首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The effect of conjugated dihydroxy and trihydroxy bile salts on electrolyte transport across isolated rabbit jejunal mucosa was studied. Both taurochenodeoxycholic acid and taurocholic acid increased the short-circuit current (Isc) in bicarbonate-Ringer solution but not in a bicarbonate-free, chloride-free solution. Taurochenodeoxycholic acid was significantly more effective than taurocholic acid in increasing Isc. The presence of theophylline prevented the taurochenodeoxycholic acid- and taurocholic acid-induced increase in Isc. Transmural ion fluxes across jejunal mucosa demonstrated that 2 mM taurochenodeoxycholic acid decreased net Na+ absorption, increased net Cl- secretion and increased the residual flux (which probably represents HCO3- secretion). These studies support the hypothesis that cyclic AMP may be a mediator of intestinal electrolyte secretion.  相似文献   

2.
The effects of the serotonin analogue, tryptamine, on the active transepithelial transport of Na+ and Cl in the in vitro bullfrog cornea were studied. Tryptamine, 1 mM, inhibited both the short-circuit current (Isc) and potential difference (PD) of corneas transporting either Na+ alone or both Na+ and Cl. The electrical resistance, R, increased in all cases. Both unidirectional Na+ and Cl fluxes were decreased by tryptamine and these changes accounted for the inhibitory effects on the Isc. The effects of tryptamine were considered along with with those of 2 mM theophylline and 0.1 mM ouabain. Tryptamine inhibited the Isc and both undirectional Cl fluxes which were previously stimulated by theophylline. Theophyline addition, after tryptamine preincubation, increased the Cl undirectional fluxes but did not restore the inhibited Isc. The inhibitory effects of tryptamine on active Na+ and Cl transport were different from those of ouabain. While both drugs inhibited the forward Na+ and Cl fluxes, their backfluxes decreased with tryptamine and increased with ouabain. The addition to the bathing solution of tryptamine after ouabain preincubation reduced the ouabain-increased backward Cl flux and further increased the electrical resistance. These results are analyzed in terms of an electrical model from which it appears that tryptamine's mechanism of action was to decrease cellular permeability to the transepithelial movement of Na+ and Cl.  相似文献   

3.
Summary Proximal, stripped segments of small intestine from the urodeleAmphiuma were short-circuited in media containing Na+, Cl and HCO 3 . Under these conditions there was a large net absorption of Cl, a small net absorption of Na+ and a residual flux (J Net R ) consistent with HCO 3 secretion. Net Cl absorption correlated with the short-circuit current (I sc); net Na+ absorption correlated negatively withJ Net R . Acetazolamide eliminated theI sc, lowered Cl absorption by 50%, and reduced net Na+ absorption without alteringJ Net R . Benzolamide inhibited theI sc without alteringJ Net R . Benzolamide inhibited theI sc more rapidly when applied on the mucosal surface. Replacement of Na+ or HCO 3 (and CO2) in the media eliminated theI sc, net Cl absorption and the residual flux. Likewise, inclusion of the stilbene SITS in the serosal media eliminated theI sc, net Cl absorption and the residual flux. The cytoplasmic activity of Cl (a ci a ) was determined with single and double-barreled microelectrodes. Thea ci a of villus absorptive cells in normal media was 21.0mm and in excess of that expected on the basis of electrochemical equilibrium of Cl at the mucosal membrane. Active Cl accumulation was also observed in the presence of acetazolamide but was eliminated upon replacement of media Na+ with choline. The mucosal membrane potential was depolarized upon replacement of media Na+. It is concluded that Cl is actively absorbed into intestinal cells ofAmphiuma by an electrogenic process located in the mucosal membrane. Depending on the level of intracellular HCO 3 , accumulated Cl may diffuse passively back into the mucosal media or undergo exchange with bath HCO 3 at the serosal membrane.  相似文献   

4.
In the present work the coupling under short-circuited conditions between the net Na+-influx across isolated frog skin and the transepithelial transport of water was examined i.e., the short-circuit current (I sc ) and the transepithelial water movement (TEWM) were measured simultaneously. It has been shown repeatedly that the I sc across isolated frog skin is equal to the net transepithelial Na+ transport. Furthermore the coupling between transepithelial uptake of NaCl under open-circuit conditions and TEWM was also measured. The addition of antidiuretic hormone (AVT) to skins incubated under short-circuited conditions resulted in an increase in the I sc and TEWM. Under control conditions I sc was 9.14 ± 2.43 and in the presence of AVT 45.9 ± 7.3 neq cm−2 min−1 (n= 9) and TEWM changed from 12.45 ± 4.46 to 132.8 ± 15.8 nL cm−2 min−1. The addition of the Na+ channel blocking agent amiloride resulted in a reduction both in I sc and TEWM, and a linear correlation between I sc and TEWM was found. The correlation corresponds to that 160 ± 15 (n= 7) molecules of water follow each Na+ across the skin. In another series of experiments it was found that there was a linear correlation between I sc and the increase in apical osmolarity needed to stop the TEWM. The data presented indicate that the observed coupling between the net transepithelial Na+ transport and TEWM is caused by local osmosis. Received: 16 October 1996/Revised: 6 March 1997  相似文献   

5.
Summary Na and Cl fluxes and short-circuit current (I sc) in rabbit ileum have been studied as a function of ionic concentrations in HCO3-free solutions. Both net Na flux (J net Na ) andI sc show similar saturation functions of [Na] at fixed [Cl]. They show no significant difference between zero and 112mm Na but at 140mm NaI sc is significantly greater than theJ net Na . Net Cl transport, secretion, is observed only at 140mm Na and is approximately equivalent to the difference between theI sc andJ net Na . The transcellular mucosa-to-serosa Na fluxes measured at 140 and 70mm Na do not differ significantly from the correspondingI sc. The net Cl flux varies with [Cl] at fixed [Na] whileI sc is virtually not affected by [Cl]. These results suggest that the absorptive Na transport process is electrogenic and responsible for theI sc and that the secretory fluxes of Na and Cl are coupled, require high [Na], vary with [Cl], and do not contribute toI sc. K-free solution abolishes theI sc after a prolonged lag. Finally, the effect of a low resistance shunt pathway on active Na absorption is examined with a four-compartment model.Deceased (October 16, 1974).  相似文献   

6.
The response of confluent monolayers of HT29-Cl.16E cells to stimulation by extracellular ATP and ATP analogues was investigated in terms of mucin and electrolyte secretion. Mucin secretion was measured as release of glucosamine-labeled macromolecules trapped at the stacking/running gel interface of polyacrylamide gels and electrolyte secretion as shortcircuit current (Isc). Luminal ATP stimulated a transient increase in the release of mucins and of I sc corresponding to a secretory Cl current. Both secretions peaked at 3 to 5 min after addition of ATP. Maximal ATP-stimulated mucin secretion over 15 min was up to 18-fold above control with an apparent ED50 of approximately 40 m. Maximal peak I sc after stimulation with ATP was approximately 35 A/cm2 with an apparent ED50 of about 0.4 mm. ATP-dependent I sc was at least in part due to Cl secretion since removal of Cl from the medium reduced the peak I sc by 40% and the I sc integrated over 40 min by 80%. The secretory responses were not associated with cell damage as assessed by failure of ethidium bromide to enter into the cells, absence of release of lactate dehydrogenase, maintenance of monolayer conductance, viability, and responses to repeated applications of ATP. The order of efficacy of nucleotide agonists was similar for both processes with ATP>ADP>AMPadenosine. Luminal ATP was much more effective than basolateral addition of this compound. These results suggest involvement of a luminal P2-type receptor which can initiate signaling pathways for granule fusion and mucin release as well as for activation of Cl channels. P2-receptor-stimulated mucin and I sc release was strongly inhibited by a 30 min preincubation with the classical K+ channel blockers quinine (1 mm), quinidine (1 mm), and Ba2+ (3 mm). Experiments with amphotericin B to measure separately the conductance changes of either luminal or basolateral plasma membrane revealed that quinidine did not directly block the ATP-induced basolateral K+ or the luminal anion channels. The quinidine inhibition after preincubation is therefore most easily explained by interference with granule fusion and location of anion channels in granule membranes. Luminal P2 receptors may play a role in intestinal defense mechanisms with both fluid and mucin secretion aiding in the removal of noxious agents from the mucosal surface.Supported by grants from the National Institutes of Health (DK 39658) to U.H., the Philippe Foundation to D.M., the French Cystic Fibrosis Foundation (AFLM) and L'Association Pour La Recherche Sur Le Cancer to C.L. The authors thank Mr. J. Polack for his efforts and skill with electron microscopy and Dr. George Dubyak for helpful discussions. We also acknowledge the Cystic Fibrosis Center Core grant (DK-27651) for its support of electron and light microscopy.  相似文献   

7.
The relaxation kinetics of frog skin open circuit voltage, Voc, and short circuit current Isc, was studied by analyzing the effects of subjecting the tissue to sudden increments of hydrostatic pressure. Both Voc and Isc are perturbed by the pressure jump. Changes in Voc can be resolved into three components: a rapid decrease (phase I), a second, additional decrease with time constant 2.2 s (phase II), and finally a very slow increase found only in some preparations. The amplitudes of phases I and II are linear in the range of pressures studied (<350 atm) and have respective pressure coefficients of −1.2 · 10−4atm−1 and −3.7 · 10−4atm−1.Under short circuit conditions phases I and II persist. The pressure coefficients of the amplitudes of phase I and II, −4.3 · 10−4atm−1 and −5.0 · 10−4atm−1, respectively, are larger than those of Voc, but the time constant of phase II, 2.2 s, is the same. The sum of the amplitudes of phases I and II is directly proportional to Isc when it is inhibited with ouabain. It is argued that in both electrical states pressure perturbs the same transport mechanism giving rise to phases I and II of Voc and Isc.The magnitude of the pressure coefficients of these processes implies that they arise from chemical reactions, rather than from simple, physical solution properties. Comparison of the pressure jump kinetics with the previous spectral analysis of the electrical fluctuations of frog skin suggests a common origin for both sets of phenomena.  相似文献   

8.
Forskolin concentration-dependently increased the short-circuit current (Isc) across the isolated mucosa of rat colon, which was carried mainly by Cl secretion from the mucosal membrane. The sulfonylureas such as glibenclamide, tolbutamide, glipizide and the ATP-sensitive K+ channel opener cromakalim inhibited the forskolin (1 μM)-induced increase of short-circuit current (ΔIsc) when these drugs were applied to the basolateral side. The rank order of potency for inhibition of ΔIsc was: glibenclamide > cromakalim > tolbutamide > glipizide. Glibenclamide (100 μM) and cromakalim (100 μM) caused transient or small reduction of the A23187-induced ΔIsc when applied to the basolateral side. Glibenclamide, tolbutamide and cromakalim decreased the forskolin-induced ΔIsc when applied to the mucosal side; however, the responses produced by basolateral application were greater and faster than those elicited by mucosal application. None of these four agents affected the basal transepithelial current. The results indicate that the cAMP-dependent Cl secretion in the rat colon could be modulated by ATP-sensitive K+ channel regulators. © 1996 Wiley-Liss, Inc.  相似文献   

9.
Summary The effects of epinephrine, glucagon and vasoactive intestinal polypeptide on chloride secretion by chloride cell-containing isolated opercular membranes from the seawater-adapted euryhaline teleost, the tilapiaSarotherodon mossambicus, have been examined. Epinephrine inhibits chloride secretion, measured as the short-circuit current (I sc), via -receptors, in a dose-dependent fashion. The minimum effective dose is 10–9 M, ED50 equals 2×10–7 M and maximal inhibition at 10–5 M is nearly 80%. Inhibition of phosphodiesterase by isobutylmethylxanthine (IBMX; 10–4 M), does not alterI sc in untreated tissues, but it completely reverses the epinephrine inhibition ofI sc, suggesting that hormones which modulate cAMP in chloride cells may alter chloride secretion. Glucagon and vasoactive intestinal polypeptide also stimulateI sc in epinephrine-inhibited tissues, an effect potentiated by IBMX. The effect of glucagon is dose-dependent with a minimum effective dose of 10–9 M, ED50 equal to 8×10–8 M and a maximum stimulation of 72% at 10–5 M.Analysis of the effects of epinephrine and IBMX onI sc and tissue conductance suggests that these agents act antagonistically on a nonconductive transport mechanism. It is proposed that IBMX and hormones which increase intracellular cAMP levels stimulate chloride secretion in epinephrine-inhibited tissues by stimulating a neutral sodium chloride cellular entry-step mechanism.Abbreviations ED 50 effective dose causing half-maximal inhibition or stimulation - IBMX isobutylmethylxanthine - VIP vasoactive intestinal polypeptide  相似文献   

10.
In this study, we have used the mouse intestine and the Ussing short circuit technique to compare the effects and mechanism of action of somatostatin (SST, 0.1 μM) on cAMP- and Ca2+-mediated ion secretion in the duodenum and colon of the Swiss-Webster mouse. The cAMP-dependent secretagogues, prostaglandin E2 (1 μM) and dibutyryl-cAMP (150 μM) increased short circuit current (Isc) in both regions, but only the colonic response was inhibited by SST. This inhibition was independent of enteric nerves, suggesting a direct action on the epithelial cells. The Ca2+-dependent secretagogue carbachol (10 μM) stimulated a transient increase in Isc in both intestinal segments. In the duodenum, SST partially inhibited this increase in Isc and both the responses to carbachol and SST were independent of enteric nerves. In the colon, while SST inhibited the carbachol induced increase in Isc, pre-treatment with tetrodotoxin (750 nM) profoundly inhibited the carbachol induced increase in Isc, thus markedly reducing the inhibitory effect of SST. This indicates an involvement of the enteric nervous system in the response to carbachol and the action of SST in the colon. These data indicate marked regional differences within the mouse intestine of the effects of SST on ion secretion and demonstrate different mechanisms of action of SST in the duodenum and colon.  相似文献   

11.
The human bronchial cell line16HBE14o– was used as a model of airway epithelial cells to study the Ca2+-dependent Cl secretion and the identity of KCa channels involved in the generation of a favorable driving force for Cl exit. After ionomycin application, a calcium-activated short-circuit current (I sc) developed, presenting a transient peak followed by a plateau phase. Both phases were inhibited to different degrees by NFA, glybenclamide and NPPB but DIDS was only effective on the peak phase. 86Rb effluxes through both apical and basolateral membranes were stimulated by calcium, blocked by charybdotoxin, clotrimazole and TPA. 1-EBIO, a SK-channel opener, stimulated 86Rb effluxes. Block of basolateral KCa channels resulted in I sc inhibition but, while reduced, I sc was still observed if mucosal Cl was lowered. Among SK family members, only SK4 and SK1 mRNAs were detected by RT-PCR. KCNQ1 mRNAs were also identified, but involvement of KcAMP channels in Cl secretion was unlikely, since cAMP application had no effect on 86Rb effluxes. Moreover, chromanol 293B or clofilium, specific inhibitors of KCNQ1 channels, had no effect on cAMP-dependent I sc. In conclusion, two distinct components of Cl secretion were identified by a pharmacological approach after a Ca i 2+ rise. KCa channels presenting the pharmacology of SK4 channels are present on both apical and basolateral membranes, but it is the basolateral SK4-like channels that play a major role in calcium-dependent chloride secretion in 16HBE14o– cells.  相似文献   

12.
Summary We measured the short-circuit current (I sc) across canine tracheal epithelium and the intracellular cAMP levels of the surface epithelial cells in the same tissues to assess the role of cAMP as a mediator of electrogenic Cl secretion. Secretogogues fall into three classes: (i) epinephrine, prostaglandin (PG) E1, and theophylline increase bothI sc and cellular cAMP levels; (ii) PGF2 and calcium ionophore A23187, increaseI sc without affecting cell cAMP levels at the doses employed; and (iii) acetylcholine, histamine, and phenylephrine do not alter eitherI sc or cAMP levels.These findings indicate that: (i) increases in cAMP or Ca activity stimulate electrogenic Cl secretion by the columnar cells of the surface epithelium; (ii) cAMP mediates the effects of PGE1 and -adrenergic agonists; (iii) a strict correlation between cAMP levels and Cl secretion rate is not apparent from spontaneous variations in these parameters or from dose-response relations ofI sc and cAMP to epinephrine concentration; and (iv) acetylcholine, histamine, and phenylephrine, agents that stimulate electrically-neutral NaCl secretion by submucosal glands, do not evoke cAMP-mediated, responses by the surface epithelium.Addition of 10–6 m indomethacin (or other prostaglandin synthesis inhibitors) to the mucosal solution decreasesI sc and cellular cAMP levels and reduces the release of PGE2 into the bathing media by 80%. Indomethacin does not interfere with the subsequent secretory response to PGE1. This suggests that endogenous prostaglandin production underlies the spontaneous secretion of Cl across canine tracheal epithelium under basal conditions.  相似文献   

13.
1. 1. Cu2+ at a concentration of 10−4 M, when applied to the external side of the frog skin produces an increase in the short-circuit current (Isc).
2. 2. This effect was studied in skins of Rana temporaria adapted to cold (5°C) and room temperature (20°C), skins of Rana pipiens adapted to cold, and the results compared with those obtained previously with Rana ribibunda.
3. 3. The observed effect is less dependent upon the adaptation to cold than upon the functional state of the skin: skins with low short circuit currents have a bigger response to Cu2+ than skins with high Isc.
4. 4. A species difference cannot be ruled out since skins of Rana ribibunda exhibiting high Isc give good responses to Cu2+.
5. 5. 5,5′-dithiobis(2-nitrobenzoic acid), a sulphydryl-oxidizing reagent, produces an effect similar to that of Cu2+, and dithiothreitol an SH-reducing agent, reverses the effect of this ion.
6. 6. Cu2+ also induces an increase in the unidirectional K+ fluxes and unmasks a net outward potassium flux.
7. 7. The outward K+ flux induced by Cu2+ is sensitive to ouabain.
8. 8. It is concluded that Cu2+ increases the permeability of the external barrier of the frog skin to Na+ and K+, probably by reacting with SH groups.
Abbreviations: DTNB; 5; 5′-dithiobis(2-nitrobenzoic acid)  相似文献   

14.
Summary We have recently shown that stimulation of electrogenic HCO 3 secretion is accompanied by a simultaneous increase in short-circuit current (I sc, equivalent to HCO 3 secretion rate under these conditions), apical membrane capacitance (C a , proportional to membrane area), and apical membrane conductance (G a , proportional to membrane ionic permeability). The current experiments were undertaken to explore the ionic basis for the increase inG a and the possibility that the rate of electrogenic HCO 3 secretion is regulated by changes inG a . Membrane electrical parameters were measured using impedance-analysis techniques before and after stimulation of electrogenic HCO 3 secretion with cAMP in three solutions which contained different chloride concentrations. In another series of experiments, the effects of an anion channel blocker, anthracene-9-carboxylic acid (9-AA), were measured after stimulation of electrogenic HCO 3 secretion with cAMP. The major conclusions are: (i) a measurable apical Cl conductance exists in control hemibladders; (ii) the transport-associated increase inG a includes a Cl-conductive component; (iii)G a also appears to reflect a HCO 3 conductance; (iv) the relative magnitudes of the apical membrane conductances to Cl and HCO 3 are similar; (v) 9-AA reducesG a andI sc appear cAMP-stimulated hemibladders; and (vi) alterations inI sc appear to be mediated by changes inG a .  相似文献   

15.
Summary Ion transport processes in the ileum of the lizard,Gallotia (=Lacerta) galloti was examined in vitro by measuring Na22 and Cl36 fluxes across short-circuited preparations.In Ringer-bicarbonate solution there was both a net sodium flux ( ) and a net chloride flux ( ) from mucosa to serosa. The inequality between and short-circuit current (I sc) suggests that part of the net sodium transport is the result of an electrically neutral transport mechanism or that another electrogenic mechanism opposite in sign is contributing to the short-circuit current.In the absence of sodium, the short-circuit current and net chloride flux were abolished. In the absence of chloride, the net sodium was reduced but not abolished and the short-circuit current was unchanged.From an analysis of the effects of the inhibitors furosemide, amiloride, disulfonic stilbene (DIDS) and acetazolamide, a plausible model was developed to explain the characteristics of these transports. It is proposed that the entry of sodium into the cell across the luminal membrane occurs by two pathways. Part occurs by the antiport Na+H+ and part by an electrogenic pathway. The entry of chloride is by the antiport ClHCO 3 .Symbols and abbreviations DIDS 4,4 diisothiocyanatostilbene-2,2-disulfonic acid - G t tissue conductance - I sc short circuit current - m mucosal - PD potential difference - s serosal  相似文献   

16.
The secretion function of intestinal graft is one of the most important factors for successful intestinal transplantation. Cystic fibrosis transmembrane conductance regulator (CFTR) mediates HCO3 - and Cl- secretions in intestinal epithelial cells. In this study, we made investigation on the expression and function of CFTR in an experimental model of murine small intestinal transplantation. Heterotopic intestinal transplantations were performed in syngeneic mice. The mRNA and protein expressions of CFTR were analyzed by real time PCR and western blot. Murine intestinal mucosal HCO3 - and Cl- secretions were examined in vitro in Ussing chambers by the pH stat and short circuit current (Isc) techniques. The results showed that forskolin, an activator of CFTR, stimulated jejunal mucosal epithelial HCO3 - and Cl- secretions in mice, but forskolin-stimulated HCO3 - and Cl- secretions in donor and recipient jejunal mucosae of mice after heterotopic jejunal transplantation were markedly decreased, compared with controls (P<0.001). The mRNA and protein expression levels of CFTR in donor and recipient jejunal mucosae of mice were also markedly lower than those in controls (P<0.001), and the mRNA and protein expression levels of tumor necrosis factor α (TNFα) were markedly increased in donor jejunal mucosae of mice (P<0.001), compared with controls. Further experiments showed that TNFα down-regulated the expression of CFTR mRNA in murine jejunal mucosa. In conclusion, after intestinal transplantation, the function of CFTR was impaired, and its mRNA and protein expressions were down-regulated, which may be induced by TNFα.  相似文献   

17.
Summary Solution osmolarity is known to affect Na+ transport rates across tight epithelia but this variable has been relatively ignored in studies of cultured renal epithelia. Using electrophysiological methods to study A6 epithelial monolayers, we observed a marked effect of solution tonicity on amiloride-sensitive Na+ currents (I sc).I sc for tissues bathed in symmetrical hyposmotic (170 mOsm), isosmotic (200 mOsm), and hyperosmotic (230 or 290 mOsm) NaCl Ringer's solutions averaged 25±2, 9±2, 3±0.4, and 0.6±0.5 A/cm2, respectively. Similar results were obtained following changes in the serosal tonicity; mucosal changes did not significantly affectI sc. The changes inI sc were slow and reached steady-state within 30 min. Current fluctuation analysis measurements indicated that single-channel currents and Na+ channel blocker kinetics were similar for isosmotic and hyposmotic conditions. However, the number of conducting Na+ channels was approximately threefold higher for tissues bathed in hyposmotic solutions. No channel activity was detected during hyperosmotic conditions. The results suggest that Na+ channels in A6 epithelia are highly sensitive to relatively small changes in serosal solution tonicity. Consequently, osmotic effects may partly account for the large variability in Na+ transport rates for A6 epithelia reported in the literature.  相似文献   

18.
Summary Porcine distal colon epithelium was mounted in Ussing chambers and bathed in plasma-like Ringer solution. Tissue conductances ranged from 10 to 15 mS and the short-circuit current (Isc) ranged from-15 to 220 A·cm-2. Variations in basal Isc resulted from differences in the amount of amiloride (10M mucosal addition)-sensitive Na+ absorption. Ion substitution and transepithelial flux experiments showed that 10 M amiloride produced a decrease in the mucosal-to-serosal (M-S) and net Na flux, and that this effect on Isc was independent of Cl- and HCO 3 - replacement. When the concentration of mucosal amiloride was increased from 10 to 100 M, little change in Isc was observed. However, increasing the concentration to 1 mM produced a further inhibition, which often reversed the polarity of the Isc. The decrease in Isc due to 1 mM amiloride was dependent on both Cl- and HCO 3 - , and was attributed to reductions in the M-S and net Na+ fluxes as well as the M-S unidirectional Cl- flux. Ion replacement experiments demonstrated that Cl- substitution reduced the M-S and net Na fluxes, while replacement of HCO 3 - with HEPES abolished net Cl- absorption by reducing the M-S unidirectional Cl- flux. From these data it can be concluded that: (1) Na+ absorption is mediated by two distinct amiloride-sensitive transport pathways, and (2) Cl- absorption is completely HCO 3 - -dependent (presumably mediated by Cl-/HCO 3 - exchange) and occurs independently of Na+ absorption.Abbreviations Gt tissue conductance - HEPES tris (hydroxymethyl) aminomethane - (tris) N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid - Isc short-circuit current - Jr residual flux - M-S mucosal-to-scrosal - S-M serosal-to-mucosal - TTX tetrodotoxin  相似文献   

19.
Summary This study is concerned with the short-circuit current,I sc, responses of the Cl-transporting cells of toad skin submitted to sudden changes of the external Cl concentration. [Cl]0. Sudden changes of [Cl]0, carried out under apical membrane depolarization, allowed comparison of the roles of [Cl]0 and [Cl]cell on the activation of the apical Cl pathways. Equilibration of shortcircuited skins symmetrically in K-Ringer's solutions of different Cl concentrations permitted adjustment of [Cl]cell to different levels. For a given Cl concentration (in the range of 11.7 to 117mm) on both sides of a depolarized apical membrane, this structure exhibits a high Cl permeability,P (Cl)apical. On the other hand, for the same range of [Cl]cell but with [Cl]0=0,P (Cl)apical is reduced to negligible values. These observations indicate that when the apical membrane is depolarizedP (Cl)apical is modulated by [Cl]0; in the absence of external Cl ions, intracellular Cl is not sufficient to activateP (Cl)apical. Computer simulation shows that the fast Cl currents induced across the apical membrane by sudden shifts of [Cl]0 from a control equilibrium value strictly follow the laws of electrodiffusion. For each experimental group, the computer-generatedI sc versus ([Cl]cell–[Cl]0) curve which best fits the experimental data can only be obtained by a unique pair ofP (Cl)apical andR b (resistance of the basolateral membrane), thus allowing the calculation of these parameters. The electrodiffusional behavior of the net Cl flux across the apical membrane supports the channel nature of the apical Cl pathways in the Cl-transporting cell. Cl ions contribute significantly to the overall conductance of the basolateral membrane even in the presence of a high K concentration in the internal solution.  相似文献   

20.
Although capsaicin has been studied extensively as an activator of the transient receptor potential vanilloid cation channel subtype 1 (TRPV1) channels in sensory neurons, little is known about its TRPV1-independent actions in gastrointestinal health and disease. Here, we aimed to investigate the pharmacological actions of capsaicin as a food additive and medication on intestinal ion transporters in mouse models of ulcerative colitis (UC). The short-circuit current (Isc) of the intestine from WT, TRPV1-, and TRPV4-KO mice were measured in Ussing chambers, and Ca2+ imaging was performed on small intestinal epithelial cells. We also performed Western blots, immunohistochemistry, and immunofluorescence on intestinal epithelial cells and on intestinal tissues following UC induction with dextran sodium sulfate. We found that capsaicin did not affect basal intestinal Isc but significantly inhibited carbachol- and caffeine-induced intestinal Isc in WT mice. Capsaicin similarly inhibited the intestinal Isc in TRPV1 KO mice, but this inhibition was absent in TRPV4 KO mice. We also determined that Ca2+ influx via TRPV4 was required for cholinergic signaling–mediated intestinal anion secretion, which was inhibited by capsaicin. Moreover, the glucose-induced jejunal Iscvia Na+/glucose cotransporter was suppressed by TRPV4 activation, which could be relieved by capsaicin. Capsaicin also stimulated ouabain- and amiloride-sensitive colonic Isc. Finally, we found that dietary capsaicin ameliorated the UC phenotype, suppressed hyperaction of TRPV4 channels, and rescued the reduced ouabain- and amiloride-sensitive Isc. We therefore conclude that capsaicin inhibits intestinal Cl- secretion and promotes Na+ absorption predominantly by blocking TRPV4 channels to exert its beneficial anti-colitic action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号