首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Colonies of the seagrass Halophila ovalis are found growing adjacent to coral Acropora sp. and Seriatopora hystrix in a submarine hot spring (at 15.7 m depth, 28.6°C) at the north coast of Taketomi Island, near the southern tip of Japan. Halophila plants grow in sea water containing sulphide 930 μg S ml−1 and on the substratum with fine precipitates of the submarine hot spring which have sulphide content up to 5400 μg S g−1 DW. The accumulated sulphide concentration reaches as high as 8400 μg S g−1 DW in under ground tissues and 5700 μg S g−1 DW in above-ground tissues, respectively. It is suggested that, not the sulphide concentration but light and possibly water temperature are the limiting factors for the Halophila colonization in the submarine hot spring.  相似文献   

2.
Resistance in Cicer bijugum Rech. f. a wild relative of chickpea, to Botrytis grey mould (BGM), caused by Botrytis cinerea Pers., was shown to be associated with high concentrations of maackiain when compared to three susceptible species. The two BGM resistant accessions of C. bijugum contained between 200 and 300 μg maackiain g−1 of foliage whereas the BGM susceptible species C. arietinum, C. echinospermum and C. reticulatum contained less than 70 μg g−1. Furthermore, the concentration of maackiain increased to more than 400 μg g−1 in the resistant wild species after being inoculated with the pathogen whereas no significant increase was recorded in the susceptible species. The germination of spores of Botrytis cinerea, treated with maackiain, was inhibited in a dose dependent manner; less than 10% of spores germinated when treated with 500 μg ml−1. The data indicate that maackiain may be an important component in BGM resistance in the wild chickpea C. bijugum and that the resistance is enhanced in the presence of the pathogen.  相似文献   

3.
Metal concentrations and population parameters of the seagrass Halodule wrightii were determined at three locations at Rio de Janeiro State, Brazil. The possible increase of metal availability in one of these areas, Sepetiba Bay, as a result of dredging of contaminated bottom sediments which ocurred, was evaluated by analyses of Al, Cd, Cr, Cu, Fe, Ni, Pb and Zn in root, rhizome and shoots. In addition, analyses were carried out in H. wrightii populations from non-contaminated areas located at northwestern (Cabo Frio) and southeastern (Angra do Reis) regions of Rio de Janeiro State. Concurrently, abundance and density data of the seagrass populations were obtained. It was found that concentration from Sepetiba Bay samples up to 1.6 ± 0.4 μg g−1 of Cd, 12 ± 1.0 μg g−1 of Cr, 27 ± 2.4 μg g−1 of Pb, 291 ± 47 μg g−1 of Mn, 128 ± 23 μg g−1 of Zn were significantly higher than that from two other collection sites. An increase in Cd and Zn concentration was observed in H. wrightii from Sepetiba Bay indicating that metal mobilization from contaminated sediments through dredging activities were, at least in part, transferred to the biotic compartment via accumulation by the seagrass. The populations of seagrass within the region demonstrated quite substantial changes in biomass data but not in shoot or rhizome density during the study. Such changes in biomass are to be expected, as these dynamics are typical of the small, isolated monospecific populations of H. wrightii along the Rio de Janeiro coast.  相似文献   

4.
Candida albicans and the closely related species Candida stellatoidea are medically important diploid asexual yeasts. Clinical isolates frequently show variant electrophoretic karyotypes, apparently due largely to chromosomal translocations. These translocations seem to occur at hot spots characterized by the repeated DNA sequence RSP1. A programmed karyotypic rearrangement occurs in C. stellatoidea. Karyotypic rearrangement may serve as a source of genetic variation in these asexual yeasts.  相似文献   

5.
Four pre-selected indigenous yeast strains belonging to Candida guilliermondii (V2 and V5), Candida pulcherrima (V6) and Kloeckera apiculata (V9), were used as β-glucosidase (βGL) and β-xylosidase (βXL) sources. The optimization of yeast culture conditions was carried out and the effects of oenological parameters on β-glycosidase activities were evaluated. C. guilliermondii V2 and C. pulcherrima V6 strains were selected. These strains showed intracellular (C. pulcherrima V6) and parietal (C. guilliermondii V2) constitutive βGL and βXL. The enzymatic activities were active at pH, glucose, ethanol and SO2 concentrations usually found in winemaking and they were able to release monoterpenols and alcohols from grape juice glycoside extracts. Additionally, these yeast strains were not able to produce volatile acidity and off flavour. Regional ecological relevance of these species was also discussed. Our results evidence that the selected C. guilliermondii V2 and C. pulcherrima V6 strains have interesting oenological characteristics and allow us to think in their potential application in winemaking.  相似文献   

6.
Yue Jiang  Feng Chen   《Process Biochemistry》2000,35(10):1205-1209
The effects of medium glucose concentration and pH on growth and docosahexaenoic acid (DHA, C22:6 ω-3) content of Crypthecodinium cohnii were investigated. Over a range of glucose concentrations (5–40 g l−1) investigated, the highest specific growth rate (0.12 h−1), highest cell dry weight concentration (3.13 g l−1) and highest growth yield on glucose (0.6 g g−1) were obtained at 20 g l−1 glucose. However, the highest degree of fatty acid unsaturation (3.2) and highest DHA proportion (53.4% of total fatty acids) were achieved at 5 g l−1 glucose. Low glucose concentrations enhanced the degree of fatty acid unsaturation and DHA formation. Medium pH also affected cell growth, fatty acid unsaturation and DHA proportion. When medium pH was 7.2, the highest specific growth rate (0.089 h−1), highest cell dry weight concentration (2.73 g l−1), highest growth yield on glucose (0.564 g g−1), highest degree of fatty acid unsaturation (3.4) and highest DHA proportion (56.8% of total fatty acids) were obtained. Results suggest that glucose concentration and pH value could be effectively manipulated to achieve maximum DHA production by C. cohnii.  相似文献   

7.
The effect of changing dilution rate (D) on Bacillus sp. CCMI 1051 at dilution rates between 0.1 and 0.55 h−1 in a glucose-limited medium was studied. Biomass values varied between 0.88 and 1.1 g L−1 at D values of 0.15–0.35 h−1. Maximal biomass productivity was found to be 0.39 g L−1 h−1, obtained at D = 0.35 h−1 and corresponding to a 54.4% conversion of the carbon into cell mass. The highest rate of glucose consumption was 4.45 mmol g−1 h−1 occurring at D = 0.4 h−1. The glucose concentration inside the chemostat was below the detection level starting to accumulate around 0.4 h−1. Growth inhibition of fifteen strains of fungi by the broth of the steady-state cell-free supernatants was assessed. Results showed that the relative inhibition differ among the target species but was not influenced by the dilution rate changing.  相似文献   

8.
The behaviour of Pichia stipitis, Pachysolen tannophilus, Candida shehatae and Candida parapsilosis was investigated to select the most suitable yeast to convert xylose either to ethanol or to xylitol, with little or no formation of by-products. The aeration rate was used as a variable parameter. P. stipitis and C. parapsilosis were the most effective producers or ethanol and xylitol, respectively, both reaching productivities at very low levels of oxygenation. With P. stipitis, better ethanol productivity was attained under microaerobic conditions (KLa = 4·8 h−1) while with C. parapsilosis high yields and rates of xylitol production were detected at KLa values of about 16·3 h−1. P. tannophilus and C. shehatae showed lower performances under all conditions used while changes in oxygenation modified the ratio of ethanol to xylitol produced by these yeasts, suggesting that they are more dependent on the oxygen power input than P. stipitis and C. parapsilosis. The influence of oxygen transfer rates on ethanol and xylitol formation with the best producers is discussed.  相似文献   

9.
Photosynthetic carbon uptake of Callitriche cophocarpa Sendt. was examined in plants collected from six Danish streams and in plants grown under variable inorganic carbon conditions in the laboratory. Both field and laboratory plants showed a low affinity for inorganic carbon (CO2 compensation points ranging from 0.7 to 22 μM, and K0.5(CO2) from 51 to 121 μM), consistent with C-3 photosynthesis and use of CO2 alone. Variation in inorganic carbon uptake characteristics was low in both groups of plants. Only in laboratory-grown plants was a coupling found between carbon uptake and the inorganic carbon regime of the medium. The carbon extraction capacity, expressed as a percentage of the initial amount of dissolved inorganic carbon (DIC) assimilated in PH-drift experiments, increased from −1.4 to 11.8% with declining external carbon availability, and the initial slope of the CO2 response curve increased from 6.4 to 15.3 g−1 h−1 dm3. The plasticity of the inorganic carbon uptake system of C. cophocarpa was very low compared to the plasticity observed for submerged macrophytes with accessory carbon uptake systems (i.e. HCO3 use or C-4 photosynthesis), suggesting that the plasticity of the C-3 photosynthetic apparatus as such is restricted. The low carbon affinity of C. cophocarpa indicates that this species depends on CO2 oversaturation for a sufficient supply of CO2 for photosynthesis and growth.  相似文献   

10.
Lipase from Candida rugosa was encapsulated within a chemically inert sol–gel support prepared by polycondensation of three precursor types (tetraethoxysilane (TEOS), methyltrimethoxysilane (MTMS) and polydimethylsilane (PDMS)) in the presence and absence of polyethylene glycol (PEG) and polyvinyl alcohol (PVA) as additives. Silica and their derivatives were characterised with regard to mean pore diameter, specific surface area, pore size distribution (BET method), weight loss upon heating thermogramivemetric analysis (TGA), chemical composition Fourier transform infrared spectroscopy (FT-IR), and catalytic activities. Immobilisation yields based on the recovered lipase activity vary from 3.02 to 31.98% and the highest efficiency was attained when lipase was encapsulated using TEOS in the presence of the PEG. Further information was obtained by testing the derivatives in esterification reactions and a different reactivity profile was found. Better performance was obtained with derivatives containing lipase encapsulated within gels prepared with MTMS as precursor in the presence of PEG. This lipase preparation exhibits increased esterification activity (155 μmol g−1 min−1), up to of three times greater than that prepared with TEOS (52 μmol g−1 min−1), and almost twice that prepared with MTMS/PDMS (89 μmol g−1 min−1) as precursors.  相似文献   

11.
Because of its novel bioactive properties the production of gymnodimine for use as a pharmaceutical precursor has aroused interest. The dinoflagellate, Karenia selliformis produces gymnodimine when grown in bulk culture using GP + selenium medium but the growth rates (μ) and levels of gymnodimine are low (μ, 0.05 days−1; gymnodimine 250 μg L−1 max). We describe the effects of organic acid additions (acetate, glycolate, alanine and glutamate additions and combinations of these) in enhancing growth and gymnodimine production in axenic cultures. The most effective organic acid combinations in decreasing order were: glycolate/alanine > acetate > glycolate. Glycolate/alanine optimised gymnodimine production by prolonging growth (maximum cell yield, 1.76 × 105 cells mL−1; gymnodimine, 1260 μg L−1; growth rate (μ), 0.2 days−1) compared to the control (growth maximum cell yield, 7.8 × 104 cells mL−1; gymnodimine, 780 μg L−1; μ, 0.17 days−1). Acetate enhanced gymnodimine by stimulating growth rate (μ, 0.23 days−1) and the large concentration of gymnodimine per cell (16 pg cell−1 cf. 9.8 pg cell−1 for the control) suggests a role for this compound in gymnodimine biosynthesis. Amending culture media with Mn2+ additions resulted in slightly decreased growth in control cultures and increased the gymnodimine while in glycolate/alanine cultures growth was stimulated but gymnodimine production decreased. The results suggest that the organic acid can enhance gymnodimine production by either enhancing growth maximum or the biosynthetic pathway.  相似文献   

12.
Using primers derived from a region of the Candida albicans CDR1 (Candida drug resistance) gene that is conserved in other ABC (ATP-binding cassette) transporters, a DNA fragment from a previously unknown CDR gene was obtained by polymerase chain reaction (PCR). After screening a C. albicans genomic library with this fragment as a probe, the complete CDR4 gene was isolated and sequenced. CDR4 codes for a putative ABC transporter of 1490 amino acids with a high degree of homology to Cdr1p, Cdr2p and Cdr3p from C. albicans (62, 59 and 57% amino acid sequence identity, respectively). Cdr4p has a predicted structure typical for cluster I.1 of yeast ABC transporters, characterized by two homologous halves, each comprising an N-terminal hydrophilic domain with consensus sequences for ATP binding and a C-terminal hydrophobic domain with six transmembrane helices. In contrast to the CDR1/CDR2 genes, the genetic structure of the CDR4 gene was conserved in 59 C. albicans isolates from six different patients. Northern hybridization analysis showed that the CDR4 gene was expressed in most isolates, but no correlation between CDR4 mRNA levels and the degree of fluconazole resistance of the isolates was found. In addition, a C. albicans mutant in which both copies of the CDR4 gene were disrupted by insertional mutagenesis was not hypersusceptible to fluconazole as compared to the parent strain. Unlike CDR1 and CDR2, CDR4 does not, therefore, seem to be involved in fluconazole resistance in C. albicans.  相似文献   

13.
Estimation of the ammonia production of the shrimp C. crangon in two littoral ecosystems (oligotrophic sand and eutrophic mud) was determined in winter and summer conditions from laboratory observations in experimental microcosms. The ammonia excretion rate of C. crangon was not influenced by either the sediment type or the ammonia concentration of the overlying water; on the other hand, the mean excretion rate and the response to initial handling stress increased markedly as shrimp were deprived of soft substratum.

The daily ammonia production of C. crangon was 16 μmol NH3 · g −1 wet wt · day −1 in winter and 40 μmol in summer. A gross production of 12 μmol NH3 · m−2 · day −1 and 300–700 μmol μ m−2 · day−1, respectively, could be expected in the two ecosystems studied. This would account for 5% (winter) and 2–4% (summer) of the total NH+4 flux at the sediment-water interface. The contribution of the excretion of all macrofauna to the NH+4 flux from the sediment is discussed.  相似文献   


14.
Andreas Hussner  Rainer Lsch 《Flora》2007,202(8):653-660
Floating Pennywort (Hydrocotyle ranunculoides L. fil.) is a worldwide distributed aquatic plant. The species is native to North America and quite common also in Central and South America. In Europe, Japan and Australia it is known as an alien plant, sometimes causing serious problems for affected ecosystems and human use of water bodies. Starting from Western Europe with an eastwards directed spread, Floating Pennywort was recorded in Germany in 2004 for the first time. Since then, the species spread out and got established in western parts of Central Europe. For a definite prediction of the potential of a further spread, data about biology, in particular growth and photosynthesis are needed. Here, regeneration capacity, growth at different nutrient availabilities and photosynthesis of H. ranunculoides were investigated. In addition biomass samples were taken in the field. Results show an enormous regeneration capacity (e.g., by forming new shoots from small shoot fragments), increasing growth rates under increasing nutrient availability and a maximum increase of biomass reaching 0.132±0.008 g g−1 dw d−1. Dense populations of H. ranunculoides growing in ponds and oxbows were found at high nutrient content of the substrate, the biomass reaching there up to 532.4±14.2 g dw m−2. Gas exchange analysis showed a physiological optimum of H. ranunculoides CO2 uptake at temperatures between 25 and 35 °C and high photon flux densities (PPFD) above 800 μmol photons m−2 s−1. In comparison, native Hydrocotyle vulgaris showed an optimum of net photosynthesis at 20–30 °C and a light saturation of CO2 gas exchange at 350 μmol photons m−2 s−1.  相似文献   

15.
Conidiation and lytic enzyme production by Trichoderma viride at different solids concentration of pre-treated municipal wastewater sludge was examined in a 15-L fermenter. The maximum conidia concentration (5.94 × 107 CFU mL−1 at 96 h) was obtained at 30 g L−1 suspended solids. The maximum lytic enzyme activities were achieved around 12–30 h of fermentation. Bioassay against a fungal phytopathogen, Fusarium sp. showed maximum activity in the sample drawn around 96 h of fermentation at 30 g L−1 suspended solids concentration. Entomotoxicity against spruce budworm larvae showed maximum value ≈17290 SBU μL−1 at 30 g L−1 suspended solids concentration at the end of fermentation (96 h). Plant bioassay showed dual action of T. viride, i.e., disease prevention and growth promotion. The rheological analyses of fermentation sludges showed the pseudoplastic behaviour. In order to maintain required dissolved oxygen concentration ≥30%, the agitation and aeration requirements significantly increased at 35 g L−1 compared to 30 and 25 g L−1. The oxygen uptake rate and volumetric oxygen mass transfer coefficient, kLa at 35 g L−1 did not increase in comparison to 30 g L−1 due to rheological complexity of the broth during fermentation. Thus, the successful fermentation operation of the biocontrol fungus T. viride is a rational indication of its potential for mass-scale production for agriculture and forest sector as a biocontrol agent.  相似文献   

16.
熊延靖  吴艳红 《菌物学报》2020,39(2):343-351
生物被膜的形成是白色念珠菌产生耐药性的重要原因之一。本研究首先构建白色念珠菌体外生物被膜模型,通过倒置显微镜和甲基四氮盐(XTT)法检测大蒜素对白色念珠菌生物被膜形成的影响,同时采用实时荧光定量PCR法(qRT-PCR)对白色念珠菌生物被膜相关基因ALS1ALS3HWP1MP65SUN41的表达水平进行检测。结果显示,当大蒜素浓度≥12.5μg/mL时,白色念珠菌生物被膜的生长被抑制,并且在生物被膜形成的早期,大蒜素干预能有效抑制其形成;大蒜素能下调白色念珠菌生物被膜相关基因ALS1ALS3HWP1MP65SUN41的表达水平。研究结果提示,大蒜素可有效抑制体外白色念珠菌生物被膜的形成,可能与其下调生物被膜相关基因的表达有关。  相似文献   

17.
Free trans-astaxanthin accumulated in the alga Chlorococcum sp. was markedly enhanced from 3.664 mg g−1 cell dry weight to 5.724 mg g−1 cell dry weight when the culture was supplemented with hydrogen peroxide (0.1 mM) under mixotrophic conditions of growth. After saponification, a total of 7.086 mg astaxanthin per g cell dry weight was achieved. Similarly, in heterotrophic cultures, the total astaxanthin content was increased from 1.034 mg g−1 cell dry weight without H2O2 to 1.782 mg g−1 cell dry weight with 0.1mM H2O2. Results indicate that hydrogen peroxide effectively induces the formation of free trans-astaxanthin in Chlorococcum sp.  相似文献   

18.
The photosynthetic capacity of Myriophyllum salsugineum A.E. Orchard was measured, using plants collected from Lake Wendouree, Ballarat, Victoria and grown subsequently in a glasshouse pond at Griffith, New South Wales. At pH 7.00, under conditions of constant total alkalinity of 1.0 meq dm−3 and saturating photon irradiance, the temperature optimum was found to be 30–35°C with rates of 140 μmol mg−1 chlorophyll a h−1 for oxygen production and 149 μmol mg−1 chlorophyll a h−1 for consumption of CO2. These rates are generally higher than those measured by other workers for the noxious Eurasian water milfoil, Myriophyllum spicatum L., of which Myriophyllum salsugineum is a close relative. The light-compensation point and the photon irradiance required to saturate photosynthetic oxygen production were exponentially dependent on water temperature. Over the temperature range 15–35°C the light-compensation point increased from 2.4 to 16.9 μmol (PAR) m−2 s−1 for oxygen production while saturation photon irradiance increased from 41.5 to 138 μmol (PAR) m−2 s−1 for oxygen production and from 42.0 to 174 μmol (PAR) m−2 s−1 for CO2 consumption. Respiration rates increased from 27.1 to 112.3 μmol (oxygen consumed) g−1 dry weight h−1 as temperature was increased from 15 to 35°C. The optimum temperature for productivity is 30°C.  相似文献   

19.
In the present study, we determined the sequence of group I self-splicing introns found in the large ribosomal RNA subunit of Candida albicans, Candida stellatoidea and the recently-described species Candida dubliniensis. It was found that both the intron and ribosomal RNA nucleotide sequences are almost perfectly identical between different C. albicans strains as well as between C. albicans and C. stellatoidea strains. Comparisons of ribosomal RNA sequences suggest that local isolates of atypical C. albicans from individuals infected with human immunodeficiency virus can be assigned to the C. dubliniensis species. C. dubliniensis strains also harbor a group I intron in their ribosomal RNA, as observed in about 40% of C. albicans strains and all C. stellatoidea strains. This novel C. dubliniensis group I intron is identical to the C. albicans and C. stellatoidea intron, except for two widely divergent stem-loop regions. Despite these differences, the C. dubliniensis intron possesses self-splicing ability in an in vitro assay. Taken together, these data support the idea that C. albicans and C. stellatoidea should be joined together as variants of the same species while C. dubliniensis is a distinct but closely related microorganism. To our knowledge, the C. albicans and C. dubliniensis introns are the first example of a pair of homologous group I introns differing only by the presence of apparently facultative sequences in some stem-loops suspected to be involved in stabilization of tertiary structure.  相似文献   

20.
In this study the effect of ontogenetic drift on crassulacean acid metabolism (CAM) was investigated in the aquatic CAM-isoetid Littorella uniflora. The results of this study strengthen the general hypothesis of CAM being a carbon-conserving mechanism in aquatic plants, because high-CAM capacity (45–183 μequiv. g−1 FW) was present in all leaves of L. uniflora irrespective of age. Since possession of CAM in aquatic plants allows CO2 uptake throughout the light/dark cycle, presence of CAM in all leaves influences the carbon balance of L. uniflora positively. On average for all lakes, different leaf classes accounted for 11–36% of the total dark CO2 uptake by the individual plant.

The capacity for both CAM and photosynthesis declined with increasing leaf age, and was in the oldest leaves only 25–53% of the capacity in the youngest. The photosynthetic capacity was estimated to be sufficiently high to ensure refixation of the CO2 released from malate during decarboxylation in the daytime. In line with this, a linear coupling between CAM capacity and photosynthetic capacity was found. Parallel to the change in photosynthetic capacity, an age-related change in total ribulose-bisphosphate carboxylase/oxygenase (rubisco) activity from 732 μmol C g−1 DW h−1 in the youngest leaves to 346 μmol C g−1 DW h−1 in the oldest was observed. In contrast, no significant change in phosphoenolpyruvate carboxylase (PEPcase) activity with leaf age was observed (means ranged between 46 and 156 μmol C g−1 DW h−1).  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号