首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The objective was to examine the effect of polyunsaturated fatty acid type (plant vs fish oil-derived n-3, compared to n-6 fatty acids in the presence of constant proportions of saturated, monounsaturated and polyunsaturated fatty acids) on obesity, insulin resistance and tissue fatty acid composition in genetically obese rats. Six-week-old fa/fa and lean Zucker rats were fed with a 10% (w/w) mixed fat diet containing predominantly flax-seed, menhaden or safflower oils for 9 weeks. There was no effect of dietary lipid on obesity, oral glucose tolerance (except t=60 min insulin), pancreatic function or molecular markers related to insulin, glucose and lipid metabolism, despite increased n-3 fatty acids in muscle and adipose tissue. The menhaden oil diet reduced fasting serum free fatty acids in both fa/fa and lean rats. These data suggest that n-3 composition does not alter obesity and insulin resistance in the fa/fa Zucker rat model when dietary lipid classes are balanced.  相似文献   

2.
The effect of modifying fatty acyl composition of cellular membrane phospholipids on receptor-mediated intracellular free Ca2+ concentration ([Ca2+]i) increase was investigated in a leukemic T cell line (JURKAT). After growing for 72 h in medium supplemented with unsaturated fatty acids (UFAs) and alpha-tocopherol, the fatty acyl composition of membrane phospholipids in JURKAT cells was extensively modified. Each respective fatty acid supplemented in the culture medium was readily incorporated into phosphatidylinositol, phosphatidylserine, phosphatidylethanolamine and phosphatidylcholine in the JURKAT cells. The total n-6 fatty acyl content was markedly reduced in phosphatidylinositol and phosphatidylcholine of cells grown in the presence of n-3 fatty acids (alpha-linolenic acid, eicosapentaenoic acid and docosahexaenoic acid). Conversely, in the presence of n-6 fatty acids (linoleic acid and arachidonic acid), the total n-3 fatty acyl content was reduced in all the phospholipids examined. In n-3 and n-6 polyunsaturated fatty acid (PUFA) modified JURKAT cells, the total n-9 monounsaturated fatty acyl content in the phospholipids were markedly reduced. Changing the fatty acyl composition of membrane phospholipids in the JURKAT cells appears to have no affect on the presentation of the T cell receptor/CD3 complex or the binding of anti-CD3 antibodies (OKT3) to the CD3 complex. However, the peak increase in [Ca2+]i and the prolonged sustained phase elicited by OKT3 activation were suppressed in n-3 and n-6 PUFA but not in n-9 monounsaturated fatty acid modified cells. In Ca2+ free medium, OKT3-induced transient increase in [Ca2+]i representing Ca2+ release from the inositol 1,4,5-trisphosphate-sensitive Ca2+ stores, were similar in control and UFA modified cells. Using Mn2+ entry as an index of plasma membrane Ca2+ permeability, the rate of fura-2 fluorescence quenching as a result of Mn2+ influx stimulated by OKT3 in n-9 monounsaturated fatty acid modified cells was similar to control cells, but the rates in n-3 and n-6 PUFA modified cells were significantly lower. These results suggest that receptor-mediated Ca2+ influx in JURKAT cells is sensitive to changes in the fatty acyl composition of membrane phospholipids and monounsaturated fatty acids appears to be important for the maintenance of a functional Ca2+ influx mechanism.  相似文献   

3.
The effect of dietary fatty acids on uterine fatty acid composition was studied in rats fed control diet or semi-synthetic diet supplemented with 1.5 microliter/g/day evening primrose oil (EPO) or fish oil (FO). Diet-related changes in uterine lipid were detected within 21 days. Changes of 2- to 20-fold were detected in the uterine n-6 and n-3 essential fatty acids (EFA) and in certain saturated and monounsaturated fatty acids. The FO diet was associated with higher uterine C20 and C22 n-3, and the EPO diet, with higher uterine n-6 fatty acid. High uterine C18:2 n-6 was detected in neutral lipid (NL) of rats fed high concentrations of this fatty acid, but there was little evidence of selective incorporation or retention of C18:2 n-6 by uterine NL. The incorporation of EFA into uterine phospholipids (PL) was greater than NL EFA incorporation, and uterine PL n-3/n-6 ratios showed greater diet dependence. Tissue/diet fatty acid ratios in NL and PL also indicated preferential incorporation/synthesis of C16:1 n-9, and C16:0, and there was greater incorporation of C12:0 and C14:0 into uteri of rats fed EPO and FO. Replacement of 50-60% of arachidonate with n-3 EFA in uterine PL may inhibit n-6 EFA metabolism necessary for uterine function at parturition.  相似文献   

4.
This study was designed to investigate the effect of myristic acid on the biosynthesis and metabolism of highly unsaturated fatty acids, when it is supplied in a narrow physiological range in the diet of the rat (0.2-1.2% of total dietary energy). Three experimental diets were designed, containing 22% of total dietary energy as lipids and increasing doses of myristic acid (0.71, 3.00 and 5.57% of total fatty acids). Saturated fat did not exceed 31% of total fat and the C18:3 n-3 amount in each diet was strictly equal (1.6% of total fatty acids). After 7 weeks, the diets had no effect on plasma cholesterol level but greatly modified the liver, plasma and adipose tissue saturated, monounsaturated and polyunsaturated fatty acid profiles. Firstly, daily intakes of myristic acid resulted in a dose-dependent tissue accumulation of myristic acid itself. Palmitic acid was significantly increased in the tissues of the rats fed the higher dose of myristic acid. A dose-response accumulation of tissue C16:1 n-7 as a function of dietary C14:0 was also shown. Secondly, a main finding was that, among n-3 and n-6 polyunsaturated fatty acids, a dose-response accumulation of liver and plasma C20:5 n-3 and C20:3 n-6 (two precursors of eicosanoids) as a function of dietary C14:0 was shown. This result suggests that dietary myristic acid may participate in the regulation of highly unsaturated fatty acid biosynthesis and metabolism.  相似文献   

5.
Isolated hepatocytes from Atlantic salmon (Salmo salar), fed diets containing either 100% fish oil or a vegetable oil blend replacing 75% of the fish oil, were incubated with a range of seven (14)C-labelled fatty acids. The fatty acids were [1-(14)C]16:0, [1-(14)C]18:1n-9, 91-(14)C]18:2n-6, [1-(14)C]18:3n-3, [1-(14)C]20:4n-6, [1-(14)C]20:5n-3, and [1-(14)C]22:6n-3. After 2 h of incubation, the hepatocytes and medium were analysed for acid soluble products, incorporation into lipid classes, and hepatocytes for desaturation and elongation. Uptake into hepatocytes was highest with [1-(14)C]18:2n-6 and [1-(14)C]20:5n-3 and lowest with [1-(14)C]16:0. The highest recovery of radioactivity in the cells was found in triacylglycerols. Of the phospholipids, the highest recovery was found in phosphatidylcholine, with [1-(14)C]16:0 and [1-(14)C]22:6n-3 being the most prominent fatty acids. The rates of beta-oxidation were as follows: 20:4n-6>18:2n-6=16:0>18:1n-9>22:6n-3=18:3n-3=20:5n-3. Of the fatty acids taken up by the hepatocytes, [1-(14)C]16:0 and [1-(14)C]18:1n-9 were subsequently exported the most, with the majority of radioactivity recovered in phospholipids and triacylglycerols, respectively. The major products from desaturation and elongation were generally one cycle of elongation of the fatty acids. Diet had a clear effect on the overall lipid metabolism, with replacing 75% of the fish oil with vegetable oil resulting in decreased uptake of all fatty acids and reduced incorporation of fatty acids into cellular lipids, but increased beta-oxidation activity and higher recovery in products of desaturation and elongation of [1-(14)C]18:2n-6 and [1-(14)C]18:3n-3.  相似文献   

6.
Adriamycin transport and sensitivity in fatty acid-modified leukemia cells   总被引:5,自引:0,他引:5  
The membrane phospholipids of L1210 murine leukemia cells were modified by supplementing the growth medium with micromolar concentrations of polyunsaturated or monounsaturated fatty acids. This procedure results in enrichment of cellular phospholipids by the supplemented fatty acid. Enrichment with polyunsaturated fatty acids resulted in a marked increase in sensitivity to adriamycin as compared to enrichment with monounsaturated fatty acids. The increased cytotoxicity was directly proportional to the extent of unsaturation of the inserted fatty acid, but there was no difference in cells enriched with n-3 compared with n-6 family fatty acids. To explore the mechanism of this observation, we examined whether augmented uptake of the drug might explain the increased cytotoxicity. The uptake of [14C]adriamycin, which was approximately linear at later time points, was only partially temperature dependent and never reached a steady state. Initial uptake at time points prior to 60 s could not be measured due to high and variable rapid membrane adsorption. Cellular accumulation of drug was greater in the docosahexaenoate 22:6-enriched L1210 cells as compared to oleate 18:1-enriched cells and was about 32% greater after 20 min. When L1210 cells were enriched with six fatty acids of variable degrees of unsaturation, the accumulation of adriamycin was directly correlated with the average number of double bonds in the fatty acids contained in cellular phospholipids. There was no difference in efflux of drug from cells pre-loaded with adriamycin. We conclude that the greater accumulation of adriamycin by the polyunsaturated fatty acid-enriched L1210 cells likely explains the increased sensitivity of these cells to adriamycin compared to 18:1-enriched cells.  相似文献   

7.
Twenty-nine obese female Zucker rats (fa / fa) were fed with a laboratory chow supplemented or not with a selenium-rich yeast (Selenion), or Selenion + vitamin E, or vitamin E alone. Twelve lean female Zucker rats (Fa / Fa) of the same littermates fed with the same diet were used as control. After 32 wk of diet, obesity induced a large increase in plasma insulin and lipid levels. A significant decrease in the plasma vitamin E/triglycerides ratio (p < 0.005) and an increase in plasma thiobarbituric reactive substances (TBARS) (p < 0.005) were also observed. Plasma selenium and vitamin E increased in all supplemented rats. The plasma insulin level was decreased by selenion supplementation and the vitamin E/triglycerides ratio was completely corrected by double supplementation with Selenion + vitamin E. TBARS were also efficiently decreased in two obese groups receiving vitamin E. In plasma, adipose tissue and aorta, obesity induced an increase in palmitic acid (C16:0), a very large increase in monounsaturated fatty acids (palmitoleic acid C16:l, stearic acid C18:l) associated with a decrease in polyunsaturated n-6 fatty acids (linoleic acid C18:2 n - 6, arachidonic C20:4 n - 6). These alterations in fatty acid distribution were only partly modulated by Se and vitamin E supplements. However, in the aorta, antioxidant treatment in obese rats significantly reduced the increase in C16:0 and C16:l (p < 0.05 andp < 0.01, respectively) and the decrease in arachidonic acid (p < 0.05). These changes could be beneficial in the reduction of insulin resistance and help to protect the vascular endothelium.  相似文献   

8.
The concentrations and the fatty acid compositions (weight percent) of three plasma lipid fractions (phospholipids, cholesteryl esters, and triacylglycerols) were examined in five Weddell seal pups through suckling, the post-weaning fast and periods of independent foraging. The principal plasma fatty acids in Weddell seal pups during suckling were the same as those previously reported for milk samples collected from lactating Weddell seals. In contrast to the stable milk fatty acid composition suggested by the previous study, significant changes in the fatty acid composition of plasma lipids occurred during suckling. These included an increase in the weight% of 20:4(n-6) and 18:0 in phospholipids, an increase of 20:4(n-6) in cholesteryl esters, and an increase of 20:1(n-9) and a decrease of 20:5(n-3) in triacylglycerols. Weaning and the subsequent fasting period were accompanied by a dramatic drop in the plasma concentration and 14:0 content of triacylglycerols and by marked decrease and increase in the weight% of 20:1(n-9) and 20:5(n-3), respectively, in this lipid fraction. Weight% of 14:0 in triacylglycerols and/or plasma concentration of triacylglycerols clearly distinguish post-weaning from suckling. However, fasting versus foraging pups could not be clearly distinguished. Received: 7 October 1996 / Accepted: 20 May 1997  相似文献   

9.
The phospholipids, particularly phosphatidylethanolamine, of brain gray matter are enriched with docosahexaenoic acid (22:6n-3). The importance of uptake of preformed 22:6n-3 from plasma compared with synthesis from the alpha-linolenic acid (18:3n-3) precursor in brain is not known. Deficiency of 18:3n-3 results in a compensatory increase in the n-6 docosapentaenoic acid (22:5n-6) in brain, which could be formed from the precursor linoleic acid (18:2n-6) in liver or brain. We studied n-3 and n-6 fatty acid incorporation in brain astrocytes cultured in chemically defined medium using delipidated serum supplemented with specific fatty acids. High performance liquid chromatography with evaporative light scattering detection and gas liquid chromatography were used to separate and quantify cell and media lipids and fatty acids. Although astrocytes are able to form 22:6n-3, incubation with 18:3n-3 or eicosapentaenoic acid (20:5n-3) resulted in a time and concentration dependent accumulation of 22:5n-3 and decrease in 22:6n-3 g/g cell fatty acids. Astrocytes cultured with 18:2n-6 failed to accumulate 22:5n-6. Astrocytes secreted cholesterol esters (CE) and phosphatidylethanolamine containing saturated and monounsaturated fatty acids, and arachidonic acid (20:4n-6) and 22:6n-3. These studies suggest conversion of 22:5n-3 limits 22:6n-3 synthesis, and show astrocytes release fatty acids in CE.  相似文献   

10.
Rats depleted in long-chain polyunsaturated omega3 fatty acids (omega3-depleted rats) display several features of the metabolic syndrome including hypertension and cardiac hypertrophy. This coincides with alteration of the cardiac muscle phospholipid and triacylglycerol fatty acid content and/or pattern. In the present study, the latter variables were measured in the cardiac endothelium of normal and omega3-depleted rats. Samples derived from four rats each were obtained from 16 female normal fed rats and three groups of 36-40 female fed omega3-depleted rats each aged 8-9, 15-16 and 22-23 weeks. At comparable mean age, the ratio between the square root of the total fatty acid content of phospholipids and cubic root of the total fatty acid content of triacylglycerols was lower in omega3-depleted rats than in control animals. The total fatty acid content of triacylglycerols was inversely related to their relative content in C20:4omega6. Other differences between omega3-depleted rats and control animals consisted in a lower content of long-chain polyunsaturated omega3 fatty acids in both phospholipids and triacylglycerols, higher content of long-chain polyunsaturated omega6 fatty acids in phospholipids, higher activity of delta9-desaturase (C16:0/C16:1omega7 and C18:0/C18:1omega9 ratios) and elongase [(C16:0 + C16:1omega7)/(C18:0 + C18:1omega9) and C20:4omega6/C22:4omega6 ratios], but impaired generation of C22:6omega3 from C22:5omega3 in the former rats. These findings support the view that cardiovascular perturbations previously documented in the omega3-depleted rats may involve impaired heart endothelial function.  相似文献   

11.
This study was undertaken to determine the mode of transport of the essential (n-3) fatty acids docosahexaenoic acid 22:6(n-3) and linolenic acid 18:3(n-3). Male weanling Sprague-Dawley rats received a mixture of corn oil and [14C]18:3(n-3) or [14C]22:6(n-3) by gavage. At periods of 1 to 4 days after the injection, four rats per time point were killed and samples of blood were taken via heart puncture and the livers and retinas were collected. Blood lipoproteins and plasma proteins were separated by ultracentrifugation and analyzed by HPLC. Lipids were extracted and saponified and the fatty acids were converted to phenacyl esters for separation of individual fatty acids. After 1 and 2 h, radioactivity from 18:3(n-3) and 22:6(n-3) was observed primarily in the chylomicron/very low density lipoprotein fraction. By 4 h, radioactivity in the lipoprotein fraction was greatly decreased, with a small amount of radioactivity associated with albumin in the soluble protein fraction. After 24 h, the total amount of radioactivity associated with lipoprotein was further reduced, with more than half of the remaining label occurring in association with albumin and another unidentified protein. In the liver, 22:6(n-3) was concentrated in triacylglycerols (40.7%) and phospholipids (51.1%), with a maximum specific activity at 4 h. In the rod outer segments (ROS), the specific activity of [14C]22:6(n-3) increased to a maximum at 24 h and maintained a high level even at 4 days. These data suggest that after injection, 18:3(n-3) and 22:6(n-3) are esterified to triglyceride and phospholipid by the intestinal absorptive cells and transported in chylomicrons to the liver. After conversion of 18:3(n-3) to 22:6(n-3) in the liver, the retina accumulates 22:6(n-3) which may be transported from the liver via albumin and another unidentified protein, and is retained by the rod outer segments.  相似文献   

12.
We studied: (1) concentrations and fatty acid compositions of plasma non-esterified fatty acids, neutral lipids, and phospholipids, and (2) fatty acid composition of flight muscle phospholipids in wintering, premigratory, and spring and fall migrating western sandpipers ( Calidris mauri). Plasma neutral lipid and phospholipid levels were elevated in migrants, reflecting high rates of fat deposition. An important role of phospholipids in fattening is suggested by the fact that the amount of fatty acids in plasma phospholipids was similar to, or in spring as much as twice, that of neutral lipids. Changes in the ratio of plasma neutral lipids to phospholipids may indicate seasonal changes in triacylglycerol stores of invertebrate prey. Monounsaturation and total unsaturation of plasma neutral lipids and phospholipids increased during migration. Muscle phospholipids were more monounsaturated in spring and fall, but total unsaturation was reduced in fall. Arachidonic acid [20:4(n-6)] was especially abundant in muscle phospholipids in winter (29%) and declined during migration (19-22%), contributing to a decline in the ratio of n-6 to n-3 fatty acids. The abundance of plasma phospholipids and variability of neutral lipid to phospholipid ratio indicates that measurement of plasma phospholipids will improve methods for assessment of fattening rates of birds. The functional significance of changes in muscle phospholipids is unclear, but may relate to depletion of essential n-6 fatty acids during exercise.  相似文献   

13.
Abstract— Three dietary levels of essential fatty acids (EFA), 3 0, 0 75 and 0 07 calorie-% were fed to rats for two generations or more. Myelin was isolated at the ages of 18, 30, 45 and 120 days and synaptosomal plasma membranes at 18, 30 and 45 days. No difference was found in the lipid composition between the dietary groups in either subcellular fraction. The fatty acid patterns of ethanolamine phosphoglycerides (EPG) were analysed. In myelin the proportions of 18:1 and 20:1 increased with age, while those of 20:4 (n-6) and 22:6 (n-3) decreased, in synaptosomal plasma membranes the proportions of 20:4 (n-6) decreased with age, but 22:6 (n-3) increased and the sum of the polyunsaturated fatty acids was constant. At no age were significant differences found between the proportions of saturated and monounsaturated fatty acids, in either myelin or the synaptosomal plasma membrane fraction, when the different dietary groups were compared. In myelin from rats fed 007 calorie-% EFA the proportions of 20:4 (n-6) were slightly lower than in the two other groups, while those of 22 6 (n-3) were considerably lower. The synaptosomal plasma membranes fraction of rats fed O-07 calorie-% EFA had equal or slightly larger amounts of 20:4 (n-6) than in the two other groups, while 22:6 (n-3) was considerably smaller. In both subcellular fractions the decreased proportion of fatty acids of linoleic and linolenic acid series was compensated for by an increase in 20:3 (n-9) and 22:3 (n-9). The sum of these two fatty acids was equal in the EPG of myelin and synaptosomal plasma membranes at 18 days of age. At 30 and 45 days of age a lower value was found in the synaptosomal plasma membranes, while in the myelin fraction a slight decrease was found only at 120 days of age.  相似文献   

14.
In diabetes there is a decrease in membrane arachidonic (AA) and docosahexaenoic (DHA) acids and a concomitant increase in linoleic (LA) and alpha-linolenic (ALA) acids. This metabolic perturbation is thought to be due to impaired activity of Delta(6)- and Delta(5)-desaturases. Triacylglycerols are the major lipid pool in plasma and liver tissue and have a significant influence on fatty acid composition of membrane and circulating phospholipids. Data on the distribution of n-6 and n-3 polyunsaturated fatty acids of triacylglycerols in diabetes are sparse. We investigated whether streptozotocin-induced diabetes in Sprague-Dawley rats alters fatty acid composition of triacylglycerols and free fatty acids of liver tissue. The animals were fed a breeding diet prior to mating, during pregnancy and lactation. On days 1-2 of pregnancy, diabetes was induced in 10 of the 25 rats. Liver was obtained at post partum day 16 for analysis. Relative levels of LA (P=0.03), dihomo-gamma-linolenic acid (DHGLA) (P=0.02), AA (P=0.049), total n-6 (P=0.02), ALA (P=0.013), eicosapentaenoic acid (EPA) (P=0.004), docosapentaenoic acid (22:5n-3, DPA) (P=0.013), DHA (P=0.033), n-3 metabolites (P=0.015) and total n-3 (P=0.011) were significantly higher in the triacylglycerols of the diabetics compared with the controls. Similarly, liver free fatty acids of the diabetics had higher levels of LA (P=0.0001), DHGLA (P=0.001), AA (P=0.001), n-6 metabolites (P=0.002), total n-6 (P=0.0001), ALA (P=0.003), EPA (P=0.015), docosapentaenoic (22:5n-3, P=0.003), DHA (P=0.002), n-3 metabolites (P=0.005) and total n-3 (P=0.001). We conclude that impaired activity of desaturases and/or long chain acyl-CoA synthetase could not explain the higher levels of AA, DHA and n-6 and n-3 metabolites in the diabetics. This seems to be consistent with an alteration in the regulatory mechanism, which directs incorporation of polyunsaturated fatty acids either into triacylglycerols or phospholipids.  相似文献   

15.
The aim of this work was to characterise the lipid and fatty acid composition of chylomicron remnants enriched in n-3 or n-6 polyunsaturated fatty acids (PUFA) and to investigate their influence on the fatty acid profiles of the lipids of rat hepatocytes cultured in monolayers. Chylomicrons were prepared from the lymph collected from the thoracic duct of rats given an oral dose of fish or corn oil (high in n-3 and n-6 PUFA, respectively), and remnants were prepared in vitro from such chylomicrons using rat plasma containing lipoprotein lipase. The fatty acids predominating in the oils abounded also in their respective chylomicrons and remnants, especially in triacylglycerols. Chylomicrons as well as remnants contained small amounts of phospholipids and long-chain PUFA that were minor in, or absent from, the dietary oils, evidently provided by the intestinal epithelium. The incubation of hepatocytes for 6 h, with either n-3 or n-6 PUFA-rich remnants (0.25-0.75 mM triacylglycerol) resulted in a dose-dependent increase in the amount of triacylglycerols and phospholipids in the cells, which was not affected further by increasing the incubation time to 19 h. Whereas hepatocyte triacylglycerols mostly incorporated the PUFA predominating in each remnant type, the fatty acid profile of cell phospholipids was virtually unchanged. In addition, irrespective of whether they were enriched in n-3 or n-6 PUFA, remnants promoted a relative decrease in the amount of cholesteryl esters, a minor hepatocyte lipid class poor in PUFA. The results demonstrate that the hepatocyte fatty acid profile is modulated in a lipid-class specific way by the amount and type of dietary PUFA delivered to cells in chylomicron remnants.  相似文献   

16.
No data are reported on changes in mitochondrial membrane phospholipids in non-alcoholic fatty liver disease. We determined the content of mitochondrial membrane phospholipids from rats with non alcoholic liver steatosis, with a particular attention for cardiolipin (CL) content and its fatty acid composition, and their relation with the activity of the mitochondrial respiratory chain complexes. Different dietary fatty acid patterns leading to steatosis were explored. With high-fat diet, moderate macrosteatosis was observed and the liver mitochondrial phospholipid class distribution and CL fatty acids composition were modified. Indeed, both CL content and its C18:2n-6 content were increased with liver steatosis. Moreover, mitochondrial ATP synthase activity was positively correlated to the total CL content in liver phospholipid and to CL C18:2n-6 content while other complexes activity were negatively correlated to total CL content and/or CL C18:2n-6 content of liver mitochondria. The lard-rich diet increased liver CL synthase gene expression while the fish oil-rich diet increased the (n-3) polyunsaturated fatty acids content in CL. Thus, the diet may be a significant determinant of both the phospholipid class content and the fatty acid composition of liver mitochondrial membrane, and the activities of some of the respiratory chain complex enzymes may be influenced by dietary lipid amount in particular via modification of the CL content and fatty acid composition in phospholipid.  相似文献   

17.
Abstract— Pregnant rats were maintained on a fat-free diet, starting at 10–12 days after impregnation and the offspring continued on the diet during a developmental period of 120 days. Brain fatty acids showed decreases in the level of (n-3) and (n-6) fatty acids of brain phophoglycerides, except for 22:5 (n-6) which increased. These changes preceded an increase in the (n-9) fatty acids (20:3 and 22:3). Supplementation with either linoleic or linolenic acid for 10 or 30 days after induction of the deficiency state caused an increase in the (n-6) and (n-3) fatty acids respectively, to control levels. The level of 22:5 (n-6) was increased additionally by linoleic supplementation while linolenic refeeding to deficient animals decreased 22:5 (n-6) to near control levels. The anomalous results obtained on 22:5 (n-6) with 18:3 (n-3) supplementation is attributed to competitive inhibition of linoleate desaturation by linolenate. Linoleic and linolenic acid were equally effective in reducing the elevated levels of the (n-9) fatty acids toward control levels, although control levels with either fatty acid was not reached after 30 days supplementation. The increase of the (n-6) and (n-3) fatty acids to normal values precedes the decrease of (n-9) fatty acids following supplementation of linoleic or linolenic acid to fat-deficient rats. No change in fatty acid composition in control animals between 30 and 120 days was observed. In fat deficient as well as supplemented animals the total saturated, monounsaturated and polyunsatur-ated fatty acid composition was constant as was the unsaturation index.  相似文献   

18.
The lipid composition of two species of Serrasalmid fish with different natural feeding habits were compared in relation to the polyunsaturated fatty acids (PUFA) supplied in their diets. Mylossoma aureum , a herbivorous piranha, was maintained on oatmeal flakes in which : 2(n-6) and : 3(n-3) were the only PUFA and accounted for 40–8 and 1.2%, respectively of dietary fatty acids. Serrasalmus nattereri , the carnivorous red piranha, was fed mosquito larvae containing .0-33.4% of their total fatty acids as : 2(n-6)+18 : 3(n-3) and 4.9-8.5% as 20 : 4(n-6)+20 : 5(n-3). The two species had similar lipid class compositions in liver, brain, viscera and carcass, except that lipids from M. aureum were generally richer in triacylglycerols. In both species, visceral and carcass lipid contained high levels of triacylglycerols whose principal PUFA was : 2(n-6). In M. aureum the major PUFA in liver total lipid and triacylglycerols was : 2(n-6) whilst the major PUFA in liver phospholipids were : 4(n-6) and : 5(n-6), with : 6(n-3) being a minor component. The level of : 6(n-3) in ethanolamine glycerophospholipids was significantly greater in brain than liver of M. aureum. Although absent from dietary lipid, : 6(n-3) was the major PUFA in phosphatidylcholine and ethanolamine glycerophospholipids from both the liver and brain of S, nattereri . In both species, the ratio of (n-6)/(n-3)PUFA was consistently lower in tissue lipids than in dietary lipids. The results are consistent with (i) the herbivorous M. aureum converting dietary C18 PUFA to their C20 and C22 homologues, (ii) the carnivorous S, nattereri forming : 6(n-3) from either 18:3(n-3) or 20: 5(n-3) and (iii) both species selectively desaturating and elongating (n-3) rather than (n-6) PUFA.  相似文献   

19.
Increasing evidence suggests that fetal and neonatal nutrition impacts later health. Aims of the present study were to determine the effect of maternal dietary fat composition on intestinal phospholipid fatty acids and responsiveness to experimental colitis in suckling rat pups. Female rats were fed isocaloric diets varying only in fat composition throughout gestation and lactation. The oils used were high (8%) in n-3 [canola oil (18:3n-3)], n-6 (72%) [safflower oil (18:2n-6)], or n-9 (78%) [high oleic acid safflower oil (18:1n-9)] fatty acids, n = 6/group. Colitis was induced on postnatal day 15 by intrarectal 2,4-dinitrobenzene sulfonic acid (DNBS) administration with vehicle (50% ethanol) and procedure (0.9% saline) controls. Jejunal and colonic phospholipids and milk fatty acids were determined. The distal colon was assessed for macroscopic damage, histology, and MPO activity. The 18:2n-6 maternal diet increased n-6 fatty acids, whereas the 18:3n-3 diet increased n-3 fatty acids in milk and pup jejunal and colonic phospholipids. Maternal diet, milk, and pup intestinal n-6-to-n-3 fatty acid ratios increased significantly in order: high 18:3n-3 < high 18:1n-9 < high 18:2n-6. DNBS administration in pups in the high 18:2n-6 group led to severe colitis with higher colonic damage scores and MPO activity than in the 18:1n-9 and 18:3n-3 groups. High maternal dietary 18:3n-3 intake was associated with colonic damage scores and MPO activity, which were not significantly different from ethanol controls. We demonstrate that maternal dietary fat influences the composition of intestinal lipids and responsiveness to experimental colitis in nursing offspring.  相似文献   

20.
Omega-3 polyunsatuarted fatty acids (PUFA) are associated with hypolipidemic and anti-inflammatory effects. However, omega-3 PUFA, usually administered as triacylglycerols or ethyl esters, could also compromise glucose metabolism, especially in obese type 2 diabetics. Phospholipids represent an alternative source of omega-3 PUFA, but their impact on glucose homeostasis is poorly explored. Male C57BL/6N mice were fed for 8 weeks a corn oil-based high-fat diet (cHF) alone or cHF-based diets containing eicosapentaenoic acid and docosahexaenoic acid (~3%; wt/wt), admixed either as a concentrate of re-esterified triacylglycerols (ω3TG) or Krill oil containing mainly phospholipids (ω3PL). Lean controls were fed a low-fat diet. Insulin sensitivity (hyperinsulinemic-euglycemic clamps), parameters of glucose homeostasis, adipose tissue function, and plasma levels of N-acylethanolamines, monoacylglycerols and fatty acids were determined.Feeding cHF induced obesity and worsened (~4.3-fold) insulin sensitivity as determined by clamp. Insulin sensitivity was almost preserved in ω3PL but not ω3TG mice. Compared with cHF mice, endogenous glucose production was reduced to 47%, whereas whole-body and muscle glycogen synthesis increased ~3-fold in ω3PL mice that showed improved adipose tissue function and elevated plasma adiponectin levels. Besides eicosapentaenoic and docosapentaenoic acids, principal component analysis of plasma fatty acids identified palmitoleic acid (C16:1n-7) as the most discriminating analyte whose levels were increased in ω3PL mice and correlated negatively with the degree of cHF-induced glucose intolerance.While palmitoleic acid from Krill oil may help improve glucose homeostasis, our findings provide a general rationale for using omega-3 PUFA-containing phospholipids as nutritional supplements with potent insulin-sensitizing effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号