首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The fluorescent chelator Indo-1 can make simultaneous determinations of two intracellular ion concentrations, such as [Ca2+] and [Cd2+], or [Ca2+] and [Ba2+], in a normal cell suspension. The second ion can be detected even if its spectrum when bound to Indo-1 is same as for the calcium-bound or the ion-free Indo-1, as long as there is a change in height. This is because the mathematical analysis uses not only the spectral shape, but also takes into account increases in total signal intensity. For maximum accuracy, whole spectra were analyzed. When 3 mM [Ba2+] was added to a B cell line that had been stimulated with anti-immunoglobulin to open receptor operated calcium channels, there was a sudden drop in 400 nm Indo-1 fluorescence. Spectral analysis showed that this was due to a drop in intracellular [Ca2+], which was consistent with blockage of the receptor-operated calcium current by extracellular Ba2+. The conductance for Ba2+ was also observable as a slow rise in total fluorescence. There was also a slow increase in intracellular [Ca2+] as barium accumulated in the cell, which was tentatively attributed to blockage of the plasma membrane calcium pump by intracellular Ba2+.  相似文献   

2.
The cytosolic free Ca2+ concentration of calcium-tolerant rat myocytes has been measured by the null point titration technique using arsenazo III as a Ca2+ indicator and digitonin to permeabilize the plasma membrane. The mean value obtained for 8 separate preparations was 270 +/- 35 nM. The distribution of releasable calcium between the mitochondrial and sarcoplasmic reticular compartments was measured by the successive additions of uncoupler and A23187 to cells pretreated with ruthenium red. The relative distribution of calcium in each pool was independent of the cell calcium content up to the maximum value of releasable calcium investigated (4.5 nmol/mg of cell dry weight) and was distributed in the approximate ratio of 2:1 in favor of the sarcoplasmic reticulum. The cells contained 1 nmol of calcium/mg of cell dry weight in a form nonreleasable by A23187, which was independent of the total cell calcium content as measured by atomic absorption spectroscopy. It is calculated that the calcium content of mitochondria in heart under physiological conditions is about 5 nmol/mg of mitochondrial protein. At this level, the mitochondria are likely to provide effective buffering of the cytosolic free Ca2+ concentration of quiescent heart cells. The corresponding intramitochondrial free Ca2+ is in a range above values needed to regulate the activity of Ca2+-dependent enzymes of the citric acid cycle in heart. The physiological calcium content of the sarcoplasmic reticulum in heart cells is estimated to be about 2.5 nmol/mg of cell dry weight, which is at least 5-fold greater than the amount of calcium release calculated to cause maximum tension development of cardiac muscle.  相似文献   

3.
Activation of the cardiac ryanodine receptor (RyR2) by elevating cytosolic Ca2+ is a central step in the process of Ca2+-induced Ca2+ release, but the molecular basis of RyR2 activation by cytosolic Ca2+ is poorly defined. It has been proposed recently that the putative Ca2+ binding domain encompassing a pair of EF-hand motifs (EF1 and EF2) in the skeletal muscle ryanodine receptor (RyR1) functions as a Ca2+ sensor that regulates the gating of RyR1. Although the role of the EF-hand domain in RyR1 function has been studied extensively, little is known about the functional significance of the corresponding EF-hand domain in RyR2. Here we investigate the effect of mutations in the EF-hand motifs on the Ca2+ activation of RyR2. We found that mutations in the EF-hand motifs or deletion of the entire EF-hand domain did not affect the Ca2+-dependent activation of [3H]ryanodine binding or the cytosolic Ca2+ activation of RyR2. On the other hand, deletion of the EF-hand domain markedly suppressed the luminal Ca2+ activation of RyR2 and spontaneous Ca2+ release in HEK293 cells during store Ca2+ overload or store overload-induced Ca2+ release (SOICR). Furthermore, mutations in the EF2 motif, but not EF1 motif, of RyR2 raised the threshold for SOICR termination, whereas deletion of the EF-hand domain of RyR2 increased both the activation and termination thresholds for SOICR. These results indicate that, although the EF-hand domain is not required for RyR2 activation by cytosolic Ca2+, it plays an important role in luminal Ca2+ activation and SOICR.  相似文献   

4.
Cardiac alternans, defined beat-to-beat alternations in contraction, action potential (AP) morphology or cytosolic Ca transient (CaT) amplitude, is a high risk indicator for cardiac arrhythmias. We investigated mechanisms of cardiac alternans in single rabbit ventricular myocytes. CaTs were monitored simultaneously with membrane currents or APs recorded with the patch clamp technique. A strong correlation between beat-to-beat alternations of AP morphology and CaT alternans was observed. During CaT alternans application of voltage clamp protocols in form of pre-recorded APs revealed a prominent Ca2+-dependent membrane current consisting of a large outward component coinciding with AP phases 1 and 2, followed by an inward current during AP repolarization. Approximately 85% of the initial outward current was blocked by Cl? channel blocker DIDS or lowering external Cl? concentration identifying it as a Ca2+-activated Cl? current (ICaCC). The data suggest that ICaCC plays a critical role in shaping beat-to-beat alternations in AP morphology during alternans.  相似文献   

5.
Lymphatic vessels comprise a multifunctional transport system that maintains fluid homeostasis, delivers lipids to the central circulation, and acts as a surveillance system for potentially harmful antigens, optimizing mucosal immunity and adaptive immune responses1. Lymph is formed from interstitial fluid that enters blind-ended initial lymphatics, and then is transported against a pressure gradient in larger collecting lymphatics. Each collecting lymphatic is made up of a series of segments called lymphangions, separated by bicuspid valves that prevent backflow. Each lymphangion possesses a contractile cycle that propels lymph against a pressure gradient toward the central circulation2. This phasic contractile pattern is analogous to the cardiac cycle, with systolic and diastolic phases, and with a lower contraction frequency4. In addition, lymphatic smooth muscle generates tone and displays myogenic constriction and dilation in response to increases and decreases in luminal pressure, respectively5. A hybrid of molecular mechanisms that support both the phasic and tonic contractility of lymphatics are thus proposed.Contraction of smooth muscle is generally regulated by the cytosolic Ca2+ concentration ([Ca2+]i) plus sensitivity to Ca2+, of the contractile elements in response to changes in the environment surrounding the cell6. [Ca2+]i is determined by the combination of the movement of Ca2+ through plasma membrane ligand or voltage gated Ca2+ channels and the release and uptake of Ca2+ from internal stores. Cytosolic Ca2+ binds to calmodulin and activates enzymes such as myosin light chain (MLC) kinase (MLCK), which in turn phosphorylates MLC leading to actin-myosin-mediated contraction8. However, the sensitivity of this pathway to Ca2+ can be regulated by the MLC phosphatase (MLCP)9. MLCP activity is regulated by Rho kinase (ROCK) and the myosin phosphatase inhibitor protein CPI-17.Here, we present a method to evaluate changes in [Ca2+]i over time in isolated, perfused lymphatics in order to study Ca2+-dependent and Ca2+-sensitizing mechanisms of lymphatic smooth muscle contraction. Using isolated rat mesenteric collecting lymphatics we studied stretch-induced changes in [Ca2+]i and contractile activity. The isolated lymphatic model offers the advantage that pressure, flow, and the chemical composition of the bath solution can be tightly controlled. [Ca2+]i was determined by loading lymphatics with the ratiometric, Ca2+-binding dye Fura-2. These studies will provide a new approach to the broader problem of studying the different molecular mechanisms that regulate phasic contractions versus tonic constriction in lymphatic smooth muscle.  相似文献   

6.
《Cell reports》2020,30(10):3466-3477.e4
  1. Download : Download high-res image (158KB)
  2. Download : Download full-size image
  相似文献   

7.
We investigated changes in cytoplasmic Ca2+ concentration ([Ca2+]i) and in left ventricular contractility during sustained ischemia and reperfusion in isolated beating rat hearts. Hearts from male Sprague-Dawley rats were perfused retrogradely and were loaded with 4 M fura-2. Low-flow global ischemia was induced by reducing perfusion flow to 10% and by electric pacing. The hearts were exposed to ischemia for 10 min or 30 min and then reperfused. [Ca2+]i was measured by monitoring the ratio of 500 nm fluorescence excited at 340 and 380 nm while simultaneously measuring left ventricular pressure (LVP). To determine diastolic [Ca2+]i, background autofluorescence was subtracted. LVP rapidly decreased from 82.3 ± 8.2 to 17.1 ± 2.9 mmHg , whereas the amplitude of the Ca2+ transient did not change significantly during the first 1 min of ischemia. After 10 min of ischemia, the amplitude decreased to 60.8 ± 10.6% (p < 0.05) and diastolic [Ca2+]i increased by 26.3 ± 2.9% (p < 0.001) compared with the pre-ischemic value (n = 8). When the hearts were reperfused after 10 min of ischemia, the amplitude of the Ca2+ transient and LVP recovered to 79.0 ± 7.2% and 73.2 ± 7.5 mmHg, respectively. Whereas diastolic [Ca2+]i decreased to the pre-ischemic value. In the hearts exposed to 30 min of ischemia (n = 10), diastolic [Ca2+]i increased even further by 32.7 ± 5.3% at the end of ischemia and continued increasing during the 10 min of reperfusion by 42.6 ± 15.6%. Six of 10 hearts developed ventricular fibrillation (VF) and intracellular Ca2+ overload after reperfusion. Recovery of LVP after reperfusion was significantly smaller in the hearts exposed to 30 min of ischemia than in the hearts exposed to 10 min of ischemia (58.9 ± 11.7 vs. 97.2 ± 3.0% of pre-ischemic value, p < 0.05). Diastolic [Ca2+]i also increased under hypoxic conditions (N2 bubbling) in this model. These results suggest that increases in diastolic [Ca2+]i might play an important role in myocardial contractile dysfunction and viability in ischemia-reperfusion injury.  相似文献   

8.
Summary Recently Plieth et al. [Protoplasma (1997) 198: 107–124; 199: 223] gave a quantitative picture of the Ca2+ and H+ buffers in green algae which we would like to comment. In that paper a mechanistic model was derived which describes the relationship between cytosolic Ca2+ and H+ assuming that Ca2+ and H+ interact with the same binding site of a Ca2+-H+-exchange buffer. But the increase of the cytosolic free Ca2+ concentration observed upon acidification can alternatively be described by a co-operative (n=2) protonation of a Ca2+/H+-binding buffer pointing to an allosteric mechanism of Ca2+ liberation. Furthermore we present evidences that the cytosolic buffer capacities for H+ (90 mM/pH) and Ca2+ (20 mM/pCa) given for Eremosphaera viridis were overestimated by a factor of three and three orders of magnitude, respectively.Abbreviations [Ca2+]c free cytosolic - Ca2+ concentration  相似文献   

9.
We have measured Cai at rest and upon light stimulation in the photoreceptors of the honeybee drone microfluorometrically with the fluorescent Ca2+ indicator dyes fura-2, fluo-3 and Ca-green 5N.In darkness, Cai was 90 nM after 5 min of dark adaptation. A saturating light step caused Cai to rise in the bulk cytoplasm to 750 nM within 1 s. Our measurements with the low affinity dye Ca-green 5N showed that bright 1-s light flashes cause a rapid increase in Cai which was graded with stimulus intensity. Ca-green 5N fluorescence reached a peak in about 200 ms, and then decayed to a slightly lower sustained plateau. The fluorescence signal peaked, when the receptor potential was repolarizing from its peak to the plateau. This observation is in agreement with the proposal that the peak-to-plateau transition of the receptor potential is caused by the rise in Cai From our Fluo-3 measurements it appears that the latency of the Ca2+ increase is by 3–4 ms longer than the latency of the receptor potential elicited by bright 100-ms light flashes. This result provides no support for the proposal that Ca2+ mediates the opening of those membrane channels responsible for the upstroke of the receptor potential.Abbreviations ER endoplasmic reticulum - IP3 Inositol 1,4,5-trisphosphate - SMC submicrovillar cisternae  相似文献   

10.
Astroglial excitability operates through increases in Ca2+cyt (cytosolic Ca2+), which can lead to glutamatergic gliotransmission. In parallel fluctuations in astrocytic Na+cyt (cytosolic Na+) control metabolic neuronal-glial signalling, most notably through stimulation of lactate production, which on release from astrocytes can be taken up and utilized by nearby neurons, a process referred to as lactate shuttle. Both gliotransmission and lactate shuttle play a role in modulation of synaptic transmission and plasticity. Consequently, we studied the role of the PMCA (plasma membrane Ca2+-ATPase), NCX (plasma membrane Na+/Ca2+ exchanger) and NKA (Na+/K+-ATPase) in complex and coordinated regulation of Ca2+cyt and Na+cyt in astrocytes at rest and upon mechanical stimulation. Our data support the notion that NKA and PMCA are the major Na+ and Ca2+ extruders in resting astrocytes. Surprisingly, the blockade of NKA or PMCA appeared less important during times of Ca2+ and Na+ cytosolic loads caused by mechanical stimulation. Unexpectedly, NCX in reverse mode appeared as a major contributor to overall Ca2+ and Na+ homoeostasis in astrocytes both at rest and when these glial cells were mechanically stimulated. In addition, NCX facilitated mechanically induced Ca2+-dependent exocytotic release of glutamate from astrocytes. These findings help better understanding of astrocyte-neuron bidirectional signalling at the tripartite synapse and/or microvasculature. We propose that NCX operating in reverse mode could be involved in fast and spatially localized Ca2+-dependent gliotransmission, that would operate in parallel to a slower and more widely distributed gliotransmission pathway that requires metabotropically controlled Ca2+ release from the ER (endoplasmic reticulum).  相似文献   

11.
The effect of various inhibitors of DNA topoisomerase II, which has been shown to induce apoptotic cell death, on Ca2+ transport in isolated rat liver nuclei was investigated. Ca2+ uptake and release were determined with a Ca2+ electrode. The presence of aurintricarboxylic acid (ATA; 10-6 to 10-4 M), etoposide (10-4 M), genistein (10-5 and 10-4 M) or amsacrine (10-4 M) in the reaction mixture caused a significant increase in Ca2+ release from the nuclei. Also, these compounds (10-4 M) significantly inhibited Ca2+ uptake by the nuclei. However, the presence of ATA (10-5 and 10-4 M) in the enzyme reaction mixture did not significantly inhibit Ca2+-ATPase activity, which is involved in the nuclear Ca2+ uptake, in the liver nuclei, while etoposide (10-4 M), genistein (10-4 M) and amsacrine (10-4 M) appreciably decreased the enzyme activity. Meanwhile, addition of Ca2+ clearly activated DNA fragmentation in the liver nuclei. The Ca2+ activated DNA fragmentation was significantly prevented by the presence of etoposide, genistein and amsacrine with the concentrations of 10-5 and 10-4 M in the reaction mixture, although ATA (10-5 and 10-4 M) had no effect. The present study demonstrates that some apoptosis inducible compounds used can influence on Ca2+ transport system in isolated rat liver nuclei, suggesting a decrease of nuclear Ca2+ level involved in nuclear functions. (Mol Cell Biochem 166: 183-189, 1997)  相似文献   

12.
Rat liver mitochondria are able to temporarily lower the steady-state concentration of external Ca2+ after having accumulated a pulse of added Ca2+. This has been attributed to inhibition of a putative -modulated efflux pathway [Bernardi, P. (1984)Biochim. Biophys. Acta 766, 277–282]. On the other hand, the rebounding could be due to stimulation of the uniporter by Ca2+ [Kröner, H. (1987)Biol. Chem. Hoppe-Seyler 369, 149–155]. By measuring unidirectional Ca2+ fluxes, it was found that the uniporter was stimulated during the rebounding peak both under Bernardi's and Kröner's conditions, while no effects on the efflux could be demonstrated. The rate of unidirectional efflux of Ca2+ was not affected by inhibition of the uniporter. It appears likely that the rebounding is due to stimulation of the uniporter rather than inhibition of efflux.  相似文献   

13.
Cytosolic free Ca2+ level was estimated in rat hepatocytes using the method described by Murphy et al. (1980). For control hepatocytes, a value of 0.20 +/- 0.06 mumol/l was obtained. Insulin increased cytosolic free Ca2+ level to 0.63 +2- 0.24 mumol/l. No net fluxes of Ca2+ across the plasma membrane were observed during incubation of hepatocytes with insulin. Mitochondria were shown to be the main Ca2+ buffering system. FCCP released 77-88% of releasable calcium from the cell. Dibucaine increased cytosolic free Ca2+ level to 1.16 mumol/l.  相似文献   

14.
Postnatal maturation of the rat heart is characterized by major changes in the mechanism of excitation-contraction (E-C) coupling. In the neonate, the t tubules and sarcoplasmic reticulum (SR) are not fully developed yet. Consequently, Ca(2+)-induced Ca(2+) release (CICR) does not play a central role in E-C coupling. In the neonate, most of the Ca(2+) that triggers contraction comes through the sarcolemma. In this work, we defined the contribution of the sarcolemmal Ca(2+) entry and the Ca(2+) released from the SR to the Ca(2+) transient during the first 3 wk of postnatal development. To this end, intracellular Ca(2+) transients were measured in whole hearts from neonate rats by using the pulsed local field fluorescence technique. To estimate the contribution of each Ca(2+) flux to the global intracellular Ca(2+) transient, different pharmacological agents were used. Ryanodine was applied to evaluate ryanodine receptor-mediated Ca(2+) release from the SR, nifedipine for dihydropyridine-sensitive L-type Ca(2+) current, Ni(2+) for the current resulting from the reverse-mode Na(+)/Ca(2+) exchange, and mibefradil for the T-type Ca(2+) current. Our results showed that the relative contribution of each Ca(2+) flux changes considerably during the first 3 wk of postnatal development. Early after birth (1-5 days), the sarcolemmal Ca(2+) flux predominates, whereas at 3 wk of age, CICR from the SR is the most important. This transition may reflect the progressive development of the t tube-SR units characteristic of mature myocytes. We have hence directly defined in the whole beating heart the developmental changes of E-C coupling previously evaluated in single (acutely isolated or cultured) cells and multicellular preparations.  相似文献   

15.
Multiple inositol polyphosphate phosphatase (MIPP) is an enzyme that, in vitro, has the interesting property of degrading higher inositol polyphosphates to the Ca2+ second messenger, inositol 1,4,5-trisphosphate (Ins(1,4,5)P3), independently of inositol lipid breakdown. We hypothesized that a truncated cytosolic form of the largely endoplasmic reticulum-confined MIPP (cyt-MIPP) could represent an important new tool in the investigation of Ins(1,4,5)P3-dependent intracellular Ca2+ homeostasis. To optimize our ability to judge the impact of cyt-MIPP on intracellular Ca2+ concentration ([Ca2+]i) we chose a poorly responsive beta-cell line (HIT M2.2.2) with an abnormally low [Ca2+]i. Our results show for the first time in an intact mammalian cell that cyt-MIPP expression leads to a significant enhancement of Ins(1,4,5)P3 concentration. This is achieved without a significant interference from other cyt-MIPP-derived inositol phosphates. Furthermore, the low basal [Ca2+]i of these cells was raised to normal levels (35 to 115 nm) when they expressed cyt-MIPP. Noteworthy is that the normal feeble glucose-induced Ca2+ response of HIT M2.2.2 cells was enhanced dramatically by mechanisms related to this increase in basal [Ca2+]i. These data support the use of cyt-MIPP as an important tool in investigating Ins(1,4,5)P3-dependent Ca2+ homeostasis and suggest a close link between Ins(1,4,5)P3 concentration and basal [Ca2+]i, the latter being an important modulator of Ca2+ signaling in the pancreatic beta-cell.  相似文献   

16.
Both intracellular calcium and transmembrane voltage cause inactivation, or spontaneous closure, of L-type (CaV1.2) calcium channels. Here we show that long-lasting elevations of intracellular calcium to the concentrations that are expected to be near an open channel (>/=100 microM) completely and reversibly blocked calcium current through L-type channels. Although charge movements associated with the opening (ON) motion of the channel's voltage sensor were not altered by high calcium, the closing (OFF) transition was impeded. In two-pulse experiments, the blockade of calcium current and the reduction of gating charge movements available for the second pulse developed in parallel during calcium load. The effect depended steeply on voltage and occurred only after a third of the total gating charge had moved. Based on that, we conclude that the calcium binding site is located either in the channel's central cavity behind the voltage-dependent gate, or it is formed de novo during depolarization through voltage-dependent rearrangements just preceding the opening of the gate. The reduction of the OFF charge was due to the negative shift in the voltage dependence of charge movement, as previously observed for voltage-dependent inactivation. Elevation of intracellular calcium concentration from approximately 0.1 to 100-300 microM sped up the conversion of the gating charge into the negatively distributed mode 10-100-fold. Since the "IQ-AA" mutant with disabled calcium/calmodulin regulation of inactivation was affected by intracellular calcium similarly to the wild-type, calcium/calmodulin binding to the "IQ" motif apparently is not involved in the observed changes of voltage-dependent gating. Although calcium influx through the wild-type open channels does not cause a detectable negative shift in the voltage dependence of their charge movement, the shift was readily observable in the Delta1733 carboxyl terminus deletion mutant, which produces fewer nonconducting channels. We propose that the opening movement of the voltage sensor exposes a novel calcium binding site that mediates inactivation.  相似文献   

17.
The beta-adrenergic receptor/cyclic AMP/protein kinase A (PKA) signalling pathway regulates heart rate and contractility. Here, we identified a supramolecular complex consisting of the sarcoplasmic reticulum Ca(2+)-ATPase (SERCA2), its negative regulator phospholamban (PLN), the A-kinase anchoring protein AKAP18delta and PKA. We show that AKAP18delta acts as a scaffold that coordinates PKA phosphorylation of PLN and the adrenergic effect on Ca(2+) re-uptake. Inhibition of the compartmentalization of this cAMP signalling complex by specific molecular disruptors interferes with the phosphorylation of PLN. This prevents the subsequent release of PLN from SERCA2, thereby affecting the Ca(2+) re-uptake into the sarcoplasmic reticulum induced by adrenergic stimuli.  相似文献   

18.
19.
Cannell and Allen (1984. Biophys. J. 45:913–925) introduced the use of a multi-compartment model to estimate the time course of spread of calcium ions (Ca2+) within a half sarcomere of a frog skeletal muscle fiber activated by an action potential. Under the assumption that the sites of sarcoplasmic reticulum (SR) Ca2+ release are located radially around each myofibril at the Z line, their model calculated the spread of released Ca2+ both along and into the half sarcomere. During diffusion, Ca2+ was assumed to react with metal-binding sites on parvalbumin (a diffusible Ca2+- and Mg2+-binding protein) as well as with fixed sites on troponin. We have developed a similar model, but with several modifications that reflect current knowledge of the myoplasmic environment and SR Ca2+ release. We use a myoplasmic diffusion constant for free Ca2+ that is twofold smaller and an SR Ca2+ release function in response to an action potential that is threefold briefer than used previously. Additionally, our model includes the effects of Ca2+ and Mg2+ binding by adenosine 5′-triphosphate (ATP) and the diffusion of Ca2+-bound ATP (CaATP). Under the assumption that the total myoplasmic concentration of ATP is 8 mM and that the amplitude of SR Ca2+ release is sufficient to drive the peak change in free [Ca2+] (Δ[Ca2+]) to 18 μM (the approximate spatially averaged value that is observed experimentally), our model calculates that (a) the spatially averaged peak increase in [CaATP] is 64 μM; (b) the peak saturation of troponin with Ca2+ is high along the entire thin filament; and (c) the half-width of Δ[Ca2+] is consistent with that observed experimentally. Without ATP, the calculated half-width of spatially averaged Δ[Ca2+] is abnormally brief, and troponin saturation away from the release sites is markedly reduced. We conclude that Ca2+ binding by ATP and diffusion of CaATP make important contributions to the determination of the amplitude and the time course of Δ[Ca2+].  相似文献   

20.
Recent X-ray crystal structures and solution NMR spectroscopy data for calcium- and integrin-binding protein 1 (CIB1) have all revealed a common EF-hand domain structure for the protein. However, the orientation of the two protein domains, the oligomerization state, and the conformations of the N- and C-terminal extensions differ among the structures. In this study, we examine whether the binding of glutathione or auxiliary Ca2+ ions as observed in the crystal structures, occur in solution, and whether these interactions can influence the structure or dimerization of CIB1. In addition, we test the potential phosphatase activity of CIB1, which was hypothesized based on the glutathione binding site geometry observed in one of the crystal structures of the protein. Biophysical and biochemical experiments failed to detect glutathione binding, protein dimerization, or phosphatase activity for CIB1 under several solution conditions. However, our data identify low affinity (Kd, 10−2M) Ca2+ binding events that influence the structures of the N- and C-terminal extensions of CIB1 under high (300 mM) Ca2+ crystallization conditions. In addition to providing a rationale for differences amongst the various solution and crystal structures of CIB1, our results show that the impact of low affinity Ca2+ binding events should be considered when analyzing and interpreting protein crystallographic structures determined in the presence of very high Ca2+ concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号