首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The selectivity filter of K(+) channels is comprised of a linear queue of four equal-spaced ion-binding sites spanning a distance of 12A. Each site is formed of eight oxygen atoms from the protein. The first three sites, numbered 1-3 from the extracellular side, are made of exclusively main-chain carbonyl oxygen atoms. The fourth site, closest to the intracellular side, is made of four main-chain carbonyl oxygen atoms and four threonine side-chain hydroxyl oxygen atoms. Here we characterize the effects of mutating the threonine to cysteine on the distribution of ions in the selectivity filter and on the conduction of ions through the filter. The mutation influences the occupancy of K(+) at sites 2 and 4 and it reduces the maximum rate of conduction in the limit of high K(+) concentration. The mutation does not affect the conduction of Rb(+). These results can be understood in the context of a conduction mechanism in which a pair of K ions switch between energetically balanced 1,3 and 2,4 configurations.  相似文献   

2.
3.
Basic electrophysiological properties of the KcsA K(+) channel were examined in planar lipid bilayer membranes. The channel displays open-state rectification and weakly voltage-dependent gating. Tetraethylammonium blocking affinity depends on the side of the bilayer to which the blocker is added. Addition of Na(+) to the trans chamber causes block of open-channel current, while addition to the cis side has no effect. Most striking is the activation of KcsA by protons; channel activity is observed only when the trans bilayer chamber is at low pH. To ascertain which side of the channel faces which chamber, residues with structurally known locations were mapped to defined sides of the bilayer. Mutation of Y82, an external residue, results in changes in tetraethylammonium affinity exclusively from the cis side. Channels with cysteine residues substituted at externally exposed Y82 or internally exposed Q119 are functionally modified by methanethiosulfonate reagents from the cis or trans chambers, respectively. Block by charybdotoxin, known to bind to the channel's external mouth, is observed only when the toxin is added to the cis side of channels mutated to be toxin sensitive. These results demonstrate unambiguously that the protonation sites linked to gating are on the intracellular portion of the KcsA protein.  相似文献   

4.
The ability of an ion channel to open in response to a defined stimulus is central to its function. In ligand-gated channels, pore opening is conferred through transduction of a conformational change in a gating domain to the helices of the pore. Here, we present the construction of a designed cyclic nucleotide-gated (CNG) channel, named KcsA-CNG, by addition of a prokaryotic cyclic nucleotide-binding domain to a KcsA-derived K+ channel. This channel is functional in lipid bilayers at physiological pH and has the combined properties of both of its parent-derived components. It conducts K+ and is blocked by the K+ channel inhibitors Na+ and agitoxin-2. Channel open times are increased by about two orders of magnitude compared to wild-type KcsA. The average number of open channels increases by approximately 50% upon addition of cAMP. Although the absolute open probabilities are somewhat variable from one channel to the next, the property of cyclic nucleotide sensitivity is very reproducible. An apparent Kd value of approximately 90 nM was estimated. The successful construction of a cyclic nucleotide-gated KcsA K+ channel suggests that it should be possible to produce channels that will respond to novel ligands.  相似文献   

5.
Burykin A  Schutz CN  Villá J  Warshel A 《Proteins》2002,47(3):265-280
Realistic studies of ion current in biologic channels present a major challenge for computer simulation approaches. All-atom molecular dynamics simulations involve serious time limitations that prevent their use in direct evaluation of ion current in channels with significant barriers. The alternative use of Brownian dynamics (BD) simulations can provide the current for simplified macroscopic models. However, the time needed for accurate calculations of electrostatic energies can make BD simulations of ion current expensive. The present work develops an approach that overcomes some of the above challenges and allows one to simulate ion currents in models of biologic channels. Our method provides a fast and reliable estimate of the energetics of the system by combining semimacroscopic calculations of the self-energy of each ion and an implicit treatment of the interactions between the ions, as well as the interactions between the ions and the protein-ionizable groups. This treatment involves the use of the semimacroscopic version of the protein dipole Langevin dipole (PDLD/S) model in its linear response approximation (LRA) implementation, which reduces the uncertainties about the value of the protein "dielectric constant." The resulting free energy surface is used to generate the forces for on-the-fly BD simulations of the corresponding ion currents. Our model is examined in a preliminary simulation of the ion current in the KcsA potassium channel. The complete free energy profile for a single ion transport reflects reasonable energetics and captures the effect of the protein-ionized groups. This calculated profile indicates that we are dealing with the channel in its closed state. Reducing the barrier at the gate region allows us to simulate the ion current in a reasonable computational time. Several limiting cases are examined, including those that reproduce the observed current, and the nature of the productive trajectories is considered. The ability to simulate the current in realistic models of ion channels should provide a powerful tool for studies of the biologic function of such systems, including the analysis of the effect of mutations, pH, and electric potentials.  相似文献   

6.
Molecular dynamics (MD) simulations of an atomic model of the KcsA K(+) channel embedded in an explicit dipalmitoylphosphatidylcholine (DPPC) phospholipid bilayer solvated by a 150 mM KCl aqueous salt solution are performed and analyzed. The model includes the KcsA K(+) channel, based on the recent crystallographic structure of, Science. 280:69-77), 112 DPPC, K(+) and Cl(-) ions, as well as over 6500 water molecules for a total of more than 40,000 atoms. Three K(+) ions are explicitly included in the pore. Two are positioned in the selectivity filter on the extracellular side and one in the large water-filled cavity. Different starting configurations of the ions and water molecules in the selectivity filter are considered, and MD trajectories are generated for more than 4 ns. The conformation of KcsA is very stable in all of the trajectories, with a global backbone root mean square (RMS) deviation of less than 1.9 A with respect to the crystallographic structure. The RMS atomic fluctuations of the residues surrounding the selectivity filter on the extracellular side of the channel are significantly lower than those on the intracellular side. The motion of the residues with aromatic side chains surrounding the selectivity filter (Trp(67), Trp(68), Tyr(78), and Tyr(82)) is anisotropic with the smallest RMS fluctuations in the direction parallel to the membrane plane. A concerted dynamic transition of the three K(+) ions in the pore is observed, during which the K(+) ion located initially in the cavity moves into the narrow part of the selectivity filter, while the other two K(+) ions move toward the extracellular side. A single water molecule is stabilized between each pair of ions during the transition, suggesting that each K(+) cation translocating through the narrow pore is accompanied by exactly one water molecule, in accord with streaming potential measurements (, Biophys. J. 55:367-371). The displacement of the ions is coupled with the structural fluctuations of Val(76) and Gly(77), in the selectivity filter, as well as the side chains of Glu(71), Asp(80), and Arg(89), near the extracellular side. Thus the mechanical response of the channel structure at distances as large as 10-20 A from the ions in the selectivity filter appears to play an important role in the concerted transition.  相似文献   

7.
The dynamics of potassium ions in a KcsA channel, located within a stochastically fluctuating medium, is modelled via the application of the molecular dynamics simulation method. We investigate the effect of presence and absence of an applied electric field, either constant or periodic, on the dynamics of the channel. It is found that the ions undergo a hopping motion when the channel is exposed to a constant electric field of strength 0.03 V/nm. Furthermore, an alternating electric field in the GHz range, normally present in the daily environment and encountered by most biological systems, is applied to the channel, showing that in this frequency range, the rigidity of the atomic bonds of the filter is increased, which in turn disturbs the ionic passage rate through the filter. Consequently, in this frequency range, the application of electric fields may affect the function of such channels.  相似文献   

8.
The mechanisms underlying transport of ions across the potassium channel are examined using electrostatic calculations and three-dimensional Brownian dynamics simulations. We first build open-state configurations of the channel with molecular dynamics simulations, by pulling the transmembrane helices outward until the channel attains the desired interior radius. To gain insights into ion permeation, we construct potential energy profiles experienced by an ion traversing the channel in the presence of other resident ions. These profiles reveal that in the absence of an applied field the channel accommodates three potassium ions in a stable equilibrium, two in the selectivity filter and one in the central cavity. In the presence of a driving potential, this three-ion state becomes unstable, and ion permeation across the channel is observed. These qualitative explanations are confirmed by the results of three-dimensional Brownian dynamics simulations. We find that the channel conducts when the ionizable residues near the extracellular entrance are fully charged and those near the intracellular side are partially charged. The conductance increases steeply as the radius of the intracellular mouth of the channel is increased from 2 A to 5 A. Our simulation results reproduce several experimental observations, including the current-voltage curves, conductance-concentration relationships, and outward rectification of currents.  相似文献   

9.
The mechanism of intracellular blockade of the KcsA potassium channel by tetrabutylammonium (TBA) is investigated through functional, structural and computational studies. Using planar-membrane electrophysiological recordings, we characterize the binding kinetics as well as the dependence on the transmembrane voltage and the concentration of the blocker. It is found that the apparent affinity of the complex is significantly greater than that of any of the eukaryotic K(+) channels studied previously, and that the off-rate increases with the applied transmembrane voltage. In addition, we report a crystal structure of the KcsA-TBA complex at 2.9 A resolution, with TBA bound inside the large hydrophobic cavity located at the center of the channel, consistent with the results of previous functional and structural studies. Of particular interest is the observation that the presence of TBA has a negligible effect on the channel structure and on the position of the potassium ions occupying the selectivity filter. Inspection of the electron density corresponding to TBA suggests that the ligand may adopt more than one conformation in the complex, though the moderate resolution of the data precludes a definitive interpretation on the basis of the crystallographic refinement methods alone. To provide a rationale for these observations, we carry out an extensive conformational sampling of an atomic model of TBA bound in the central cavity of KcsA, using the Hamiltonian replica-exchange molecular dynamics simulation method. Comparison of the simulated and experimental density maps indicates that the latter does reflect at least two distinct binding orientations of TBA. The simulations show also that the relative population of these binding modes is dependent on the ion configuration occupying the selectivity filter, thus providing a clue to the nature of the voltage-dependence of the binding kinetics.  相似文献   

10.
Blockade of the KcsA potassium channel by externally applied tetraethylammonium is investigated using molecular dynamics calculations and Brownian dynamics simulations. In KcsA, the aromatic rings of four tyrosine residues located just external to the selectivity filter create an attractive energy well or a binding cage for a tetraethylammonium molecule. We first investigate the effects of re-orienting the four tyrosine residues such that the centers of the aromatic rings face the tetraethylammonium molecule directly. Then, we systematically move the residues inward in both orientations so that the radius of the binding cage formed by them becomes smaller. For each configuration, we construct a one-dimensional free energy profile by bringing in a tetraethylammonium molecule from the external reservoir toward the selectivity filter. The free energy profile is then converted to a one-dimensional potential energy profile, taking the available space between the tyrosine residues and the tetraethylammonium molecule into account. Incorporating this potential energy profile into the Brownian dynamics algorithm, we determine the conductance properties of the channel under various conditions, construct the current-tetraethylammonium-concentration curve and compare it with the experimentally determined inhibitory constant ki for externally applied tetraethylammonium. We show that the experimentally determined binding affinity for externally applied tetraethylammonium can be replicated when each of the four tyrosine residues is moved inward by about 0.7 Å, irrespective of orientation of their aromatic rings.  相似文献   

11.
Potassium channels conduct K+ flow selectively across the membrane through a central pore. During a process called gating, the potassium channels undergo a conformational change that opens or closes the ion-conducting pore. The potassium channel KcsA has been structurally determined in its closed state. However, the dynamic mechanism of the gating transition of the KcsA channel is still being investigated. Here, a targeted molecular dynamics simulation up to 150 ns is performed to investigate the detailed opening process of the KcsA channel with an open Kv1.2 structure serving as the target. The channel arrived at a self-determined quasi-stable state within 60 ns. The rigid-body and hinge-bending modes are observed mixed together in the remaining 90 ns long quasi-stable state. The mixed-mode movement seems come from the competition between the helix rigidity and the biased-applied gating force.  相似文献   

12.
The single-channel kinetics of extracellular Mg(2+) block was used to probe K(+) binding sites in the permeation pathway of rat recombinant NR1/NR2B NMDA receptor channels. K(+) binds to three sites: two that are external and one that is internal to the site of Mg(2+) block. The internal site is approximately 0.84 through the electric field from the extracellular surface. The equilibrium dissociation constant for this site for K(+) is 304 mM at 0 mV and with Mg(2+) in the pore. The occupancy of any one of the three sites by K(+) effectively prevents the association of extracellular Mg(2+). Occupancy of the internal site also prevents Mg(2+) permeation and increases (by approximately sevenfold) the rate constant for Mg(2+) dissociation back to the extracellular solution. Under physiological intracellular ionic conditions and at -60 mV, there is approximately 1,400-fold apparent decrease in the affinity of the channel for extracellular Mg(2+) and approximately 2-fold enhancement of the apparent voltage dependence of Mg(2+) block caused by the voltage dependence of K(+) occupancy of the external and internal sites.  相似文献   

13.
Furini S  Beckstein O  Domene C 《Proteins》2009,74(2):437-448
Previous studies have reported that the KcsA potassium channel has an osmotic permeability coefficient of 4.8 x 10(-12) cm3/s, giving it a significantly higher osmotic permeability coefficient than that of some membrane channels specialized in water transport. This high osmotic permeability is proposed to occur when the channel is depleted of potassium ions, the presence of which slow down the water permeation process. The atomic structure of the potassium-depleted KcsA channel and the mechanisms of water permeation have not been well characterized so far. Here, all-atom molecular dynamics simulations, in conjunction with an umbrella sampling strategy and a nonequilibrium approach to simulate pressure gradients are employed to illustrate the permeation of water in the absence of ions through the KcsA K+ channel. Equilibrium molecular dynamics simulations (95 ns combined total length) identified a possible structure of the potassium-depleted KcsA channel, and umbrella sampling calculations (160 ns combined total length) revealed that this structure is not permeable by water molecules moving along the channel axis. The simulation of a pressure gradient across the channel (30 ns combined total length) identified an alternative permeation pathway with a computed osmotic permeability of approximately (2.7 +/- 0.9) x 10(-13) cm3/s. Water fluxes along this pathway did not proceed through collective water motions or transitions to vapor state. All of the major results of this study were robust against variations in a wide set of simulation parameters (force field, water model, membrane model, and channel conformation).  相似文献   

14.
15.
Inward rectifier (Kir) potassium channels are characterized by two transmembrane helices per subunit, plus an intracellular C-terminal domain that controls channel gating in response to changes in concentration of various ligands. Based on the crystal structure of the tetrameric C-terminal domain of Kir3.1, it is possible to build a homology model of the ATP-binding C-terminal domain of Kir6.2. Molecular dynamics simulations have been used to probe the dynamics of Kir C-terminal domains and to explore the relationship between their dynamics and possible mechanisms of channel gating. Multiple simulations, each of 10 ns duration, have been performed for Kir3.1 (crystal structure) and Kir6.2 (homology model), in both their monomeric and tetrameric forms. The Kir6.2 simulations were performed with and without bound ATP. The results of the simulations reveal comparable conformational stability for the crystal structure and the homology model. There is some decrease in conformational flexibility when comparing the monomers with the tetramers, corresponding mainly to the subunit interfaces in the tetramer. The beta-phosphate of ATP interacts with the side chain of K185 in the Kir6.2 model and simulations. The flexibility of the Kir6.2 tetramer is not changed greatly by the presence of bound ATP, other than in two loop regions. Principal components analysis of the simulated dynamics suggests loss of symmetry in both the Kir3.1 and Kir6.2 tetramers, consistent with "dimer-of-dimers" motion of subunits in C-terminal domains of the corresponding Kir channels. This is suggestive of a gating model in which a transition between exact tetrameric symmetry and dimer-of-dimers symmetry is associated with a change in transmembrane helix packing coupled to gating of the channel. Dimer-of-dimers motion of the C-terminal domain tetramer is also supported by coarse-grained (anisotropic network model) calculations. It is of interest that loss of exact rotational symmetry has also been suggested to play a role in gating in the bacterial Kir homolog, KirBac1.1, and in the nicotinic acetylcholine receptor channel.  相似文献   

16.
One of the ultimate goals of the study on mechanosensitive (MS) channels is to understand the biophysical mechanisms of how the MS channel protein senses forces and how the sensed force induces channel gating. The bacterial MS channel MscL is an ideal subject to reach this goal owing to its resolved 3D protein structure in the closed state on the atomic scale and large amounts of electrophysiological data on its gating kinetics. However, the structural basis of the dynamic process from the closed to open states in MscL is not fully understood. In this study, we performed molecular dynamics (MD) simulations on the initial process of MscL opening in response to a tension increase in the lipid bilayer. To identify the tension-sensing site(s) in the channel protein, we calculated interaction energy between membrane lipids and candidate amino acids (AAs) facing the lipids. We found that Phe78 has a conspicuous interaction with the lipids, suggesting that Phe78 is the primary tension sensor of MscL. Increased membrane tension by membrane stretch dragged radially the inner (TM1) and outer (TM2) helices of MscL at Phe78, and the force was transmitted to the pentagon-shaped gate that is formed by the crossing of the neighboring TM1 helices in the inner leaflet of the bilayer. The radial dragging force induced radial sliding of the crossing portions, leading to a gate expansion. Calculated energy for this expansion is comparable to an experimentally estimated energy difference between the closed and the first subconductance state, suggesting that our model simulates the initial step toward the full opening of MscL. The model also successfully mimicked the behaviors of a gain of function mutant (G22N) and a loss of function mutant (F78N), strongly supporting that our MD model did simulate some essential biophysical aspects of the mechano-gating in MscL.  相似文献   

17.
目的:研究脂肪胺类的新型钾通道开放剂(KCO)埃他卡林(Ipt)和氰胍类的KCO吡那地尔(Pin)对大鼠心血管ATP-敏感性钾通道(KATP)的亚基SUR1、SUR2、Kir6.1和Kir6.2等在mRNA水平的调节作用。方法:SD大鼠给药1周后处死并取组织,提取总RNA,利用反转录-聚合酶链式反应(RT-PCR)研究以上基因在mRNA水平的改变。结果:与正常对照相比,心脏组织中,Ipt和Pin对KATP的4个亚基在mRNA水平均无显著影响;主动脉平滑肌上,Ipt对4个亚基的mRNA表达无显著影响,但Pin可显著上调SUR2的mRNA表达;尾动脉平滑肌上,Ipt对Kit6.1/Kit6.2、Pin对SUR2/Kir6.1均有显著下调的作用。结论:心肌、大动脉平滑肌和小动脉平滑肌KATP基因表达的调控不同,Ipt选择性调节小动脉平滑肌Kit6.1/Kit6.2;Ipt对心血管KATP基因表达的调节作用不同于Pin。  相似文献   

18.
In this study, the potential energy profile of potassium ions in the selective filter part of a KcsA channel was investigated via the application of the molecular simulation method. For this purpose, using the molecular dynamics simulation, the effect of an applied electric field, either constant or oscillating, was studied on the dynamics of K ions in the filter. It was found that when the channel is exposed to a constant electric field of strength 0.03 V/nm, the ions experience a hopping motion. Furthermore, it was shown that the application of oscillating electric fields of 1 and 2.5 GHz, can increase the rigidity of the filter atomic bonds. By computing the potential energy of K ion in the filter, it was shown that the depth of the potential wells, corresponding to the filter sites, increased when an alternative field was applied. Therefore, exposing the channel to the GHz oscillating electric field could disturb the passing rate of ions through the filter, which in turn may affect the operation of these kinds of channels.  相似文献   

19.
Potassium channels fluctuate between closed and open states. The detailed mechanism of the conformational changes opening the intracellular pore in the K+ channel from Streptomyces lividans (KcsA) is unknown. Applying Monte Carlo normal mode following, we find that gating involves rotation and unwinding of the TM2 bundle, lateral movement of the TM2 helices away from the channel axis, and disappearance of the TM2 bundle. The open-state conformation of KcsA exhibits a very wide inner vestibule, with a radius approximately 5-7 A and inner helices bent at the A98-G99 hinge. Computed conformational changes demonstrate that spin labeling and X-ray experiments illuminate different stages in gating: transition begins with clockwise rotation of the TM2 helices ending at a final state with the TM2 bend hinged near residues A98-G99. The concordance between the computational and experimental results provides atomic-level insights into the structural rearrangements of the channel's inner pore.  相似文献   

20.
Microscopic molecular dynamics free energy perturbation calculations of the K(+)/Na(+) selectivity in the KcsA potassium channel, based on its experimental three-dimensional structure, are reported. The relative binding free energies for K(+) and Na(+) in the most relevant ion occupancy states of the four-site selectivity filter are calculated. The previously proposed mechanism for ion permeation through the KcsA channel is predicted, in agreement with available experimental data, to have a significant selectivity for K(+) over Na(+). The calculations also show that the individual 'binding site' selectivities are generally not additive and the doubly loaded states of the filter thus display cooperative effects. The only site that is not K(+) selective is that which is located at the entrance to the internal water cavity, suggesting the possibility that internal Na(+) could block outward currents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号