首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mutations in ras genes have been detected with high frequency in nonsmall cell lung cancer cells (NSCLC) and contribute to transformed growth of these cells. It has previously been shown that expression of oncogenic forms of Ras in these cells is associated with elevated expression of cytosolic phospholipase A(2) (cPLA(2)) and cyclooxygenase-2 (COX-2), resulting in high constitutive levels of prostaglandin production. To determine whether expression of constitutively active Ras is sufficient to induce expression of these enzymes in nontransformed cells, normal lung epithelial cells were transfected with H-Ras. Stable expression of H-Ras increased expression of cPLA(2) and COX-2 protein. Transient transfection with H-Ras increased promoter activity for both enzymes. H-Ras expression also activated all three families of MAP kinase: ERKs, JNKs, and p38 MAP kinase. Expression of constitutively active Raf did not increase either cPLA(2) or COX-2 promoter activity, but inhibition of the ERK pathway with pharmacological agents or expression of dominant negative ERK partially blocked the H-Ras-mediated induction of cPLA(2) promoter activity. Expression of dominant negative JNK kinases decreased cPLA(2) promoter activity in NSCLC cell lines and inhibited H-Ras-mediated induction in normal epithelial cells, whereas expression of constructs encoding constitutively active JNKs increased promoter activity. Inhibition of p38 MAP kinase or NF-kappaB had no effect on cPLA(2) expression. Truncational analysis revealed that the region of the cPLA(2) promoter from -58 to +12 contained sufficient elements to mediate H-Ras induction. We conclude that expression of oncogenic forms of Ras directly increases cPLA(2) expression in normal epithelial cells through activation of the JNK and ERK pathways.  相似文献   

2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
Transformation by oncogenic Ras requires signaling through Rho family proteins including RhoA, but the mechanism(s) whereby oncogenic Ras regulates the activity of RhoA is (are) unknown. We examined the effect of Ras on RhoA activity in NIH 3T3 cells either stably transfected with H-Ras(V12) under control of an inducible promoter or transiently expressing the activated H-Ras. Using a novel method to quantitate enzymatically the GTP bound to Rho, we found that expression of the oncogenic Ras increased Rho activity approximately 2-fold. Increased Rho activity was associated with increased plasma membrane binding of RhoA and decreased activity of the Rho/Ras-regulated p21(WAF1/CIP1) promoter. RhoA activation by oncogenic Ras could be explained by a decrease in cytosolic p190 Rho-GAP activity and translocation of p190 Rho-GAP from the cytosol to a detergent-insoluble cytoskeletal fraction. Pharmacologic inhibition of the Ras/Raf/MEK/ERK pathway prevented Ras-induced activation of RhoA and translocation of p190 Rho-GAP; expression of constitutively active Raf-1 kinase or MEK was sufficient to induce p190 Rho-GAP translocation. We conclude that in NIH 3T3 cells oncogenic Ras activates RhoA through the Raf/MEK/ERK pathway by decreasing the cytosolic activity and changing the subcellular localization of p190 Rho-GAP.  相似文献   

16.
17.
18.
The p21ras GTPase-activating protein (GAP) is thought to function as both a negative regulator and a downstream target of p21ras. Here, we have investigated the role of GAP by using a transient expression assay with a fos luciferase reporter plasmid. We used GAP deletion mutants that lack the domain involved in interaction with p21ras and encode essentially only the SH2-SH3 domains. When these GAP deletion mutants were expressed, we observed a marked induction of fos promoter activity similar to induction by activated p21ras. Expression of a full-length GAP construct had no effect on the activity of the fos promoter. Activation of the fos promoter by these GAP SH2-SH3 regions was inhibited by cotransfection of a dominant inhibitory mutant of p21ras, Ras(Asn-17). Thus, the induction of gene expression by GAP SH2-SH3 domains is dependent on p21ras activity. Moreover, induction of fos promoter activity by GAP SH2-SH3 domains is increased severalfold after cotransfection of an activated mutant of p21ras, Ras(Leu-61), or insulin stimulation of A14 cells, both leading to an increase in the levels of GTP-bound p21ras. The combined effect of Ras(Leu-61) and the GAP deletion mutants was not inhibited by Ras(Asn-17), indicating that GAP SH2-SH3 domains do not function to activate endogenous p21ras but cooperate with another signal coming from active p21ras. These data suggest that GAP SH2-SH3 domains serve to induce gene expression by p21ras but that additional signals coming from p21ras are required for them to function.  相似文献   

19.
RECK is a membrane-anchored glycoprotein that may negatively regulate matrix metalloproteinase (MMP) activity and inhibit tumor metastasis. Previous study demonstrated that oncogenic ras inhibited RECK expression via an Sp1 binding site in the RECK promoter. In this study, we investigated the molecular mechanism by which ras inhibited RECK expression. Co-transfection assay showed that Sp1 and Sp3 are transactivators, rather than repressors, for RECK gene. So, we tested whether ras activation induced the binding of histone deacetylases (HDACs) to Sp1 to repress RECK expression. Our data showed Sp1-associated HDAC1 in cells was increased after ras induction. By using DNA affinity precipitation assay, we found that induction of oncogenic ras enhanced the binding of HDAC1 to the DNA probe corresponding to the Sp1 site in the RECK promoter. Additionally, a HDAC inhibitor trichostatin A (TSA) potently antagonized the inhibitory action of ras on RECK. The signaling pathway by which ras suppresses RECK was also addressed. Induction of oncogenic ras activated extracellular signal-regulated kinase (ERK), but not c-Jun N-terminal kinase (JNK) and p38(HOG) kinase in 2-12 cells. Addition of PD98059 or overexpression of dominant-negative mutant of ERK2 indeed reversed ras-mediated inhibition of RECK promoter activity. Taken together, our results suggest that oncogenic ras represses RECK expression via a histone deacetylation mechanism.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号