首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cyanobacterial (Spirulina platensis) photosynthetic membranes and isolated F1 ATPase were characterized with respect to ATP activity. The following results indicate that the regulation of expression of ATPase activity in Spirulina platensis is similar to that found in chloroplasts: the ATPase activity of Spirulina membranes and isolated F1 ATPase is mostly latent, a characteristic of chloroplast ATPase activity; treatments that elicit ATPase activity in higher plant chloroplast thylakoids and isolated chloroplast coupling factor (CF1) greatly stimulate the activity of Spirulina membranes and F1, and the cation specificity of chloroplast ATPase activity, e. g., light-induced membrane activity that is magnesium dependent and trypsin-activated CF1 activity that is calcium dependent, is also observed in Spirulina. Thus, an 8- to 15-fold increase in specific activity (to 13-15 mumol Pi min-1 mg chl-1) is obtained when Spirulina membranes are treated with trypsin (CaATPase) or with methanol (MgATPase): a light-induced, dithiothreitol-dependent MgATPase activity is also found in the membranes. Purified Spirulina F1 is a CaATPase when activated with trypsin (endogenous activity increases from 4 to 27-37 mumol Pi min-1 mg protein-1) or with dithiothreitol (5.6 mumol Pi min-1 mg-1), but a MgATPase when assayed with methanol (18-20 mumol Pi min-1 mg-1). The effects of varying calcium and ATP concentrations on the kinetics of trypsin-induced CaATPase activity of Spirulina F1 were examined. When the calcium concentration is varied at constant ATP concentration, the velocity plot shows a marked sigmoidicity. By varying Ca-ATP metal-nucleotide complex concentration at constant concentrations of free calcium or ATP, it is shown that the sigmoidicity is due to the effect of free ATP, which changes the Hill constant to 1.6 from 1.0 observed when the free calcium concentration is kept constant at 5 mM. Therefore not only is ATP an inhibitor but it is also an allosteric effector of Spirulina F1 ATPase activity. At 5 mM free calcium, the Km for teh Ca-ATP metal-nucleotide complex is 0.42 mM.  相似文献   

2.
The effects of adenine nucleotides on pea seed glutamine synthetase (EC 6.3.1.2) activity were examined as a part of our investigation of the regulation of this octameric plant enzyme. Saturation curves for glutamine synthetase activity versus ATP with ADP as the changing fixed inhibitor were not hyperbolic; greater apparent Vmax values were observed in the presence of added ADP than the Vmax observed in the absence of ADP. Hill plots of data with ADP present curved upward and crossed the plot with no added ADP. The stoichiometry of adenine nucleotide binding to glutamine synthetase was examined. Two molecules of [gamma-32P]ATP were bound per subunit in the presence of methionine sulfoximine. These ATP molecules were bound at an allosteric site and at the active site. One molecule of either [gamma-32P]ATP or [14C]ADP bound per subunit in the absence of methionine sulfoximine; this nucleotide was bound at an allosteric site. ADP and ATP compete for binding at the allosteric site, although ADP was preferred. ADP binding to the allosteric site proceeded in two kinetic phases. A Vmax value of 1.55 units/mg was measured for glutamine synthetase with one ADP tightly bound per enzyme subunit; a Vmax value of 0.8 unit/mg was measured for enzyme with no adenine nucleotide bound at the allosteric site. The enzyme activation caused by the binding of ADP to the allosteric sites was preceded by a lag phase, the length of which was dependent on the ADP concentration. Enzyme incubated in 10 mM ADP bound approximately 4 mol of ADP/mol of native enzyme before activation was observed; the activation was complete when 7-8 mol of ADP were bound per mol of the octameric, native enzyme. The Km for ATP (2 mM) was not changed by ADP binding to the allosteric sites. ADP was a simple competitive inhibitor (Ki = 0.05 mM) of ATP for glutamine synthetase with eight molecules of ADP tightly bound to the allosteric sites of the octamer. Binding of ATP to the allosteric sites led to marked inhibition.  相似文献   

3.
M F Colombo  F A Seixas 《Biochemistry》1999,38(36):11741-11748
The effect of anions on the stability of different functional conformations of Hb is examined through the determination of the dependence of O(2) affinity on water activity (a(w)). The control of a(w) is effected by varying the sucrose osmolal concentration in the bathing solution according to the "osmotic stress" method. Thus, the hydration change following Hb oxygenation is determined as a function of Cl(-) and of DPG concentration. We find that only approximately 25 additional water molecules bind to human Hb during the deoxy-to-oxy conformation transition in the absence of anions, in contrast with approximately 72 that bind in the presence of more than 50 mM Cl(-) or more than 15 microM DPG. We demonstrate that the increase in the hydration change linked with oxygenation is coupled with anion binding to the deoxy-Hb. Hence, we propose that the deoxy-Hb coexists in two allosteric conformations which depend on whether anion is bound or not: the tense T-state, with low oxygen affinity and anion bound, or a new allosteric P-state, with intermediate oxygen affinity and free of bound anions. The intrinsic oxygen affinity of this unforeseen P-state and the differential binding of Cl(-), DPG, and H(2)O between states P and T and P and R are characteristics which are consistent with those expected for a putative intermediate allosteric state of Hb. These findings represent a new opportunity to explore the structure-function relationships of hemoglobin regulation.  相似文献   

4.
Di(adenosine-5')oligophosphate nucleotides of general structure ApnA (n = 3-6) inhibited the protein kinase activity of homogeneous phorboid receptor. These nucleotides did not affect the phorboid binding activity. Ap4A competed for an ATP binding site on the phorboid receptor. Km for ATP was increased from 0.5 to 2 microM in the presence of 0.2 mM of Ap4A. KI was calculated to be approximately 0.1 mM. Ap4A-elicited inhibition of phorboid receptor kinase activity was independent of receptor concentration as well as of phosphoacceptor substrate concentration.  相似文献   

5.
The soluble calmodulin-sensitive isoform of adenylyl cyclase isolated from equine sperm is unique because it requires Mn(2+) rather than Mg(2+) for activity. To gain insight into the molecular action of metals on sperm adenylyl cyclase, the kinetics of Mn(2+) and ATP effect was examined. A biphasic response to increases in ATP concentration was observed when metal was held constant. When [Mn(2+)] exceeded [ATP], however, greatly enhanced enzyme activity was observed. The kinetic profiles were consistent with allosteric activation of adenylyl cyclase by Mn(2+). Linear transformation of the data yielded an apparent K(m) for Mn-ATP of 5.8 mM and calculated V(max) of 12 nM cyclic AMP formed/min/mg. Data analysis using calculated equilibrium concentrations of free and complexed reactants provided similar estimates of these kinetic parameters.  相似文献   

6.
We studied the ability of ATP to inhibit in vitro the degrading activity of insulin-degrading enzyme. The enzyme was purified from rat skeletal muscle by successive chromatographic steps. The last purification step showed two bands at 110 and 60 kDa in polyacrylamide gel. The enzyme was characterized by its insulin degradation activity, the substrate competition of unlabeled to labeled insulin, the profile of enzyme inhibitors, and the recognition by a specific antibody. One to 5 mM ATP induced a dose-dependent inhibition of insulin degradation (determined by trichloroacetic acid precipitation and insulin antibody binding). Inhibition by 3 mM adenosine 5'-diphosphate, adenosine 5'-monophosphate, guanosine 5'-triphosphate, pyrophosphate, beta-gamma-methyleneadenosine 5'-triphosphate, adenosine 5'-O-(3 thiotriphosphate), and dibutiryl cyclic adenosine 5'-monophosphate was 74%, 4%, 38%, 46%, 65%, 36%, and 0%, respectively, of that produced by 3 mM ATP. Kinetic analysis of ATP inhibition suggested an allosteric effect as the plot of 1/v (insulin degradation) versus ATP concentration was not linear and the Hill coefficient was more than 1 (1.51 and 2.44). The binding constant for allosteric inhibition was KiT = 1.5 x 10(-7) M showing a decrease of enzyme affinity induced by ATP. We conclude that ATP has an inhibitory effect on the insulin degradation activity of the enzyme.  相似文献   

7.
The kinetic characteristics of substrate utilization by hepatic adenylate cyclase were investigated under a variety of incubation conditions, including veriations in pH, [substrate], [Mg2+], and in the absence or presence of glucagon. Activities were compared with ATP and 5'-adenylylimidodiphosphate (App(NH)p) as substrates. The Km for both substrates was about 50 muM; Vmax given with App(NH)p was about 40% lower than obtained with ATP as substrate. In the presence of a saturating concentration of substrate (1 mM), basal activity was increased 4-fold by increasing [Mg2+] from 5 to 50 mM. The stimulatory effect of Mg2+ was not due to an allosteric action since basal activity was only marginally enhanced (40%) when the substrate concentration was reduced to 10 muM. As suggested by deHaen ((1974 J. Biol. Chem. 249, 2756), it is likely that Mg2+ increases enzyme activity by decreasing the concentration of an inhibitory, unchelated form of substrate that competes with the productive magnesium-substrate complex at the active site. Activity-pH profiles differed with ATP and App(NH)p as substrates; a shift in pH optimum was observed which correlated with the different pKa of the terminal phosphate groups of ATP and App(nh)p, and which reflect the concentration of protonated substrate (ATPH-3 minus) present in the incubation medium. Accordingly, protonated substrate is the predominant inhibitory species of unchelated substrate and probably has a considerably higher affinity for the active site than does the magnesium-substrate complex. Glucagon-stimulated activity was less susceptible to inhibition by protonated substrate than is the basal state as evidenced by lower stimulatory effect when the [Mg2+] was increased from 5 to 20 mM. However, increasing the [Mg2+] from 20 to 50 mM resulted in marked inhibition of glucagon-stimulated activity, particularly in the presence of 10 muM substrate. Conversely, at a fixed [Mg2+], concentrations of substrate at least 20-fold higher than the Km were required to achieve maximal hormone-stimulated activity. These findings suggest that the unchelated, fully ionized form of substrate serves as an activating ligand, as has been observed with guanine nucleotides at considerably lower concentrations. Thus, Mg2+ affects adenylate cyclase activity by forming the productive substrate complex and by titrating the inhibitory protonated and activating free forms of substrate. As a result of these effects of unchelated substrate, it proved difficult to evaluate the kinetic parameters involved in substrate binding and utilization and the effects of hormone thereon when substrate was added as the only source of activating ligand. However, linear Michaelis kinetic data were obtained by adding the activating ligand 5'-guanylylimidodiphosphate with glucagon and by making appropriate adjustments of pH and [Mg2+]. Vmax was increased 4-fold without changes in Km by the actions of 5'-guanylylimidodiphosphate and glucagon.  相似文献   

8.
A number of unknown ATP analogues is isolated when studying the structure of the active site of catalytic histonekinase subunit. Adenosine-5'-chloromethanepyrophosphonate adenosine-5'-(beta-bromoethanepyrophosphonate) and adenosine-5'-(p-fluorosulphonylphenylphosphate) were isolated under the reaction of chloromethanephosphonic acid, beta-bromoethanephosphonic acid and n-phenolsulphofluoride respectively with AMP imidazolide. Adenosine-5'-(beta-chloroethylphosphate) was obtained from AMP morpholide and ethylenechorohydrine. Adenosine-5'-chloracetylaminomethanephosphonate and adenosine-5'-(p-fluorosulphonylbenzoylaminomethanephosphonate) were obtained in the reaction of chloroacetyc anhydride and n-fluorosulphonylbenzoylchloride. Adenosine-5'-(p-aminophenylphosphate) is synthesized under the reduction of AMP mononitrophenyl ester. The treatment of the former with chloroacetyc anhydride produced adenosine-5'-(p-chloroacetylaminophenylphosphate. Interaction of ATP analogues obtained and also of early synthesized adenosine-5'-chloromethanephosphonate and adenosine-5'-(beta-bromoethanephosphonate) with homogenous catalytic histonekinase subunit is studied. The decrease in the reaction rate of Hi histone phosphorylation is found to take place. pH optimum of the enzyme inactivation with adenosine-5'-chloromethanepyrophosphonate and adenosine-5'-(beta-chloroethylphosphate) and the protective effect of the substrate (ATP) indicate covalent blocking imidazole ring in the active site. The date obtained suggest that the functional group of the active site of catalytic histonekinase subunit is histidine imidazole ring located close to terminal ATP phosphate.  相似文献   

9.
The hydrolysis of ATP catalyzed by purified (Na,K)-ATPase from pig kidney was more sensitive to Mg2+ inhibition when measured in the presence of saturating Na+ and K+ concentrations [(Na,K)-ATPase] than in the presence of Na+ alone, either at saturating [(Na,Na)-ATPase] or limiting [(Na,0)-ATPase] Na+ concentrations. This was observed at two extreme concentrations of ATP (3 mM where the low-affinity site is involved and 3 microM where only the catalytic site is relevant), although Mg2+ inhibition was higher at low ATP concentration. In the case of (Na,Na)-ATPase activity, inhibition was barely observed even at 10 mM free Mg2+ when ATP was 3 mM. When (Na,K)-ATPase activity was measured at different fixed K+ concentrations the apparent Ki for Mg2+ inhibition was lower at higher monovalent cation concentration. When K+ was replaced by its congeners (Rb+, NH+4, Li+), Mg2+ inhibition was more pronounced in those cases in which the dephosphorylating cation forms a tighter enzyme-cation complex after dephosphorylation. This effect was independent of the ATP concentration, although inhibition was more marked at lower ATP for all the dephosphorylating cations. The K0.5 for ATP activation at its low-affinity site, when measured in the presence of different dephosphorylating cations, increased following the sequence Rb+ greater than K+ greater than NH+4 greater than Li+ greater than none. The K0.5 values were lower with 0.05 mM than with 10 mM free Mg2+ but the order was not modified. The trypsin inactivation pattern of (Na,K)-ATPase indicated that Mg2+ kept the enzyme in an E1 state. Addition of K+ changed the inactivation into that observed with the E2 enzyme form. On the other hand, K+ kept the enzyme in an E2 state and addition of Mg2+ changed it to an E1 form. The K0.5 for KCl-induced E1-to-E2 transformation (observed by trypsin inactivation profile) in the presence of 3 mM MgCl2 was about 0.9 mM. These results concur with two mechanisms for free Mg2+ inhibition of (Na,K)-ATPase: "product" and dead-end. The first would result from Mg2+ interaction with the enzyme in the E2(K) occluded state whereas the second would be brought about by a Mg2+-enzyme complex with the enzyme in an E1 state.  相似文献   

10.
Fructose-6-phosphate (F6P)-saturation curves (up to 5 mM F6P) for phosphofructokinase (PFK) have been studied at physiological pH (7.1) and inhibitory (1.5 mM) or non-inhibitory (0.25 mM) ATP levels, in rat erythrocytes and reticulocytes. The addition of 300 microM cAMP to control samples activates the enzyme and displaces F6P-saturation curve towards the left, while the addition of cGMP inhibits the enzyme and shifts the curve to the right. The cAMP positive allosteric effect is more evident at inhibitory ATP levels, while the inhibitory effect of cGMP is very similar at both ATP levels. This antagonistic effect is exerted at the same regulatory site, since cAMP also activates the enzyme when cGMP is previously present in the reaction mixture. The physiological significance of this antagonism is not yet clear.  相似文献   

11.
Inositol 1,4,5-trisphosphate (InsP(3)) mobilizes intracellular Ca(2+) by binding to its receptor (InsP(3)R), an endoplasmic reticulum-localized Ca(2+) release channel. Patch clamp electrophysiology of Xenopus oocyte nuclei was used to study the effects of cytoplasmic ATP concentration on the cytoplasmic Ca(2+) ([Ca(2+)](i)) dependence of single type 1 InsP(3)R channels in native endoplasmic reticulum membrane. Cytoplasmic ATP free-acid ([ATP](i)), but not the MgATP complex, activated gating of the InsP(3)-liganded InsP(3)R, by stabilizing open channel state(s) and destabilizing the closed state(s). Activation was associated with a reduction of the half-maximal activating [Ca(2+)](i) from 500 +/- 50 nM in 0 [ATP](i) to 29 +/- 4 nM in 9.5 mM [ATP](i), with apparent ATP affinity = 0.27 +/- 0.04 mM, similar to in vivo concentrations. In contrast, ATP was without effect on maximum open probability or the Hill coefficient for Ca(2+) activation. Thus, ATP enhances gating of the InsP(3)R by allosteric regulation of the Ca(2+) sensitivity of the Ca(2+) activation sites of the channel. By regulating the Ca(2+)-induced Ca(2+) release properties of the InsP(3)R, ATP may play an important role in shaping cytoplasmic Ca(2+) signals, possibly linking cell metabolic state to important Ca(2+)-dependent processes.  相似文献   

12.
Glycerinated rabbit psoas muscle fibers containing native CPK, ATPase, and myokinase activities were used and isometric contraction and relaxation responses to either ADP or ATP + CP or to ATP alone in the presence and absence of P1, P5-di(adenosine-5'-pentaphosphate), a myokinase inhibitor, were compared. In previous (14) work it was shown that CP generated more efficient and faster contraction and relaxation of glycerinated muscle fibers than ATP. The present work deals with the role of myokinase in the differential response of fibers to CP and ATP. Inhibition of the myokinase activity of these fibers caused slight diminution of the rate of contraction at physiological concentrations of ATP. Uninhibited fibers were not able to reach maximum contraction, because the tension began to drop gradually even in the presence of Ca2+. Addition of Ap5A permitted maximum contraction and the ability to stay at the contracted state. In the case of CP + adenosine nucleotides (ATP or ADP), myokinase activity decreased the rate of tension development which was statistically significant after 5-7 sec of contraction. Thus, a higher tension was obtainable when myokinase was inhibited. At high concentration of adenine nucleotides (greater than 2 mM) and in the absence of Ap5A, not only the maximum tension never was reached, but a spontaneous drop in tension was observed before addition of EGTA, as was seen with ATP alone. Relaxation was faster and more complete in the presence of uninhibited myokinase activity except that the ADP was low (125 mM). These observations provide further evidence for a close functional interaction of these three enzymes in the mechanism of contraction and relaxation, giving further support to the notion of the creatine-phosphocreatine energy shuttle.  相似文献   

13.
The interaction between Escherichia coli carbamoyl-phosphate synthetase (CPS) and a fluorescent analogue of an allosteric effector molecule, 1,N6-ethenoadenosine 5'-monophosphate (epsilon-AMP), has been detected by using fluorescence techniques and kinetic measurements. From fluorescence anisotropy titrations, it was found that epsilon-AMP binds to a single site on CPS with Kd = 0.033 mM. The nucleotide had a small activating effect on the rate of synthesis of carbamoyl phosphate but had no effect on the Km for ATP. To test whether epsilon-AMP binds to an allosteric site, allosteric effectors (UMP, IMP, and CMP), known to bind at the UMP/IMP site, were added to solutions containing the epsilon-AMP-CPS complex. With addition of these effector molecules, a progressive decrease of the fluorescence anisotropy was observed, indicating that bound epsilon-AMP was displaced by the allosteric effectors examined. From these titrations, the dissociation constants for UMP, IMP, CMP, ribose 5-phosphate, 2-deoxyribose 5-phosphate, and orthophosphate were determined. When MgATP, a substrate, was employed as a titrant, the observed decrease in anisotropy was consistent with the formation of a ternary complex (epsilon-AMP-CPS-MgATP). The effect of ATP binding, monitored at the allosteric site, was magnesium dependent, and free magnesium in solution was required to obtain a hyperbolic binding isotherm. Solvent accessibility of epsilon-AMP in binary (epsilon-AMP-CPS) and ternary (epsilon-AMP-CPS-MgATP) complexes was determined from acrylamide quenching, showing that the base of epsilon-AMP is well shielded from the solvent even in the presence of MgATP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The binding of the substrates, ATP and ribose-5-P, and the most effective inhibitor, ADP, to phosphoribosylpyrophosphate synthetase from Salmonella typhimurium was characterized using equilibrium dialysis of these compounds labeled with 32P. In the absence of ribose-5-P, ATP, ADP, and the ATP analogue alpha,beta-methylene ATP each bind cooperatively with half-saturation at 50 to 90 microM and Hill coefficients of 1.5 to 2. We propose that all three compounds bind at the same set of sites, which are presumably the active sites. When ribose-5-P was added, methylene ATP and ADP binding at these sites became tighter (Kd approximately 3 to 6 microM at 10 mM ribose-5-P) and lost its cooperativity. In the presence of ribose-5-P, ADP, but not methylene ATP, bound to a second site with half-saturation at approximately 150 microM and a Hill coefficient greater than 3. This result confirms the existence of an allosteric ADP site, which was previously postulated from kinetic studies (Switzer, R. L., and Sogin, D. C. (1973) J. Biol. Chem. 248, 1063-1073). Binding of ribose-5-P could not be detected in the absence of nucleotides, but it was readily measured in their presence. The apparent Kd of ribose-5-P varied from greater than 1 mM to approximately 5 microM as the concentration of either ADP or methylene ATP was increased from 0 to 2 mM. Inhibition of the enzyme by action of ADP at both active and allosteric sites could be observed kinetically.  相似文献   

15.
We have studied the ATP-induced allosteric structural transition of GroEL using small angle X-ray scattering and fluorescence spectroscopy in combination with a stopped-flow technique. With X-ray scattering one can clearly distinguish the three allosteric states of GroEL, and the kinetics of the transition of GroEL induced by 85 microM ATP have been observed directly by stopped-flow X-ray scattering for the first time. The rate constant has been found to be 3-5s(-1) at 5 degrees C, indicating that this process corresponds to the second phase of the ATP-induced kinetics of tryptophan-inserted GroEL measured by stopped-flow fluorescence. Based on the ATP concentration dependence of the fluorescence kinetics, we conclude that the first phase represents bimolecular non-cooperative binding of ATP to GroEL with a bimolecular rate constant of 5.8 x 10(5)M(-1)s(-1) at 25 degrees C. Considering the electrostatic repulsion between negatively charged GroEL (-18 of the net charge per monomer at pH 7.5) and ATP, the rate constant is consistent with a diffusion-controlled bimolecular process. The ATP-induced fluorescence kinetics (the first and second phases) at various ATP concentrations (< 400 microM) occur before ATP hydrolysis by GroEL takes place and are well explained by a kinetic allosteric model, which is a combination of the conventional transition state theory and the Monod-Wyman-Changeux model, and we have successfully evaluated the equilibrium and kinetic parameters of the allosteric transition, including the binding constant of ATP in the transition state of GroEL.  相似文献   

16.
Phosphofructokinase from bone marrow cells shows sigmoidal kinetics with respect to fructose-6-phosphate when studied at near physiological concentrations of ATP (1.5 mM) and pH (7.1). The enzyme is clearly inhibited by ATP concentrations higher than 0.75 mM. pH increases maximum velocity and affinity of the enzyme towards fructose-6-phosphate and decreases the cooperative behavior of the enzyme. Citrate behaves as a negative allosteric effector. ATP deinhibition and activation of bone marrow phosphofructokinase, by either AMP or cAMP, were also observed. cAMP seems to have a higher affinity for the enzyme than AMP. cGMP does not show any antagonistic effect versus cAMP as has been previously observed in rat erythrocytes or reticulocytes.  相似文献   

17.
Liu DY  Gorrod JW 《Life sciences》2000,66(1):77-88
N1-Oxidation is a major metabolic pathway for 9-benzyladenine (BA) catalyzed by the cytochrome P450 system in animal hepatic microsomes. After normal hamster hepatic microsomes or phenobarbital induced rabbit hepatic microsomes were preincubated in the presence of cyclic AMP-dependent protein kinase catalytic subunit (PKA), MgCl2 and ATP, BA-N1-oxidation was significantly decreased. However, further investigation indicated that the decrease of BA-N1-oxidation seemed to be a combination of the effects of PKA and ATP, as ATP alone showed a biphasic regulatory effect on BA-N1-oxidation when microsomes were preincubated in the presence of various concentrations of ATP. In the lower ATP concentration range (0.5-2.5mM), BA-N1-oxidation increased along with the increase of ATP concentration; whereas BA-N1-oxidation decreased when the ATP concentration was higher (>5mM). The biphasic regulatory effects of ATP on BA-N1-oxidation seem dependent on the incubation process, as preincubation markedly strengthened the effects. When microsomes were incubated at 37 degrees C for different time lengths in the absence or presence of ATP (2.5 or 20mM), the activity of BA-N1-oxidase decreased at similar rates in all groups, but the activity levels of BA-N1-oxidase were different among the groups. The cytochrome P450 content was not changed parallel to the variation of BA-N1-oxidation when microsomes were incubated in the presence of ATP, indicating that the effects of ATP on BA-N1-oxidation were not mediated by affecting CYP stability. In addition, the activity of NADPH-cytochrome P450 reductase was not markedly affected by ATP without incubation. The result implied that ATP did not inhibit the reductase directly. After microsomes were incubated in the presence of low ATP concentration (2.5mM), the reductase was slightly inhibited, whilst high ATP concentration (20mM) showed marked inhibition (83% of control). This may partially contribute to the down-regulatory effect of ATP on BA-N1-oxidation. Furthermore, it was found that the presence of magnesium ions during preincubation weakened the up-regulatory effect of ATP (2.5mM) on BA-N1-oxidation, but showed no effect on the down-regulatory effect of ATP (20mM). Since these observed phenomena are not readily explained, a possible mechanism, i.e. phosphorylation and dephosphorylation of cytochrome P450, is suggested.  相似文献   

18.
Adenylylsulfate kinase (ATP:adenylylsulfate 3'-phosphotransferase, EC 2.7.1.25) has been purified over 1300-fold from rat liver in 10% yield. The enzyme has a molecular weight of 58,000 and is composed of four subunits of equal molecular weight. ATP is an allosteric activator of adenylylsulfate kinase, with a Hill coefficient of 2.2 and a K0.5 of 2.5 mM. Adenosine phosphosulfate is a potent inhibitor of adenylylsulfate kinase, but the adenosine phosphosulfate concentration for maximal reaction is dependent on the ATP concentration. At the physiological levels of ATP the inhibition by adenosine phosphosulfate is not likely to play a role, while the allosteric regulation of adenylylsulfate kinase by ATP may be operative.  相似文献   

19.
Human lymphocytes contain NTPDase (NTPDase-1; ecto-apyrase; ecto-diphosphohydrolase; CD39; EC 3.6.1.5), a cation-dependent enzyme that hydrolyzes ATP and ADP and also other di- and triphosphate nucleosides, acting at an optimum pH of 8.0. A significant inhibition of ATP and ADP hydrolysis (P<0.05) was observed in the presence of 20 mM sodium azide. NTPDase inhibitors, 20 mM sodium fluoride, 0.2 mM trifluoperazine and 0.3 mM suramin, significantly decreased ATP and ADP hydrolysis (P<0.05) and ADP hydrolysis was only inhibited by 0.5 mM orthovanadate (P<0.05). ATP and ADP hydrolysis was not inhibited in the presence of 0.01 mM Ap5A (P1,P5-di(adenosine-5')pentaphosphate), 0.1 mM ouabain, 1 mM levamisole, 2 microg/mL oligomycin, 0.1 mM N-ethylmaleimide (NEM), or 5 mM sodium azide. With respect to kinetic behavior, apparent K(m) values of 77.6+/-10.2 and 106.8+/-21.0 microM, and V(max) values of 68.9+/-8.1 and 99.4+/-8.5 (mean+/-S.E., n=3) nmol Pi/min/mg protein were obtained for ATP and ADP, respectively. A Chevilard plot demonstrated that only one enzymatic site is responsible for the hydrolysis of ATP and ADP. The presence of CD39 was determined by flow cytometry, showing a low density of 2.72+/-0.24% (mean+/-S.E.; n=30) in human peripheral lymphocytes. The study of NTPDase activity in human lymphocytes may be important to determine the immune response status against infectious agents related to ATP and ADP hydrolysis.  相似文献   

20.
A study was made of the effect of cyclic adenosine-3',5'-monophosphate (cAMP) dibutyril-cAMP and theophylline (phosphoesterase inhibitor - an enzyme transforming adenosine-3'-5'-monophosphate into adenosine-5'-monophosphate) on the intensity of proliferation (by the increase in the content of nucleic acids in the culture), DNA synthesis (by the H3-thymidine incorporation) and on the transplantation properties (the capacity to repopulation in the animal organism) of leukemic cells of the L-5178 strain. It was found that cAMP in a concentration of 0.8 mM considerably inhibited the H3-thymidine incorporation, retarded the proliferation and decreased the transplantation capacity of leukemic cells. Theophylline and dibutyril-cAMP had a comparatively low inhibitory capacity on the DNA synthesis, proliferative activity and the transplantation properties of the cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号