首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Controversy exists regarding the functional role of N-linked oligosaccharides in the hormone erythropoietin. We have now examined the role of carbohydrates in the hormone's action using quantitative enzymatic deglycosylation. N-deglycosylated hormone exhibited full biological activity and potency in vitro. Denaturing with 6M urea and renaturing revealed that both the native and N-deglycosylated forms recovered full activity as long as the intrachain disulfide bonds remained intact. Therefore, receptor recognition, subsequent biological activity and maintenance of tertiary structure are intrinsic properties of the polypeptide chain of erythropoietin.  相似文献   

2.
Each somatic cell of the human body contains 46 chromosomes consisting of two sets of 23; one inherited from each parent. These chromosomes can be categorised as 22 pairs of autosomes and two sex chromosomes; females are XX and males are XY. Similarly, at the molecular level, two copies of each autosomal gene exist; one copy derived from each parent. Until the mid-1980s, it was assumed that each copy of an autosome or gene was functionally equivalent, irrespective of which parent it was derived from. However, it is now clear from classical experiments in mice and from examples of human genetic disease that this is not the case. The functional activity of some genes or chromosomal regions is unequal, and dependent on whether they have been inherited maternally or paternally. This phenomenon is termed 'genomic imprinting' and the activity or silence of an imprinted gene or chromosomal region is set during gametogenesis. Genomic imprinting involving the autosomes appears to be restricted to eutherian mammals, and has most likely evolved as a result of the conflicting concerns of the parental genomes in the growth and development of their offspring. When the normal pattern of imprinting is disrupted, the phenotypes observed in humans and mice are generally associated with abnormal fetal growth, development and behaviour, illustrating its importance for a normal intrauterine environment. The characteristics of imprinted genes, their regulation and the phenotypes associated with altered imprinting are discussed.  相似文献   

3.
The assembly of the insulin hexamer brings the six B13 glutamate side-chains at the centre into close proximity. Their mutual repulsion is unfavourable and zinc co-ordination to B10 histidine is necessary to stabilize the well known zinc-containing hexamers. Since B13 is always a carboxylic acid in all known sequences of hexamer forming insulins, it is likely to be important in the hormone's biology. The mutation of B13 Glu-->Gln leads to a stable zinc-free hexamer with somewhat reduced potency. The structures of the zinc-free B13 Gln hexamer and the 2Zn B13 insulin hexamer have been determined by X-ray analysis and refined with 2.5 A and 2.0 A diffraction data, respectively. Comparisons show that in 2Zn B13 Gln insulin, the hexamer structure (T6) is very like that of the native hormone. On the other hand, the zinc-free hexamer assumes a quaternary structure (T3/R3) seen in the native 4Zn insulin hexamer, and normally associated only with high chloride ion concentrations in the medium. The crystal structures show the B13 Gln side-chains only contact water in contrast to the B13 glutamate in 2Zn insulin. The solvation of the B13 Gln may be associated with this residue favouring helix at B1 to B8. The low potency of the B13 Gln insulin also suggests the residue influences the hormone's conformation.  相似文献   

4.
The glycoprotein hormone erythropoietin (Ep), the primary regulator of erythropoiesis, is synthesized by the kidney and secreted as the mature protein with three N-linked and one O-linked oligosaccharide chains. To investigate the role(s) of each carbohydrate moiety in the biosynthesis and function of Ep, we have used oligonucleotide-directed mutagenesis of a cDNA for human Ep to alter the amino acids at each of the carbohydrate attachment sites. Each mutated cDNA construct was expressed in stably transfected sublines of a kidney cell line, baby hamster kidney. We show, by preventing attachment of N-linked carbohydrate at asparagines 38 or 83, or preventing O-linked glycosylation at serine 126, that glycosylation of each of these specific sites is critical for proper biosynthesis and secretion of Ep. Fractionation of cellular extracts demonstrated that the mutant proteins lacking glycosylation at each of these three sites, (38, 83, and 126) were associated mainly with membrane components or were degraded rapidly. Less than 10% of these three mutant proteins were processed properly and secreted from the cells. The Ep protein lacking N-linked glycosylation at asparagine 24 is synthesized and secreted as efficiently as native Ep. The carbohydrates at positions 24 and 38 may be involved in the biological activity of Ep, since the absence of either of the oligosaccharide side chains at these positions reduced the hormone's biological activity.  相似文献   

5.
The effect of lesiens in the parts of medial hyperstriatum ventrale (MHV) or lateral neostriatum (LN) on impriting behavior was examined. Bilateral lesions in MHV severely impaired imprinting behavior in ducklings, but lesions in LN did not impair such behavior. On the other hand, the birds lesioned in MHV still had brightness discriminative learning ability with perfect performance of visuomotor coordination. The neurotransmitter candidates controlling imprinting behavior in MHV were investigated using blockers of neurotransmission. 6-Hydroxydopamine (6-OHDA) and haloperidole injected into MHV did not have specific effect on imprinting behavior although catecholamine contents in MHV was clearly decreased and locomotor activity was strongly suppressed. Atropine injection into MHV caused significant impairment of following behavior, but locomotor activity was not affected. The injection of atropine into other region did not have any effect. -Bungarotoxin showed no effect on either imprinting or locomotor activity. Kainic acid injection into MHV caused the decrease of glutamate content in the MHV region and it reached maximum at 24 hours after injection. However, imprinting behavior was already impaired at 3 hours after injection, but at 24 hours it had been recovered. A same effect was observed by glutamate injection. The effect of protein synthesis inhibitor on the aquisition process of imprinting was investigated. The aquisition of imprinting was significantly impaired by cycloheximide (CHX) injection into MHV within 2 hours after the first exposure to the imprinting stimulus. When CHX was given 24 hours after, imprinting behavior was not affected.  相似文献   

6.
Lloyd V 《Genetica》2000,109(1-2):35-44
Genetic imprinting is a form of epigenetic silencing. But with a twist. The twist is that while imprinting results in the silencing of genes, chromosome regions or entire chromosome sets, this silencing occurs only after transmission of the imprinted region by one sex of parent. Thus genetic imprinting reflects intertwined levels of epigenetic and developmental modulation of gene expression. Imprinting has been well documented and studied in Drosophila, however, these studies have remained largely unknown due to nothing more significant than differences in terminology. Imprinting in Drosophilais invariably associated with heterochromatin or regions with unusual chromatin structure. The imprint appears to spread from imprinted centers that reside within heterochromatin and these are, seemingly, the only regions that are normally imprinted in Drosophila. This is significant as it implies that while imprinting occurs in Drosophila, it is generally without phenotypic consequence. Hence the evolution of imprinting, at least in Drosophila, is unlikely to be driven by the function of specific imprinted genes. Thus, the study of imprinting in Drosophilahas the potential to illuminate the mechanism and biological function of imprinting, and challenge models based solely on imprinting of mammalian genes. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
Primary exposure of Tetrahymena cells to insulin gave rise to hormonal (insulin) imprinting in the offspring generations, as judged from the increase in binding upon reexposure to insulin. Vanadate mimicked the action of insulin, inasmuch as it also induced imprinting for insulin, whereas the other tyrosine kinase activator tested, namely H2O2, had no such effect. However, combined treatment with vanadate+H2O2 + insulin induced a more pronounced imprinting for insulin than either insulin or vanadate on their own. The tyrosine kinase inhibitor genistein, a plant flavonoid, did not change the value for insulin binding significantly relative to the control immediately after exposure, but increased it slightly in the offspring generations after 24 h at high dilution. Upon combination with insulin, 10(-4)M genistein inhibited imprinting by insulin. These experimental observations suggest that there may be a key role for tyrosine kinase activity in the mechanism (development) of imprinting.  相似文献   

8.
9.
Insulin and its A and B chain increased the quantity of intracellular PAS-positive material (glycogen) in tetrahymena, whereas the combined A+B chains decreased it. Imprinting—previous interaction—with insulin, its A and B chains in themselves and with the A+B chain increased the hormone binding capacity of tetrahymena, but the functional effect of imprinting (storage or breakdown of glycogen) showed a different tendency with insulin and A+B chain on the one hand, and A chain and B chain on the other. Since the imprinting potential of a molecule promotes the induction of receptor formation, the fact remains that both component chains of insulin were able to act as potential imprinters, although the A chain was superior to the B chain in this respect throughout, and combined treatment with the A+B chain ultimately induced the formation of a similar binding site as insulin itself.  相似文献   

10.
G Csaba  P Kovács 《Cytobios》1987,52(208):17-22
Insulin treatment induced in Tetrahymena pyriformis a positive hormonal imprinting, and in Tetrahymena thermophila a negative imprinting, resulting in increased and decreased binding capacity, respectively, at re-exposure to the hormone. The imprinting, or the information associated with it, is transferred by the nutrient medium of the insulin-treated cells to those not treated. The issue of transfer depends on the nature of the receiver taxon, leading always to a positive imprinting in Tetrahymena pyriformis, and to a negative imprinting in Tetrahymena thermophila, regardless of the nature of the 'imprinted' transmitter taxon. The findings substantiate the transferability of hormonal imprinting by the nutrient medium at the unicellular level, the key role of the postreceptorial mechanism in determining the trend of imprinting and may explain the persistence of imprinting in the progeny generations.  相似文献   

11.
12.
Glutathione peroxidase (GPx, EC 1.11.1.9) is a key enzyme involved in scavenging of reactive oxygen species in biological system. For developing an efficient GPx-like antioxidant, catalytically necessary amino acid derivatives which located near the GPx active center were prepared as functional monomers. Via predetermined imprinting with substrate glutathione (GSH), a polymer-based GPx mimic with a similar structure of catalytic center of natural GPx was developed, and it demonstrated high-catalytic efficiency and substrate specificity. The imprinting polymer (I-PEM) exhibits GPx-like activity about three times higher than that of 2-SeCD, a cyclodextrin-based GPx mimic. The detailed studies on kinetics revealed that not only the substrate binding but also positional arrangement of reacting groups contribute significantly to the catalytic efficiency of the peroxidase model.  相似文献   

13.
The biological role of genomic imprinting in adult tissue is central to the consideration of transplanting uniparental embryonic stem (ES) cell-derived tissues. We have recently shown that both maternal (parthenogenetic/gynogenetic) and paternal (androgenetic) uniparental ES cells can differentiate, both in vivo in chimeras and in vitro, into adult-repopulating hematopoietic stem and progenitor cells. This suggests that, at least in some tissues, the presence of two maternal or two paternal genomes does not interfere with stem cell function and tissue homeostasis in the adult. Here, we consider implications of the contribution of uniparental cells to hematopoiesis and to development of other organ systems, notably neural tissue for which consequences of genomic imprinting are associated with a known bias in development and behavioral disorders. Our findings so far indicate that there is little or no limit to the differentiation potential of uniparental ES cells outside the normal developmental paradigm. As a potentially donor MHC-matching source of tissue, uniparental transplants may provide not only a clinical resource but also a unique tool to investigate aspects of genomic imprinting in adults.Key words: uniparental, androgenetic, chimera, transplantation, parthenogenetic, gynogenetic, hematopoietic, neural  相似文献   

14.
15.
Hormonal (chemical) imprinting which was first observed (and named) by us in the seventies of the last century, is a general biological phenomenon which takes place when the developing receptor meets its target hormone for the first time. Under the effect of imprinting, receptors mature and reach their maximal binding capacity. It also influences the cells' hormone production and different functions depending on receptors and hormones. Hormonal imprinting is present already at the unicellular level causing the development of specific receptors and helping the easier recognition of useful or harmful surrounding molecules. The phenomenon is an important factor in the survival of the species, as the effect of imprinting is transmitted to the progeny cell generations. At the same time it possibly helps the selection of molecules which are suitable for acting as hormones in higher ranked animals. In mammals, hormonal imprinting takes place perinatally and determines the function of receptor-signal-transduction systems as well as hormone production for life. However, there are other critical imprinting periods for continuously developing cells. Excess of the target hormones or presence of foreign molecules which are able to bind to the receptors, provoke faulty imprinting in the critical periods with life-long morphological, biochemical, functional or behavioural consequences. As many receptor-bound foreign molecules are used as medical treatments and many such molecules are present around us and inside us as environmental pollutants, they--causing faulty imprinting--are able to predispose the (human) organism to cardiovascular, endocrine, metabolic and cancerous diseases. It seems likely that this effect is connected with disturbance of DNA methylation process in the critical periods of life. There are some signs of the transgenerational effect of faulty imprinting and this could be manifested in the evolution of humans by an epigenetic route.  相似文献   

16.
17.
Repeated administration of an intravenous immunoglobulin containing antibody to hepatitis B e antigen (anti-HBe) and antibody to hepatitis B core antigen (anti-HBc) but free of antibody to hepatitis B surface antigen (anti-HBs) before and after the inoculation of 10(4.9) 50% chimpanzee infective doses of hepatitis B virus (HBV) markedly prolonged the incubation period of HBV in experimentally infected chimpanzees. Similar administration of an immunoglobulin preparation containing anti-HBc but free of anti-HBe and anti-HBs or intramuscular administration of a single dose of immunoglobulin containing anti-HBe and anti-HBc 3 days before or after inoculation with HBV did not appear to modulate HBV infection. These observations suggested that anti-HBe, or an unidentified antibody associated with it, may have biological activity in the modulation of HBV replication.  相似文献   

18.
Human 11p15.5, as well as its orthologous mouse 7F4/F5, is known as the imprinting domain extending from IPL/Ipl to H19. OBPH1 and Obph1 are located beyond the presumed imprinting boundary on the IPL/Ipl side. We determined full-length cDNAs and complete genomic structures of both orthologues. We also investigated their precise imprinting and methylation status. The orthologues resembled each other in genomic structure and in the position of the 5' CpG island and were expressed ubiquitously. OBPH1 and Obph1 were predominantly expressed from the maternal allele only in placenta, with hypo- and not differentially methylated 5' CpG islands in both species. These results suggested that the imprinting domain would extend beyond the presumed imprinting boundary and that methylation of the 5' CpG island was not associated with the imprinting status in either species. It remains to be elucidated whether the gene is under the control of the KIP2/LIT1 subdomain or is regulated by a specific mechanism. Analysis of the precise genomic sequence around the region should help resolve this question.  相似文献   

19.
We hypothesized that the peptidoglycan component of B. anthracis may play a critical role in morbidity and mortality associated with inhalation anthrax. To explore this issue, we purified the peptidoglycan component of the bacterial cell wall and studied the response of human peripheral blood cells. The purified B. anthracis peptidoglycan was free of non-covalently bound protein but contained a complex set of amino acids probably arising from the stem peptide. The peptidoglycan contained a polysaccharide that was removed by mild acid treatment, and the biological activity remained with the peptidoglycan and not the polysaccharide. The biological activity of the peptidoglycan was sensitive to lysozyme but not other hydrolytic enzymes, showing that the activity resides in the peptidoglycan component and not bacterial DNA, RNA or protein. B. anthracis peptidoglycan stimulated monocytes to produce primarily TNFα; neutrophils and lymphocytes did not respond. Peptidoglycan stimulated monocyte p38 mitogen-activated protein kinase and p38 activity was required for TNFα production by the cells. We conclude that peptidoglycan in B. anthracis is biologically active, that it stimulates a proinflammatory response in monocytes, and uses the p38 kinase signal transduction pathway to do so. Given the high bacterial burden in pulmonary anthrax, these findings suggest that the inflammatory events associated with peptidoglycan may play an important role in anthrax pathogenesis.  相似文献   

20.
Previous studies (Beechey, 2000) have shown that mouse proximal chromosome (Chr) 6 has two imprinting regions. An early embryonic lethality is associated with two maternal copies of the more proximal imprinting region, while mice with two maternal copies of the sub-proximal imprinting region are growth retarded at birth, the weight reduction remaining similar to adulthood. No detectable postnatal imprinting phenotype was seen in these earlier studies with two paternal copies of either region. The sub-proximal imprinting region locates distal to the T77H reciprocal translocation breakpoint in G-band 6A3.2 and results reported here show that it does not extend beyond the breakpoint of the more distal T6Ad translocation in 6C2. It has been confirmed that the postnatal growth retardation observed with two maternal copies of the sub-proximal region is established in utero, although placental size was normal. A new finding is that 16.5-18.5-dpc embryos, with two paternal copies of the sub-proximal imprinting region, were larger than their normal sibs, although placental size was normal. As no postnatal growth differences have been observed in these mice, the fetal overgrowth must normalize by birth. The imprinted genes Peg1/Mest, Copg2, Copg2as and Mit1/Lb9 map to the sub-proximal imprinting region and are thus candidates for the observed imprinting phenotypes. Another candidate is the recently reported imprinted gene Nap1l5. Expression studies of Nap1l5 in mice with two maternal or two paternal copies of different regions of Chr 6 have demonstrated that the gene locates within the sub-proximal imprinting region. FISH has mapped Nap1l5 to G-band 6C1, within the sub-proximal imprinting region but several G-bands distal to the Peg1/Mest cluster. This location, and the 30-Mb separation of these loci on the sequence map, makes it probable that Nap1l5 defines a new imprinting domain within the currently defined sub-proximal imprinting region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号