首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Insulin has been shown to alter long-chain fatty acid (LCFA) metabolism and malonyl-CoA production in muscle. However, these alterations may have been induced, in part, by the accompanying insulin-induced changes in glucose uptake. Thus, to determine the effects of insulin on LCFA metabolism independently of changes in glucose uptake, rat hindquarters were perfused with 600 microM palmitate and [1-(14)C]palmitate and with either 20 mM glucose and no insulin (G) or 6 mM glucose and 250 microU/ml of insulin (I). As dictated by our protocol, glucose uptake was not significantly different between the G and I groups (10.3 +/- 0.6 vs. 11.0 +/- 0.5 micromol x g(-1) x h(-1); P > 0.05). Total palmitate uptake and oxidation were not significantly different (P > 0.05) between the G (10.1 +/- 1.0 and 0.8 +/- 0.1 nmol x min(-1) x g(-1)) and I (10.2 +/- 0.6 and 1.1 +/- 0.2 nmol. min(-1) x g(-1)) groups. Preperfusion muscle triglyceride and malonyl-CoA levels were not significantly different between the G and I groups and did not change significantly during the perfusion (P > 0.05). Similarly, muscle triglyceride synthesis was not significantly different between groups (P > 0.05). These results demonstrate that the presence of insulin under conditions of similar glucose uptake does not alter LCFA metabolism and suggest that cellular mechanisms induced by carbohydrate availability, but independent of insulin, may be important in the regulation of muscle LCFA metabolism.  相似文献   

2.
3.
To determine the role of AMP-activated protein kinase (AMPK) activation on the regulation of fatty acid (FA) uptake and oxidation, we perfused rat hindquarters with 6 mM glucose, 10 microU/ml insulin, 550 microM palmitate, and [14C]palmitate during rest (R) or electrical stimulation (ES), inducing low-intensity (0.1 Hz) muscle contraction either with or without 2 mM 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR). AICAR treatment significantly increased glucose and FA uptake during R (P < 0.05) but had no effect on either variable during ES (P > 0.05). AICAR treatment significantly increased total FA oxidation (P < 0.05) during both R (0.38 +/- 0.11 vs. 0.89 +/- 0.1 nmol x min(-1) x g(-1)) and ES (0.73 +/- 0.11 vs. 2.01 +/- 0.1 nmol x min(-1) x g(-1)), which was paralleled in both conditions by a significant increase and significant decrease in AMPK and acetyl-CoA carboxylase (ACC) activity, respectively (P < 0.05). Low-intensity muscle contraction increased glucose uptake, FA uptake, and total FA oxidation (P < 0.05) despite no change in AMPK (950.5 +/- 35.9 vs. 1,067.7 +/- 58.8 nmol x min(-1) x g(-1)) or ACC (51.2 +/- 6.7 vs. 55.7 +/- 2.0 nmol x min(-1) x g(-1)) activity from R to ES (P > 0.05). When contraction and AICAR treatment were combined, the AICAR-induced increase in AMPK activity (34%) did not account for the synergistic increase in FA oxidation (175%) observed under similar conditions. These results suggest that while AMPK-dependent mechanisms may regulate FA uptake and FA oxidation at rest, AMPK-independent mechanisms predominate during low-intensity muscle contraction.  相似文献   

4.
5-Aminoimidazole-4-carboxamide ribonucleoside (AICAR) reportedly activates AMP-activated protein kinase (AMPK) and stimulates glucose uptake by skeletal muscle cells. In this study, we investigated the role of AMPK in AICAR-induced glucose uptake by 3T3-L1 adipocytes and rat soleus muscle cells by overexpressing wild-type and dominant negative forms of the AMPKalpha2 subunit by use of adenovirus-mediated gene transfer. Overexpression of the dominant negative mutant had no effect on AICAR-induced glucose transport in adipocytes, although AMPK activation was almost completely abolished. This suggests that AICAR-induced glucose uptake by 3T3-L1 adipocytes is independent of AMPK activation. By contrast, overexpression of the dominant negative AMPKalpha2 mutant in muscle markedly suppressed both AICAR-induced glucose uptake and AMPK activation, although insulin-induced uptake was unaffected. Overexpression of the wild-type AMPKalpha2 subunit significantly increased AMPK activity in muscle but did not enhance glucose uptake. Thus, although AMPK activation may not, by itself, be sufficient to increase glucose transport, it appears essential for AICAR-induced glucose uptake in muscle.  相似文献   

5.
To evaluate the effects of contractions on thekinetics of uptake and oxidation of palmitate in a physiological musclepreparation, rat hindquarters were perfused with glucose (6 mmol/l),albumin-bound [1-14C]palmitate, andvarying amounts of albumin-bound palmitate (200-2,200 µmol/l) atrest and during muscle contractions. When plotted against the unboundpalmitate concentration, palmitate uptake and oxidation displayedsimple Michaelis-Menten kinetics with estimated maximal velocity(Vmax)and Michaelis-Menten constant(Km) values of42.8 ± 3.8 (SE)nmol · min1 · g1and 13.4 ± 3.4 nmol/l for palmitate uptake and 3.8 ± 0.4 nmol · min1 · g1and 8.1 ± 2.9 nmol/l for palmitate oxidation, respectively, at rest.Whereas muscle contractions increased theVmaxfor both palmitate uptake and oxidation to 91.6 ± 10.1 and 16.5 ± 2.3 nmol · min1 · g1,respectively, theKm remainedunchanged.Vmaxand Km estimates obtained from Hanes-Woolf plots (substrate concentration/velocity vs.substrate concentration) were not significantly different. In theresting perfused hindquarter, an increase in palmitate delivery from31.9 ± 0.9 to 48.7 ± 1.2 µmol · g1 · h1by increasing perfusate flow was associated with a decrease in thefractional uptake of palmitate so that the rates of uptake andoxidation of palmitate remained unchanged. It is concluded that therates of uptake and oxidation of long-chain fatty acids (LCFA) saturatewith an increase in the concentration of unbound LCFA in perfusedskeletal muscle and that muscle contractions, but not an increase inplasma flow, increase theVmaxfor LCFA uptake and oxidation. The data are consistent with the notion that uptake of LCFA in muscle may be mediated in part by a transport system.

  相似文献   

6.
AMP-activated protein kinase (AMPK) independently increases glucose and long-chain fatty acid (LCFA) utilization in isolated cardiac muscle preparations. Recent studies indicate this may be due to AMPK-induced phosphorylation and activation of nitric oxide synthase (NOS). Given this, the aim of the present study was to assess the effects of AMPK stimulation by 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR; 10 mg.kg(-1).min(-1)) on glucose and LCFA utilization in cardiac muscle and to determine the NOS dependence of any observed effects. Catheters were chronically implanted in a carotid artery and jugular vein of Sprague-Dawley rats. After 4 days of recovery, conscious, unrestrained rats were given either water or water containing 1 mg/ml nitro-L-arginine methyl ester (L-NAME) for 2.5 days. After an overnight fast, rats underwent one of four protocols: saline, AICAR, AICAR + L-NAME, or AICAR + Intralipid (20%, 0.02 ml.kg(-1).min(-1)). Glucose was clamped at approximately 6.5 mM in all groups, and an intravenous bolus of 2-deoxy-[(3)H]glucose and [(125)I]-15-(p-iodophenyl)-3-R,S-methylpentadecanoic acid was administered to obtain indexes of glucose and LCFA uptake and clearance. Despite AMPK activation, as evidenced by acetyl-CoA carboxylase (Ser(221)) and AMPK phosphorylation (Thr(172)), AICAR increased cardiac LCFA but not glucose clearance. L-NAME + AICAR established that this effect was not due to NOS activation, and AICAR + Intralipid showed that increased cardiac LCFA clearance was not LCFA-concentration dependent. These results demonstrate that, in vivo, AMPK stimulation increases LCFA but not glucose clearance by a NOS-independent mechanism.  相似文献   

7.
8.
9.
10.
Muscle contraction activates AMP-activated protein kinase (AMPK) and extracellular signal-regulated kinase (ERK1/2), two signaling molecules involved in the regulation of muscle metabolism. The purpose of this study was to determine whether activation of AMPK and/or ERK1/2 contributes to the regulation of muscle fatty acid (FA) uptake and oxidation in contracting muscle. Rat hindquarters were perfused during rest (R) or electrical stimulation (E) of increasing intensity by manipulating train duration (E1 = 25 ms, E2 = 50 ms, E3 = 100 ms, E4 = 200 ms). For matched FA delivery, FA uptake was significantly greater than R during E1, E2, and E3 (7.8 +/- 0.7 vs. 14.4 +/- 0.3, 16.9 +/- 0.8, 15.2 +/- 0.5 nmol.min(-1).g(-1), respectively, P < 0.05), but not during E4 (8.3 +/- 0.3 nmol.min(-1).g(-1), P > 0.05). FA oxidation was significantly greater than R during E1 and E2 (1.5 +/- 0.1 vs. 2.3 +/- 0.2, 2.5 +/- 0.2 nmol.min(-1).g(-1), P < 0.05) before returning to resting levels for E3 and E4 (1.8 +/- 0.1 and 1.5 +/- 0.2 nmol.min(-1).g(-1), P > 0.05). A positive correlation was found between FA uptake and ERK1/2 phosphorylation from R to E3 (R(2) = 0.55, P < 0.05) and between FA oxidation and ERK1/2 phosphorylation from R to E2 (R(2) = 0.76, P < 0.05), correlations that were not maintained when the data for E4 and E3 and E4, respectively, were included in the analysis (R(2) = 0.04 and R(2) = 0.03, P > 0.05). A positive correlation was also found between FA uptake and FA oxidation and AMPK activity for all exercise intensities (R(2) = 0.57, R(2) = 0.65 respectively, P < 0.05). These results, in combination with previous data from our laboratory, suggest that ERK1/2 and AMPK are the predominant signaling molecules regulating FA uptake and oxidation during low- to moderate-intensity muscle contraction and during moderate- to high-intensity muscle contraction, respectively.  相似文献   

11.
Recent studies indicate that the LKB1 tumour suppressor protein kinase is the major "upstream" activator of the energy sensor AMP-activated protein kinase (AMPK). We have used mice in which LKB1 is expressed at only approximately 10% of the normal levels in muscle and most other tissues, or that lack LKB1 entirely in skeletal muscle. Muscle expressing only 10% of the normal level of LKB1 had significantly reduced phosphorylation and activation of AMPKalpha2. In LKB1-lacking muscle, the basal activity of the AMPKalpha2 isoform was greatly reduced and was not increased by the AMP-mimetic agent, 5-aminoimidazole-4-carboxamide riboside (AICAR), by the antidiabetic drug phenformin, or by muscle contraction. Moreover, phosphorylation of acetyl CoA carboxylase-2, a downstream target of AMPK, was profoundly reduced. Glucose uptake stimulated by AICAR or muscle contraction, but not by insulin, was inhibited in the absence of LKB1. Contraction increased the AMP:ATP ratio to a greater extent in LKB1-deficient muscles than in LKB1-expressing muscles. These studies establish the importance of LKB1 in regulating AMPK activity and cellular energy levels in response to contraction and phenformin.  相似文献   

12.
13.
Selenium-enriched exopolysaccharides (EPS) produced by Enterobacter cloacae Z0206 have been proven to possess effect on reducing blood glucose level in diabetic mice. To investigate the specific mechanism, we studied the effects of oral supply with EPS on skeletal muscle glucose transportation and consumption in high-fat-diet-induced diabetic KKAy mice. We found that EPS supplementation increased expressions of glucose transporter 4 (Glut4), hexokinase 2 (hk2), phosphorylation of AMP-activated kinase subunit α2 (pAMPKα2), and peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), and increased expression of characteristic protein of oxidative fibers such as troponin I and cytochrome c (Cytc). Furthermore, we found that EPS increased glucose uptake and expressions of pAMPKα2 and PGC-1α in palmitic acid (PA)-induced C2C12 cells. However, while EPS inhibited AMPKα2 with interference RNA (iRNA), effects of EPS on the improvement of glucose uptake diminished. These results indicated that EPS may improve skeletal muscle glucose uptake of diabetic KKAy mice through AMPKα2-PGC-1α pathway.  相似文献   

14.
Saturation kinetics of palmitate uptake in perfused skeletal muscle   总被引:1,自引:0,他引:1  
We investigated the kinetics of palmitate uptake in a physiological skeletal muscle preparation by using the isolated perfused rat hindquarter. When plotted against the unbound plasma palmitate concentration, palmitate uptake displayed a simple Michaelis-Menten relation with a calculated Vmax and Km of 16.3 nmol.min-1.g-1 and 0.06 mumol.l-1, respectively. These results show that, as in isolated cell systems, uptake of free fatty acids in perfused skeletal muscle follows saturation kinetics consistent with carrier-mediated membrane transport of free fatty acids.  相似文献   

15.
Effects of insulin on exchanges of glucose across skeletal muscle and mammary tissue were measured in short-term studies in lactating ewes. Insulin secretion was suppressed by a primed/continuous infusion of somatostatin, then insulin was administered by continuous intravenous infusion of doses that were increased, in a step-wise manner, from 0 to 2 U h-1. Plasma glucose was maintained essentially constant by frequent monitoring and intravenous administration of exogenous glucose. Somatostatin suppressed but did not completely inhibit insulin secretion as shown by maintenance of plasma concentration of C-peptide. As plasma insulin was increased, while arterial glucose was maintained stable, uptake of glucose by skeletal muscle increased and glucose uptake by the mammary gland decreased. These observations confirm the role of insulin in regulating glucose uptake by skeletal muscle and raise the possibility that insulin also regulates glucose uptake by the mammary gland.  相似文献   

16.
17.
18.
5-Aminoimidazole-4-carboxamide1--D-ribofuranoside(AICAR) is taken up by perfused skeletal muscle andphosphorylated to form5-aminoimidazole-4-carboxamide-1--D-ribofuraosyl-5'-monophosphate (analog of 5'-AMP) with consequent activation of AMP-activated protein kinase, phosphorylation of acetyl-CoA carboxylase, decrease inmalonyl-CoA, and increase in fatty acid oxidation. Thisstudy was designed to determine the effect of increasing levels ofpalmitate on the rate of fatty acid oxidation. Malonyl-CoAconcentration was manipulated with AICAR at different palmitateconcentrations. Rat hindlimbs were perfused with Krebs-Henseleitbicarbonate containing 4% bovine serum albumin, washed bovine redcells, 200 µU/ml insulin, 10 mM glucose, and different concentrationsof palmitate (0.1-1.0 mM) without or with AICAR (2.0 mM).Perfusion with medium containing AICAR was found to activateAMP-activated protein kinase in skeletal muscle, inactivate acetyl-CoAcarboxylase, and decrease malonyl-CoA at all concentrations ofpalmitate. The rate of palmitate oxidation increased as a function ofpalmitate concentration in both the presence and absence of AICAR butwas always higher in the presence of AICAR. These results provideadditional evidence that malonyl-CoA is an important regulator of therate of fatty acid oxidation at palmitate concentrations in thephysiological range.

  相似文献   

19.
20.
The effect of insulin on glucose entry has been studied in monolayer cultures of human diploid fibroblastic cells. Influence of insulin on total cell glucose incorporation was evaluated using [14C] glucose. Glucose incorporation was increased up to two-fold in the presence of insulin. Insulin action occurred within 30 minutes and could be observed with insulin concentrations as low as 10(-10) M (10 microU)ml). The action of insulin was enhanced by preincubation in glucose-free medium. After glucose starvation the cells converted glucose primarily to glycogen and nucleotides, and the stimulation by insulin was observed equally in both fractions. Influence of insulin on the kinetics of hexose transport was studied using 2-deoxyglucose and 3-0-methyl glucose. A large diffusion component was corrected using rho-chloromercuribenzoic acid or phloridzin. Km for facilitated diffusion averaged 1.9 mM for 2-deoxyglucose and 5.3 mM for 3-O-methyl glucose, and Vmax ranged from 10-24 nmoles/min/mg cell protein. Insulin resulted in a 150% increase in Vmax with no significant change in Km. The data suggest that human diploid fibroblasts can be a useful system for the study of insulin's glucoregulatory action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号