecyl sulfate-polyacrylamide gel electrophoresis experiments indicated hypo-glycosylation of gp91(phox), the electron-transporting component of the NADPH oxidase, in all of these patients. Rigorous mass spectrometric glycomic profiling showed that most of the complex-type antennae which characterize the neutrophil N-glycome of healthy individuals were severely truncated in the patients' neutrophils. A comparable truncation of the core 2 antenna of the O-glycans was also observed. This aberrant neutrophil glycosylation is predicted to have profound effects on the neutrophil function and merit designation of both syndromes as a new class of congenital disorders of glycosylation.  相似文献   

6.
7.
Glycogen-storage disease type 1 (GSD-1), also known as "von Gierke disease," is caused by a deficiency in microsomal glucose-6-phosphatase (G6Pase) activity. There are four distinct subgroups of this autosomal recessive disorder: 1a, 1b, 1c, and 1d. All share the same clinical manifestations, which are caused by abnormalities in the metabolism of glucose-6-phosphate (G6P). However, only GSD-1b patients suffer infectious complications, which are due to both the heritable neutropenia and the functional deficiencies of neutrophils and monocytes. Whereas G6Pase deficiency in GSD-1a patients arises from mutations in the G6Pase gene, this gene is normal in GSD-1b patients, indicating a separate locus for the disorder in the 1b subgroup. We now report the linkage of the GSD-1b locus to genetic markers spanning a 3-cM region on chromosome 11q23. Eventual molecular characterization of this disease will provide new insights into the genetic bases of G6P metabolism and neutrophil-monocyte dysfunction.  相似文献   

8.
9.
10.
11.
12.
Glucose-6 phosphatase (G6Pase), a key enzyme of glucose homeostasis, catalyses the hydrolysis of glucose-6 phosphate (G6P) to glucose and inorganic phosphate. A deficiency in G6Pase activity causes type 1 glycogen storage disease (GSD-1), mainly characterised by hypoglycaemia. Genetic analyses of the two forms of this rare disease have shown that the G6Pase system consists of two proteins, a catalytic subunit (G6PC) responsible for GSD-1a, and a G6P translocase (G6PT), responsible for GSD-1b. However, since their identification, few investigations concerning their structural relationship have been made. In this study, we investigated the localisation and membrane organisation of the G6Pase complex. To this aim, we developed chimera proteins by adding a fluorescent protein to the C-terminal ends of both subunits. The G6PC and G6PT fluorescent chimeras were both addressed to perinuclear membranes as previously suggested, but also to vesicles throughout the cytoplasm. We demonstrated that both proteins strongly colocalised in perinuclear membranes. Then, we studied G6PT organisation in the membrane. We highlighted FRET between the labelled C and N termini of G6PT. The intramolecular FRET of this G6PT chimera was 27%. The coexpression of unlabelled G6PC did not modify this FRET intensity. Finally, the chimera constructs generated in this work enabled us for the first time to analyze the relationship between GSD-1 mutations and the intracellular localisation of both G6Pase subunits. We showed that GSD1 mutations did neither alter the G6PC or G6PT chimera localisation, nor the interaction between G6PT termini. In conclusion, our results provide novel information on the intracellular distribution and organisation of the G6Pase complex.  相似文献   

13.
14.
A deficiency in microsomal glucose-6-phosphatase (G6Pase) activity causes glycogen storage disease type 1 (GSD-1), a clinically and biochemically heterogeneous group of diseases. It has been suggested that catalysis by G6Pase involves multiple components, with defects in the G6Pase catalytic unit causing GSD-1a and defects in the putative substrate and product translocases causing GSD-1b, 1c, and 1d. However, this model is open to debate. To elucidate the G6Pase system, we have examinedG6PasemRNA expression, G6Pase activity, and glucose 6-phosphate (G6P) transport activity in the murine liver and kidney during normal development. In the liver,G6PasemRNA and enzymatic activity were detected at 18 days gestation and increased markedly at parturition, before leveling off to adult levels. In the kidney,G6PasemRNA and enzymatic activity appeared at 19 days gestation and peaked at weaning, suggesting that kidney G6Pase may have a different metabolic role.In situhybridization analysis demonstrated that, in addition to the liver and kidney, the intestine expressedG6Pase.Despite the expression ofG6Pasein the embryonic liver, microsomal G6P transport activity was not detectable until birth, peaking at about age 4 weeks. Our study strongly supports the multicomponent model for the G6Pase system.  相似文献   

15.
16.
17.
18.
Glucose-6-phosphatase is a multicomponent system located in the endoplasmic reticulum, involving both a catalytic subunit (G6PC) and several substrate and product carriers. The glucose-6-phosphate carrier is called G6PT1. Using light scattering, we determined K(D) values for phosphate and glucose transport in rat liver microsomes (45 and 33mM, respectively), G6PT1 K(D) being too low to be estimated by this technique. We provide evidence that phosphate transport may be carried out by an allosteric multisubunit translocase or by two distinct proteins. Using chemical modifications by sulfhydryl reagents with different solubility properties, we conclude that in G6PT1, one thiol group important for activity is facing the cytosol and could be Cys(121) or Cys(362). Moreover, a different glucose-6-phosphate translocase, representing 20% of total glucose-6-phosphate transport and insensitive to N-ethylmaleimide modification, could coexist with liver G6PT1. In the G6PC protein, an accessible thiol group is facing the cytosol and, according to structural predictions, could be Cys(284).  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号