首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
N-Arachidonoyl (AA) derivatives of amino acids (glycine, phenylalanine, proline, valine, γ-aminobutyric acid (GABA), dihydroxyphenylalanine, tyrosine, tryptophan, and alanine) and peptides (Semax, MEHFPGP, and PGP) were synthesized in order to study the biological properties of acylamino acids. The mass spectra of all the compounds at atmospheric pressure electrospray ionization display the most intense peaks of protonated molecular ions; the detection limits for these compounds are 10 fmol per sample. AA-Gly showed the highest inhibitory activity toward fatty acid amide hydrolase from rat brain (IC50 6.5 μM) among all the acylamino acids studied. AA-Phe, AA-Tyr, and AA-GABA exhibited a weak but detectable inhibitory effect (IC50 55, 60, and 50 μM, respectively). The acylated amino acids themselves, except for AA-Glu, were stable to the hydrolysis by this enzyme. All the arachidonoylamino acids inhibited cabbage phospholipase D to various degrees; AA-GABA and AA-Phe proved to be the most active (IC50 20 and 27 μM, respectively). Attempts to detect the biosynthesis of AA-Tyr in homogenates of rat liver and nerve tissue in vitro were unsuccessful; however, AA-dopamine and AA-Phe, the products of its metabolism, were found. The highest contents of these metabolites were detected in liver homogenate and in the brain homogenate, respectively. Acylamino acids exert no cytotoxic effect toward the glioma C6 cells. It was shown that N-acylation of Semax with arachidonic acid results in enhancement of its hydrolytic stability and increases its affinity for the sites of specific binding in rat cerebellum membranes.  相似文献   

2.
The synthesis of N-substituted piperidine-4-(benzylidene-4-carboxylic acids) is described [benzoyl (1), benzyl (2), adamantanoyl (3), cyclohexanoyl (4), cyclohexylacetyl (5), diphenylacetyl (6), dicyclohexylacetyl (7), 2-propylpentanoyl (8), diphenylcarbamoyl (9), trimethylacetyl (10), 3,3-dimethylacryloyl (11), dicyclohexylacetyl derivative of the benzyl compound (12)]. Compounds were tested for inhibitory activity toward 5alpha-reductase isozymes 1 and 2 in human and rat. The test compounds inhibited 5alpha-reductase, showing a broad range of inhibitory potencies. In rat, compounds 6 (IC50 = 3.44 and 0.37 microM for type 1 and 2, respectively) and 9 (IC50=0.54 and 0.69 microM for type 1 and 2, respectively) displayed the best inhibition toward both isozymes. Compound 7 showed a strong inhibition toward type 2 human and rat enzyme (IC50 = 60 and 80 nM) but only a moderate activity versus type 1 enzyme (IC50 approximately 10 microM for rat and human enzyme). In vivo, selected compounds reduced prostate weights in castrated testosterone treated rats.  相似文献   

3.
In vitro antioxidant activities of three sweet dihydrochalcone glucosides from the leaves of Lithocarpus pachyphyllus (Kurz) Rehd. (Fagaceae), trilobatin 2"-acetate (1), phloridzin (2) and trilobatin (3), were investigated. The IC50 (50% inhibitory concentration) values for compounds 1-3 of lipid peroxidation in rat liver homogenate were 261, 28, 88 microM, respectively. Compounds 1-3 increased superoxide dismutase (SOD) activity with EC50 (50% effective concentration) values of 575, 167, 128 microM, and glutathione peroxidase (GSH-Px) activity with EC50 values of 717, 347, 129 microM, respectively, and showed only weak DPPH (1,1-diphenyl-2-picrylhydrazyl) radical scavenging activity.  相似文献   

4.
The activities of rat brain prostaglandin D synthetase and swine brain prostaglandin D2 dehydrogenase were inhibited by some saturated and unsaturated fatty acids. Myristic acid was most potent among saturated straight-chain fatty acids so far tested. The IC50 values of this acid were 80 microM for prostaglandin D synthetase and 7 microM for prostaglandin D2 dehydrogenase, respectively. Little inhibition was found with methyl myristate and myristyl alcohol. The IC50 values of these derivatives were more than 200 microM for both enzymes, suggesting that the free carboxyl group was essential for the inhibition. The effects of cis double bond structure of fatty acids on the inhibition potency were examined by the use of the carbon 18 and 20 fatty acids. The inhibition potencies for both enzymes increased with the number of cis double bonds; the IC50 values of stearic, oleic, linoleic and linolenic acid were, respectively, more than 200, 60, 30 and 30 microM for prostaglandin D synthetase, and 20, 10, 8.5 and 7 microM for prostaglandin D2 dehydrogenase. Arachidonic acid also inhibited the activities of both enzymes with respective IC50 values of 40 microM for prostaglandin D synthetase and 3.9 microM for prostaglandin D2 dehydrogenase, while arachidic acid showed little inhibition. The kinetic studies with myristic acid and arachidonic acid demonstrated that the inhibition by these fatty acids was competitive and reversible for both enzymes. Myristic acid and other fatty acids also inhibited the activities of several enzymes in prostaglandin metabolism, although to a lesser extent. The IC50 values of myristic acid for prostaglandin E isomerase, thromboxane synthetase and NAD-linked prostaglandin dehydrogenase (type I) were 200, 700 and 100 microM, respectively. However, this fatty acid showed little inhibition on fatty acid cyclooxygenase (20% at 800 microM), glutathione-requiring prostaglandin D synthetase from rat spleen (20% at 800 microM), and NADP-linked prostaglandin dehydrogenase (type II) (no inhibition at 200 microM).  相似文献   

5.
A dose-dependent effect of synthetic heptapeptides Semax (Met-Glu-His-Phe-Pro-Gly-Pro) and Selank (Thr-Lys-Pro-Arg-Pro-Gly-Pro) on the enkephalin-degrading enzymes of human serum was demonstrated. The inhibitory effects of Semax (IC50 10 microM) and Selank (IC50 20 microM) are more pronounced than those of puromycin (IC50 10 mM), bacitracin, and some other inhibitors of peptidases. Beside the heptapeptides, their pentapeptide fragments also possessed an inhibitory effect; tri-, tetra-, and hexapeptide fragments did not display such an effect. As the above enzymes take part in degradation of not only enkephalins but also other regulatory peptides, it can be assumed that one of the mechanisms of biological activity of Semax and Selank is related to this inhibitory activity of theirs.  相似文献   

6.
The concentration of p-tyramine in the rat striatum was increased significantly by intraperitoneal injection of phenelzine (5 or 100 mg/kg). Unlike other monoamine oxidase (MAO) inhibitors, phenelzine had no effect on p-tyramine levels in the first 1-2 h following injection. The high dose of phenelzine increased the p-tyramine levels much more than the low dose. In addition, the high dose of phenelzine increased striatal p-tyrosine levels significantly 12 h after injection. Further studies showed that phenelzine inhibited the tyrosine aminotransferase activity of rat liver homogenates; the IC50 was 50 microM. Phenelzine also inhibited the aromatic L-amino acid decarboxylase activity of rat brain homogenate with an IC50 of 25 microM. Following intraperitoneal injection of 100 mg/kg phenelzine, the initial concentration of phenelzine in the striatum appears to be high enough to inhibit aromatic L-amino acid decarboxylase. It is suggested that the multiple enzyme inhibition caused by administration of high doses of phenelzine accounts for its unusual effects on striatal p-tyramine levels compared with other MAO inhibitors, i.e., its initial lack of effect on p-tyramine levels followed later by very large increases in p-tyramine levels.  相似文献   

7.
The antioxidant activity in vitro of three poly(phenylacetyloxy)-substituted 1,1':4',1"-terphenyl compounds from the edible mushroom Thelephora ganbajun were investigated. The IC50 values of compounds 1-3 for lipid peroxidation in rat liver homogenate were 400, 48, 54 microM, respectively. Compounds 1-3 increased superoxide dismutase (SOD) activity with EC50 values of 182, 74, 204 microM. They were also assessed on the DPPH (1,1-diphenyl-2-picrylhydrazyl) radical scavenging activity with EC50 values of 49, 1233, 55 microM.  相似文献   

8.
Effects of diazepam and gamma-aminobutyric acid-related compounds on the release of [14C]cysteine sulfinate and [3H]glutamate from preloaded hippocampal slices of rat brain were examined by a superfusion method. Diazepam markedly inhibited the release of cysteine sulfinate and glutamate evoked either by high K+ or veratridine without affecting that of other neurotransmitter candidates, e.g., gamma-aminobutyric acid, acetylcholine, noradrenaline, and dopamine; IC50 values for the release of cysteine sulfinate and glutamate were about 20 and 7 microM, respectively. gamma-Aminobutyric acid (1 to 10 microM) and muscimol (100 microM) significantly reduced high K+-stimulated release of glutamate. Bicuculline, which had no effect on the release at a concentration of 50 microM by itself, antagonized the inhibitor effects of diazepam and gamma-aminobutyric acid on glutamate release. Similar results were obtained with the release of cysteine sulfinate except that a high concentration (100 microM) of gamma-aminobutyric acid was required for the inhibition. These results indicate the modulation by gamma-aminobutyric acid innervation of the release of excitatory amino acids in rat hippocampal formation, and also suggest that some of the pharmacological effects of diazepam may be a consequence of inhibition of excitatory amino acid transmission.  相似文献   

9.
The antioxidant capacity of polyphenols (+)-catechin, (-)-epicatechin and myricetin, and of different types of red wines (Cabernet Sauvignon, Malbec and blended wine) was evaluated by three assays. (a) NADH oxidation by peroxynitrite (ONOO-): the ONOO- scavenging activity was higher for myricetin (IC50=35 microM) than for (+)-catechin (IC50=275 microM) and (-)-epicatechin (IC50=313 microM). (b) Peroxynitrite initiated chemiluminescence in rat liver homogenate: (-)-epicatechin (IC50=7.0 microM) and (+)-catechin (IC50=13 microM) were more potent than myricetin (IC50=20 microM) in inhibiting the chemiluminescence signal. (c) Lucigenin chemiluminescence in aortic rings: (-)-epicatechin (IC50=15 microM) and (+)-catechin (IC50=18 microM) showed higher antioxidant capacity than myricetin (IC50=32 microM). All the assayed red wines were able to scavenge the oxidants and free radical species that generate the signal in each assay. Cabernet Sauvignon was the red wine with the highest antioxidant capacity in comparison with Malbec and blended wine. It is concluded that the use of sensitive biological systems (as the aortic ring chemiluminescence) provides important information in addition to the results from chemical (NADH oxidation by peroxynitrite) and biochemical (homogenate chemiluminescence) assays and offers advances in the physiological role of polyphenols.  相似文献   

10.
gamma-Endorphin generating endopeptidase (gamma EGE) activity is an enzyme activity which converts beta-endorphin into gamma-endorphin and beta-endorphin-(18-31). The inhibitory potency on gamma EGE activity of neuropeptides and analogues or fragments of neuropeptides was tested. Dynorphin-(1-13) (IC50: 0.14 microM), human beta-endorphin-(1-31) (IC50: 15.5 microM), porcine ACTH-(1-39) (IC50: 6.3 microM), and substance P (IC50: 26 microM) had an inhibitory activity on gamma EGE activity. beta-Endorphin-(18-31) (IC50: 0.35 microM) but not gamma-endorphin potently inhibited gamma EGE activity. The IC50 of poly (Lys)40-60 was 0.8 microM. It is concluded that 1) gamma EGE activity is strongly inhibited by its product beta-endorphin-(18-31), 2) the enzyme is strongly inhibited by peptides with an aromatic amino acid at the NH2-terminal and/or basic amino acids in the COOH-terminal of the peptide chain.  相似文献   

11.
Seven L-amino acids (Trp, Arg, Lys, Met, Ile, Val, and Phe) partially (28-81%) reversed the inhibitory action of 1 microM gamma-aminobutyric acid (GABA) on t-[35S]butylbicyclophosphorothionate ([35S]TBPS) binding to rat brain membranes, with EC50 values ranging from 5 to 120 mM. D-Trp, D-Arg, D-Lys, D-Met, D-Val, and D-Phe were approximately equipotent with their L-isomers. Tyramine, phenethylamine, and tryptamine, the decarboxylation products of the aromatic amino acids (Tyr, Phe, and Trp, respectively), reversed the inhibitory action of 1 microM GABA on [35S]TBPS binding more potently than the parent amino acids (EC50 values = 1.5-3.0 mM). Human hereditary amino acidemias involving Arg, Lys, Ile, Val, and Phe are associated with seizures, and these amino acids and/or their metabolites may block GABA-A receptors. Five other L-amino acids (ornithine, His, Glu, Pro, and Ala) as well as Gly and beta-Ala inhibited [35S]TBPS binding with IC50 values ranging from 0.1 to 37 mM, and these inhibitions were reversed by the GABA-A receptor blocker R 5135 in all cases. The inhibitory effects of L-ornithine, L-Ala, L-Glu, and L-Pro were stereospecific, because the corresponding D-isomers were considerably less inhibitory. L-His, D-His, and L-Glu gave incomplete (plateau) inhibitions. Human hereditary amino acidemias involving L-ornithine, His, Pro, Gly, and beta-Ala are also associated with seizures, and we speculate that these GABA-mimetic amino acids may desensitize GABA-A receptors.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The one pot reactions carried among salicylaldehyde 1, ortho-aminophenols 2a-2g, and di-phenyl-tin(IV) oxide 3 led to seven di-phenyl-tin(IV) compounds 4a-4g in good yields (97-83%). All compounds were analyzed by IR, 1H, 13C, 119Sn NMR spectroscopy, mass spectrometry and elemental analyses; furthermore, in the case of compounds 4b, 4c, 4e and 4g by X-ray diffraction. Compounds 4a-4g were tested in vitro against six human tumor cell lines U251, PC-3, K-562, HCT-15, MCF-7 and SKLU-1 to assess their in vitro antitumor activity. The results suggest biological specificity towards U251, MCF-7 and SKLU-1 cells at doses below 2.5 microM, which are lower than cis-platin IC50's in the three cell lines. Since the inhibitory concentration values for the series were alike to Ph(2)SnCl(2) is feasible that only the Ph(2)Sn moiety is responsible for those activities, further experiments are under research. Besides, 4a-4g were tested for their antioxidant efficiency in rat brain homogenate showing that 4g is more active (IC50=3.01 microM) than the flavone quercetin (natural antioxidant, IC50=4.11 microM) on inhibition of thiobarbituric acid reactive substances (TBARS). The TBARS activity (IC50) correlates with the ortho-aminophenol substitutions and a linear combination among sigma Hammett, one bond tin coupling constants and tin chemical shifts against the measured IC(50-TBARS) was found. This correlation gave basis that the implied molecular variables can become trackers for the calculation of TBARS inhibitory concentrations in similar systems. Moreover, there seemed to be an inverse structure-response behavior among activities, since the 4g derivative is the less active compound for cytotoxic assays meanwhile it is the best in antioxidant tests.  相似文献   

13.
Kim KA  Lee JS  Park HJ  Kim JW  Kim CJ  Shim IS  Kim NJ  Han SM  Lim S 《Life sciences》2004,74(22):2769-2779
Oleanolic acid (OA) and ursolic acid (UA), triterpene acids having numerous pharmacological activities including anti-inflammatory, anti-cancer, and hepato-protective effects, were tested for their ability to modulate the activities of several cytochrome P450 (CYP) enzymes using human liver microsomes. OA competitively inhibited CYP1A2-catalyzed phenacetin O-deethylation and CYP3A4-catalyzed midazolam 1-hydroxylation, the major human drug metabolizing CYPs, with IC50 (Ki) values of 143.5 (74.2) microM and 78.9 (41.0) microM, respectively. UA competitively inhibited CYP2C19-catalyzed S-mephenytoin 4'-hydroxylation with an IC50 (Ki) value of 119.7 (80.3) microM. However, other CYPs tested showed no or weak inhibition by both OA and UA. The present study demonstrates that OA and UA have inhibitory effects on CYP isoforms using human liver microsomes. It is thus likely that consumption of herbal medicines containing OA or UA, or administration of OA or UA, can cause drug interactions in humans when used concomitantly with drugs that are metabolized primarily by CYP isoforms. In addition, it appears that the inhibitory effect of OA on CYP1A2 is, in part, related to its anti-inflammatory and anticancer activities.  相似文献   

14.
Some bisphosphonates used for the treatment of bone disorders are also potent inhibitors of squalene synthase, a critical enzyme for sterol biosynthesis. Among seven drugs tested, YM 175 (cycloheptylaminomethylene-1,1-bisphosphonic acid) was the most potent inhibitor of rat liver microsomal squalene synthase (Ki = 57 nM) and sterol biosynthesis from [14C]mevalonate in rat liver homogenate (IC50 = 17 nM). EB 1053 (3-(1-pyrolidino)-1-hydroxypropylidene-1,1-bisphosphonic acid) and PHPBP (3-(1-piperidino)-1-hydroxypropylidene-1,1-bisphosphonic acid) were less potent inhibitors in both these assays. Pamidronate and alendronate were poor inhibitors of squalene synthase (IC50 > 10 microM) but were potent inhibitors of sterol biosynthesis from mevalonate (IC50 = 420 and 168 nM, respectively), suggesting that the latter two agents may have inhibited other enzymes involved in the synthesis of farnesyl pyrophosphate from mevalonate. Etidronate and clodronate were inactive in both these assays. YM 175 also inhibited sterol biosynthesis in mouse macrophage J774 cells (IC50 = 64 microM) and in rats, when administered acutely, it inhibited cholesterol biosynthesis in the liver (ED50 = 30 mg/kg, s.c.). Structural modifications on YM 175 to enhance cell permeability may result in a new class of cholesterol-lowering agents.  相似文献   

15.
The seed oil of the plant Ixiolaena brevicompta is a rich source of crepenynic acid (octadec-cis-9-en-12-ynoic acid), which has been linked with extensive sheep mortalities in Western New South Wales and Queensland, Australia. A number of acetylenic fatty acids have been found to interfere with lipid and fatty acid metabolism and inhibit cyclooxygenase and lipoxygenase enzymes in a variety of tissues. We have investigated the effects of crepenynic acid and ximenynic acid (octadec-trans-11-en-9-ynoic acid) on leukotriene B4 and thromboxane B2 production in rat peritoneal leukocytes and compare them with non-acetylenic compounds linoleic and ricinoleic acids. In concentrations ranging from 10 to 100 microM linoleic acid and ricinoleic acid had only minimal effects on leukotriene B4 and thromboxane B2 production in ionophore-stimulated cells. Ximenynic acid gave dose-dependent inhibition of leukotriene B4, thromboxane B2 and 6-ketoprostaglandin F1 alpha production. Ximenynic acid appears to be a more effective inhibitor of leukotriene B4 than crepenynic acid with an IC50 of 60 microM compared to 85 microM. On the other hand, crepenynic acid is a much more effective inhibitor of the cyclooxygenase products, having an IC50 for thromboxane B2 of less than 10 microM. Both acetylenic fatty acids inhibited phospholipase activity in these cells by 40-50% at a concentration of 100 microM but had no inhibitory effect at 10 microM. These results indicate that crepenynic acid and ximenynic acid differentially inhibit the cyclooxygenase and lipoxygenase products of stimulated leukocytes, and that at high doses of these fatty acids the effect on these products may be partially due to inhibition of phospholipase A2.  相似文献   

16.
Catalytic and regulatory properties of the major form of cyclic GMP phosphodiesterase (3':5'-cyclic-GMP 5'-nucleotidohydrolase, EC 3.1.4.35) from rat lung were studied. The enzyme partially purified by a DEAE-Sepharose chromatography displayed a much higher affinity toward cyclic GMP than toward cyclic AMP, the apparent Km values being 5.7 microM and 482 microM for the guanylic and the adenylic cyclic nucleotide, respectively. In contrast, the V value for cyclic AMP was about 3-times higher than the V value for cyclic GMP. Linear double reciprocal plots of initial velocity were observed with each cyclic nucleotide. From 10(-8) to 3.3 X 10(-6) M, cyclic GMP did not change the hydrolysis of 1 or 10 microM cyclic [3H]AMP, while it became inhibitory at higher concentrations. In contrast with a calmodulin-sensitive phosphodiesterase prepared from rat brain, the lung enzyme was not stimulated by a heat-stable Ca2+-dependent factor from rat lung or by rat brain calmodulin or by lipids including fatty acids and lysophosphatidylcholine. Various unsaturated 18- and 20-carbon fatty acids inhibited at varying degrees the cyclic GMP phosphodiesterase from rat lung. The inhibitory potency increased with the number of double bonds in the hydrocarbon chain. In contrast, the methyl esters of the unsaturated fatty acids and the saturated fatty acids of variable hydrocarbon chain lengths had no appreciable effects. A linear Hill plot of phosphodiesterase inhibition with a slope of unity was obtained with arachidonic acid up to 30 microM, suggesting only one type of inhibitory site. In this range of concentrations the inhibition was entirely reversible. Kinetics analysis demonstrated that up to 30 microM arachidonic acid was a purely competitive inhibitor with an apparent Ki of 20 microM. Over 30 microM, the Hill coefficient increased progressively, indicating the binding to other inhibitory sites, while the reversibility disappeared.  相似文献   

17.
Selective inhibition of platelet lipoxygenase by esculetin   总被引:6,自引:0,他引:6  
The effects of coumarin and its derivatives on rat platelet lipoxygenase and cyclooxygenase activities were studied. Esculetin (6,7-dihydroxycoumarin) was found to inhibit the lipoxygenase more strongly than the cyclooxygenase; its concentration for 50% inhibition (IC50) was 0.65 microM for platelet lipoxygenase and 0.45 mM for platelet cyclooxygenase. Esculin (the 6-glucoside of esculetin) and umbelliferone (7-hydroxy-coumarin) also selectively inhibited the lipoxygenase, though less strongly (IC50 = 290 and 500 microM, respectively). 4-Hydroxycoumarin and coumarin had no inhibitory effect on either enzyme at concentrations up to 1 mM. The mechanism of the lipoxygenase inhibition by esculetin was non-competitive. Other antioxidants (hydroquinone, gallic acid and ascorbic acid) were less inhibitory to both enzymes and showed little selectivity.  相似文献   

18.
A series of (+/-)-3-(4-aminophenyl) pyrrolidin-2,5-diones substituted in the 1-, 3- or 1,3-position with an aryl or long chain alkyl function are weak inhibitors of the metabolism of all-trans retinoic acid (RA) by rat liver microsomes (68-75% inhibition) compared with ketoconazole (85%). Further studies with the 1-cyclohexyl analogue (1) (IC50 = 98.8 microM, ketoconazole, 22.15 microM) showed that it was not stereoselective in its inhibition. (+/-)-(1) was not an inhibitor of pig brain microsomal enzyme (ketoconazole, IC50 = 20.9 microM), had little effect on human liver microsomal enzyme (19.3%, ketoconazole, 81.6%) or human placental microsomal enzyme (9.8%, ketoconazole 73.9%) but was a weak inhibitor of human and rat skin homogenates (52.6% and IC50 = 211.6 microM respectively; ketoconazole, 38.8% and 85.95 microM). In RA-induced cell cultures of human male genital fibroblasts and HaCat cells, (+/-)-(1) was a weak inhibitor (c. 53% at 200 microM) whereas ketoconazole showed high potency (c. 65% at 0.625 microM and 0.25 microM respectively). The nature of the induced target enzyme is discussed.  相似文献   

19.
The synthesis of a series of 5-phenyl substituted 1-methyl-2-pyridones (I) and 4'-substituted biphenyl-4-carboxylic acids (II) as novel A-C ring steroidomimetic inhibitors of 5alpha-reductase (5alphaR) is described. Compounds 1-4 (I) were synthesized by palladium catalyzed cross coupling (Ishikura) reaction between diethyl(3-pyridyl)borane and aryl halides (1b-4b) followed by alpha-oxidation with sodium ferrocyanate of the 1-methyl-pyridinium salt. Inhibitors II (5-18) were obtained either by two successive Friedel-Crafts acylations from biphenyl (5a-10a) followed by saponification to yield the corresponding carboxylic acids (5-10) or by Suzuki cross coupling reaction to give the 4'-substituted biphenyl-4-carbaldehydes 11a-18a. The latter compounds were subjected to a Lindgren oxidation to yield compounds 11-18. The compounds were tested for inhibitory activity toward human and rat 5alphaR1 and 2. The test compounds inhibited 5alphaR, showing a broad range of inhibitory potencies. The best compound in series I was the N-(dicyclohexyl)-4-(1,2-dihydro-1-methyl-2-oxopyrid-5-yl)benzamide 4 exhibiting an IC(50) value for the human type 2 enzyme of 10 microM. In series II, the most active compound toward human type 2 isozyme was the 4'-(dicyclohexyl)acetyl-4-biphenyl carboxylic acid (10; IC(50)=220nM). Both series showed only marginal activity toward the human type 1 isozyme. In conclusion, the biphenyl carboxylic acids (II) are more appropriate for 5alphaR inhibition than the 5-phenyl-1-methyl-2-pyridones (I). Especially the 4'-carbonyl compounds 5-10 represent new lead structures for the development of novel human type 2 inhibitors.  相似文献   

20.
The antioxidant properties of cinnamophilin were evaluated by studying its ability to react with relevant reactive oxygen species, and its protective effect on cultured cells and biomacromolecules under oxidative stress. Cinnamophilin concentration-dependently suppressed non-enzymatic iron-induced lipid peroxidation in rat brain homogenates with an IC50 value of 8.0+/-0.7 microM and iron ion/ADP/ascorbate-initiated rat liver mitochondrial lipid peroxidation with an IC50 value of 17.7+/-0.2 microM. It also exerted an inhibitory activity on NADPH-dependent microsomal lipid peroxidation with an IC50 value of 3.4+/-0.1 microM without affecting microsomal electron transport of NADPH-cytochrome P-450 reductase. Both 1,1-diphenyl-2-picrylhydrazyl and 2,2'-azo-bis(2-amidinopropane) dihydrochloride-derived peroxyl radical tests demonstrated that cinnamophilin possessed marked free radical scavenging capacity. Cinnamophilin significantly protected cultured rat aortic smooth muscle cells (A7r5) against alloxan/iron ion/H2O2-induced damage resulting in cytoplasmic membranous disturbance and mitochondrial potential decay. By the way, cinnamophilin inhibited copper-catalyzed oxidation of human low-density lipoprotein, as measured by fluorescence intensity and thiobarbituric acid-reactive substance formation in a concentration-dependent manner. On the other hand, it was reactive toward superoxide anions generated by the xanthine/xanthine oxidase system and the aortic segment from aged spontaneously hypertensive rat. Furthermore, cinnamophilin exerted a divergent effect on the respiratory burst of human neutrophil by different stimulators. Our results show that cinnamophilin acts as a novel antioxidant and cytoprotectant against oxidative damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号