首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study is to determine the effects of centromeric heterochromatin on centromere separation. Amniotic cell cultures in which the centromeric heterochromatin of one chromosome was at least twice as large (qh+) as the heterochromatin (qh) in the homologous chromosome were selected. Fifteen amniotic cell samples with 1qh+, 9qh+ or 16qh+ were studied. The size of the centromeric heterochromatin was directly correlated with the delay in centromere separation. The chromosome with the smaller centromeric heterochromatin tended to show earlier centromere separation than the homologue with the larger heterochromatin. Our results suggest that the quantity of centromeric heterochromatin may influence the genetic control of centromere separation.  相似文献   

2.
A relationship between the sequence of centromere separation and quantity of pericentromeric constitutive heterochromatin was studied using bone marrow cells ofMus musculus molossinus and three cell lines, viz., SEWA-Rec 4, brain tumor and L-cells, ofM. m. domesticus origin. The timing of separation of a centromere into two daughter centromeres is related to the quantity of pericentromeric heterochromatin. In these genomes, having qualitatively uniform DNA in their heterochromatin fraction, the chromosomes with none or small quantities of heterochromatin separate first. These are followed by those chromosomes which have increasingly larger quantities of heterochromatin. It appears that one function of repetitive DNA (pericentromeric heterochromatin) is to regulate the timing of separation of centromeres.  相似文献   

3.
Pericentric heterochromatin, while often considered as “junk” DNA, plays important functions in chromosome biology. It contributes to sister chromatid cohesion, a process mediated by the cohesin complex that ensures proper genome segregation during nuclear division. Long stretches of heterochromatin are almost exclusively placed at centromere-proximal regions but it remains unclear if there is functional (or mechanistic) importance in linking the sites of sister chromatid cohesion to the chromosomal regions that mediate spindle attachment (the centromere). Using engineered chromosomes in Drosophila melanogaster, we demonstrate that cohesin enrichment is dictated by the presence of heterochromatin rather than centromere proximity. This preferential accumulation is caused by an enrichment of the cohesin-loading factor (Nipped-B/NIPBL/Scc2) at dense heterochromatic regions. As a result, chromosome translocations containing ectopic pericentric heterochromatin embedded in euchromatin display additional cohesin-dependent constrictions. These ectopic cohesion sites, placed away from the centromere, disjoin abnormally during anaphase and chromosomes exhibit a significant increase in length during anaphase (termed chromatin stretching). These results provide evidence that long stretches of heterochromatin distant from the centromere, as often found in many cancers, are sufficient to induce abnormal accumulation of cohesin at these sites and thereby compromise the fidelity of chromosome segregation.  相似文献   

4.
5.
L Sánchez  P Martínez  V Goyanes 《Génome》1991,34(5):710-713
Human chromosomes were treated with 5-azacytidine and analyzed by whole-mount electron microscopy. This base analogue produces undercondensation of heterochromatin and separation of the centromere from the bulk of pericentromeric heterochromatin in chromosomes 1, 9, 15, and 16, which allows clear delimitation of the centromere regions. A quantitative analysis of centromeres showed that chromosomes 1, 9, and 16 have centromeres of different size. The centromere of chromosome 15 is similar in size to that of chromosome 9 and different from those of chromosomes 1 and 16. No interindividual variation for centromere size was found. A positive correlation between centromere and chromosome size was found for the chromosomes analyzed.  相似文献   

6.
Mammalian centromeres are embedded within heterochromatin, a specialized chromatin assembled onto repetitive DNA that forms the primary constriction of chromosomes. In early mitosis, the bulk of cohesin dissociates from chromosomes, but a small fraction is spared at the centromere providing the ultimate linker between sister chromatid pairs, essential for their proper attachment to the mitotic spindle. Whether heterochromatin plays a role in the protection of centromere cohesion has long been controversial. In this issue of EMBO Reports, Yi et al show that heterochromatin protein 1 (HP1) isoforms α and γ act redundantly to protect mitotic centromere cohesion through the recruitment of the cohesion protector Haspin 1 .  相似文献   

7.
8.
In the In(1LR)pn2a rearrangement, the 1A-2E euchromatic segment is transposed to the vicinity of X heterochromatin (Xh), resulting in position effect variegation (PEV) of the genes in the 2BE region. Practically the whole X-linked heterochromatin is situated adjacent to variegated euchromatic genes. Secondary rearrangements showing weakening or reversion of PEV were obtained by irradiation of the In(1LR)pn2a. These rearrangements demonstrate a positive correlation between the strength of PEV of the wapl locus and the sizes of the adjacent heterochromatic blocks carrying the centromere. The smallest PEV-inducing fragment consists of a block corresponding to approximately 10% of Xh and containing the entire XR, the centromere, and a very proximal portion of XL heterochromatin. Heterochromatic blocks retaining the entire XR near the 2E region, but lacking the centromere, show no PEV. Reversion of PEV was also observed as a result of an internal rearrangement of the Xh blocks where the centromere is moved away from the eu-heterochromatin boundary but the amount of X heterochromatin remaining adjacent to 2E is unchanged. We propose a primary role of the X pericentromeric region in PEV induction and an enhancing effect of the other blocks, positively correlated with their size.  相似文献   

9.
Mouse centromeric heterochromatin: Isolation and some characteristics   总被引:2,自引:0,他引:2  
A method is suggested for isolation of highly purified mouse centromeric heterochromatin. Treatment of mouse liver nuclei with decreasing concentrations of Ca2+ resulted in the gradual unraveling of chromatin in the nucleus and at 0.1 mM Ca2+ electron microscopy revealed several dense particles per nucleus, surrounded by decondensed chromatin. These particles, assumed to represent centromere regions of interphase chromosomes by in situ hybridization with radioactive mouse satellite DNA and by differential staining for centromere heterochromatin, were isolated in preparative amounts and their DNA and protein composition was analyzed. The preparation represented practically pure mouse centromere heterochromatin, since more than 90% of its DNA was satellite DNA.  相似文献   

10.
Attachment, or cohesion, between sister chromatids is essential for their proper segregation in mitosis and meiosis [1,2]. Sister chromatids are tightly apposed at their centromeric regions, but it is not known whether this is due to cohesion at the functional centromere or at flanking centric heterochromatin. The Drosophila MEI-S332 protein maintains sister-chromatid cohesion at the centromeric region [3]. By analyzing MEI-S332's localization requirements at the centromere on a set of minichromosome derivatives [4], we tested the role of heterochromatin and the relationship between cohesion and kinetochore formation in a complex centromere of a higher eukaryote. The frequency of MEI-S332 localization is decreased on minichromosomes with compromised inheritance, despite the consistent presence of two kinetochore proteins. Furthermore, MEI-S332 localization is not coincident with kinetochore outer-plate proteins, suggesting that it is located near the DNA. We conclude that MEI-S332 localization is driven by the functional centromeric chromatin, and binding of MEI-S332 is regulated independently of kinetochore formation. These results suggest that in higher eukaryotes cohesion is controlled by the functional centromere, and that, in contrast to yeast [5], the requirements for cohesion are separable from those for kinetochore assembly.  相似文献   

11.
Transcription within a functional human centromere   总被引:11,自引:0,他引:11  
  相似文献   

12.
The dicentric and multicentric chromosomes in L cells and a brain tumor cell line of mouse display only one site of kinetochore formation associated with the active centromere. The accessory or inactive centromeres show premature separation. These cell lines were treated with 10–6 M 5-bromodeoxyuridine (BrdUrd) followed by anti-BrdUrd antibody to study the pattern of replication of pericentric heterochromatin flanking the active vs inactive centromeres. Regardless of its quantity, heterochromatin around the inactive centromere replicates earlier than that associated with the active centromere. There appears to be a relationship between the timing of separation of a centromere and the timing of replication of pericentric heterochromatin. The premature replication of heterochromatin associated with an inactive centromere may be responsible for its premature separation and, hence, inactivity.  相似文献   

13.
The centromere is the DNA locus that dictates kinetochore formation and is visibly apparent as heterochromatin that bridges sister kinetochores in metaphase. Sister centromeres are compacted and held together by cohesin, condensin, and topoisomerase-mediated entanglements until all sister chromosomes bi-orient along the spindle apparatus. The establishment of tension between sister chromatids is essential for quenching a checkpoint kinase signal generated from kinetochores lacking microtubule attachment or tension. How the centromere chromatin spring is organized and functions as a tensiometer is largely unexplored. We have discovered that centromere chromatin loops generate an extensional/poleward force sufficient to release nucleosomes proximal to the spindle axis. This study describes how the physical consequences of DNA looping directly underlie the biological mechanism for sister centromere separation and the spring-like properties of the centromere in mitosis.  相似文献   

14.
The centromere is essential for the segregation of chromosomes, as it serves as attachment site for microtubules to mediate chromosome segregation during mitosis and meiosis. In most organisms, the centromere is restricted to one chromosomal region that appears as primary constriction on the condensed chromosome and is partitioned into two chromatin domains: The centromere core is characterized by the centromere-specific histone H3 variant CENP-A (also called cenH3) and is required for specifying the centromere and for building the kinetochore complex during mitosis. This core region is generally flanked by pericentric heterochromatin, characterized by nucleosomes containing H3 methylated on lysine 9 (H3K9me) that are bound by heterochromatin proteins. During mitosis, these two domains together form a three-dimensional structure that exposes CENP-A-containing chromatin to the surface for interaction with the kinetochore and microtubules. At the same time, this structure supports the tension generated during the segregation of sister chromatids to opposite poles. In this review, we discuss recent insight into the characteristics of the centromere, from the specialized chromatin structures at the centromere core and the pericentromere to the three-dimensional organization of these regions that make up the functional centromere.  相似文献   

15.
Karyotypes of more than 120 species of 33 genera of the Palearctic blackflies (Simuliidae) were studied on squashed acetoorcein stained preparations of salivary gland polytene chromosomes in larvae. In the course of evolution of the family, a significant complication was noticed in the morphology of centromere regions of polytene chromosomes. In plesiomorphic species, centromeres are not pronounced morphologically and the general picture does not differ from that of other bands and interbands of the polytene chromosome. In species with apomorphic characters, a distinct precentromeric heterochromatin appears, whose manifestation is responsible for morphological diversity of centromere zones in polytene chromosomes. They are represented either by conspicuous slightly thickened heterochromatic bands or by large amplified blocks of heterochromatin or puff-like structure, being considerably extended as a result of despiralization of precentromeric heterochromatin. There are species, which more commonly lack chromocentre and their chromosomes are separated. Some other species have ectopic contacts between pricentromeric heterochromatin. In some species, this heterochromatin is organized as a compact chromocentre. This has been found only in representatives of southern latitudes, most frequently in evolutionarily young species with narrow specialization.  相似文献   

16.
Summary Twelve presumptive structurally altered Y chromosomes were studied with Q-, G-, G-11, C-, Cd, and lateral asymmetric banding techniques and were compared with normal X and Y chromosmes and with an abnormal [i(Yq)] Y chromosome that exhibited intact fluorescence. Significant to this work is the fact that the Y chromosome has a small block of Giemsa-11 heterochromatin adjacent to the centromere on the long arm, while the X chromosome does not, which allows a distinction between the X-and Y-derived chromosomes. Two of the twelve altered chromosomes of either X or Y origin are small nonfluorescent rings. Each ring has a G-11-positive band of heterochromatin at the centromere, confirming Y origin. Each of the normal-length nonfluorescent presumed Ys and a Y with a fluorescent band in the center have one G-11 band at the centromere and another at an equal distance from the end of the long arm, the bands also being Cd positive, indicating that these chromosomes are pseudodicentric. The likely mechanism of origin is a break at the distal bright heterochromatin/ euchromatin junction (or within the bright segment in the chromosome with the bright center band), fusion of the sister chromatids at the breakpoints, and loss of the distal segment.  相似文献   

17.
We repeatedly released a distal block of heterochromatin lacking a natural centromere in mitotic cells and assayed its segregation. At anaphase, control acentric fragments typically remained unoriented between daughter nuclei and were subsequently lost. Fragments containing the brownDominant (bWD) heterochromatic element displayed regular anaphase movement upon release. These fragments were found to segregate and function based on both cytological and phenotypic criteria. We also found that intact bWD-containing chromosomes normally display occasional dicentric behavior, suggesting that bWD has centromeric activity on the intact chromosome as well. Our findings suggest that centromere competence is innate to satellite-containing blocks of heterochromatin, challenging models for centromere identity in which competence is an acquired characteristic.  相似文献   

18.
19.
Inactive centromeres of stable dicentric chromosomes provide a unique opportunity to examine the resolution of sister chromatid cohesion in mitosis. Here we show for the first time that inactive centromeres are composed of heterochromatin, as defined by the presence of heterochromatin protein HP1(Hs alpha). We then show that both the inner centromere protein (INCENP) and its binding partner Aurora-B/AIM-1 kinase can also be detected at the inactive centromere. Thus, targeting of the chromosomal passengers is not dependent upon the presence of an active centromere/kinetochore. Furthermore, we show that the association of INCENP with the inactive centromere correlates strictly with the state of cohesion between sister chromatids: loss of cohesion is accompanied by loss of detectable INCENP. These results are consistent with recent suggestions that one function of the chromosomal passenger proteins may be to regulate sister chromatid separation in mitosis.  相似文献   

20.
Whereas the major satellite fraction in mouse extends its domain from the centromere to the distal end of the pericentric heterochromatin, the minor satellite DNA is present specifically in the centromere or primary constriction. We hybridized the biotinylated minor satellite sequence to L929 cells of mouse origin. The sequence hybridized to all chromosomes. Whereas hybridization was detected on all active centromeres, the inactive centromeres in certain dicentrics did not show any signal. This satellite, however, was detected in all inactive centromeres in a heptacentric chromosome. The intensity of fluorescence on the inactive centromeres of the heptacentric was similar to that present on the active centromeres. Several heterochromatin blocks, which were not associated with any centromere, were also found to lack hybridization with the minor satellite. The inactive centromeres, whether carrying the minor satellite DNA fraction or not, generally do not react with the antikinetochore antibodies present in the scleroderma serum. These studies are interpreted to show that (1) the primary constriction in mouse can be formed without the participation of minor satellite, (2) heterochromatin in mouse may constitute without this fraction, (3) the major and minor satellite may not be interspersed but are joined at some defined boundary, and (4) the binding of CENP-B does not depend upon the quantity of minor satellite or the number of CENP boxes present in the inactive centromeres.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号