首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 335 毫秒
1.
2.
Collagen biosynthesis by organ cultures of the hypertrophic zone of calf growth-plate cartilage was studied. It was found that this tissue devotes a large portion of its biosynthetic commitment towards production of a collagen molecule comprising short collagen chains. This collagen is similar to short-chain collagens synthesized by chick-embryo tibiotarsus, rabbit growth-plate cartilage and chick chondrocytes grown in three-dimensional gels. However, in contrast with the collagen synthesized in these three systems, the short-chain collagen synthesized by calf growth-plate hypertrophic cartilage is stabilized by disulphide bonds localized within the pepsin-resistant triple-helical collagenous domains of these molecules.  相似文献   

3.
Analyses were made of the minor collagens synthesized by cultures of chondrocytes derived from 14-day chick embryo sterna. Comparisons were made between control cultures, cultures grown for 9 days in 5-bromo-2'-deoxyuridine (BrdU) and clones of chondrocytes grown to senescence. Separation of minor collagens from interstitial collagens was achieved by differential salt precipitation in the presence of carrier collagens in acid conditions. The precipitate at 0.9 M NaCl 0.5 M acetic acid from control cultures was shown by CNBr peptide analysis to contain only the alpha 1(II) chain of type II collagen, whereas after BrdU treatment or growth to senescence synthesis of only alpha 1(I) and alpha 2(I) chains occurred. The synthesis of type III collagen was not detected. Analysis of the precipitate at 2.0 M NaCl, 0.5 M HAc from control cultures demonstrated the synthesis of 1 alpha, 2 alpha and 3 alpha chains together with the synthesis of short chain (SC) collagen of Mr 43000 after pepsin digestion. After BrdU treatment or growth to senescence alpha chains were isolated which possessed the migration positions on polyacrylamide gel electrophoresis (PAGE), or the elution positions on CM-cellulose chromatography, of the alpha 1(V) and alpha 2(V) chains of type V collagen. In addition, for BrdU-treated but not for control cultures, intracellular immunofluorescent staining was observed with a monoclonal antibody which specifically recognizes an epitope present in the triple helix of type V collagen. Synthesis of short chain (SC) collagen was not detected after BrdU treatment or growth to senescence. These results suggest that chick chondrocytes grown in conditions known to cause switching of collagen synthesis from type II to type I collagen also undergo a switch from the synthesis of 1 alpha, 2 alpha and 3 alpha chains to the synthesis of the alpha 1(V) and alpha 2(V) chains of type V collagen. It appears that there are several cartilage-specific collagens which together undergo a regulatory control to the synthesis of collagens typical of other connective tissues.  相似文献   

4.
In this study we describe the collagen pattern synthesized by differentiating fetal human chondrocytes in vitro and correlate type X collagen synthesis with an intracellular increase of calcium and with matrix calcification. We show that type II collagen producing fetal human epiphyseal chondrocytes differentiate in suspension culture over agarose into hypertrophic cells in the absence of ascorbate, in contrast to chicken chondrocytes which have been shown to require ascorbate for hypertrophic differentiation. Analysis of the collagen synthesis by metabolic labeling and immunoprecipitation as well as by immunofluorescence double staining with anti type I, II or X collagen antibodies revealed that type X collagen synthesis was initiated during the third week. After 4 weeks culture over agarose we identified cells staining for both type I and X collagen, indicating further differentiation of chondrocytes to a new type of 'post-hypertrophic' cell. This cell type, descending from a type X collagen producing chondrocyte, is different from the previously described 'dedifferentiated' or 'modulated' types I and III collagen producing cell derived from a type II collagen producing chondrocyte. The appearance of type I collagen synthesis in agarose cultures was confirmed by metabolic labeling and immunoprecipitation and challenges the current view that the chondrocyte phenotype is stable in suspension cultures. An increase in the intracellular calcium concentration from 100 to 250 nM was measured about one week after onset of type X collagen synthesis. First calcium deposits were detected by alizarine red S staining in type X collagen positive cell nodules after 4 weeks, again in the absence of ascorbate. From these observations we conclude a sequence of events ultimately leading to matrix calcification in chondrocyte nodules in vitro that begins with chondrocyte hypertrophy and the initiation of type X collagen synthesis, followed by the increase of intracellular calcium, the deposition of calcium mineral, and finally by the onset of type I collagen synthesis.  相似文献   

5.
In the developing chick embryo tibia type X collagen is synthesized by chondrocytes from regions of hypertrophy and not by chondrocytes from other regions (Capasso, O., G. Tajana, and R. Cancedda, 1984, Mol. Cell. Biol. 4:1163-1168; Schmid, T. M., and T. F. Linsenmayer, 1985, Dev. Biol. 107:375-381). To investigate further the relationship between differentiation of endochondral chondrocytes and type X collagen synthesis we have developed a novel culture system for chondrocytes from 29-31-stage chick embryo tibiae. At the beginning of the culture these chondrocytes are small and synthesize type II and not type X collagen, but when grown on agarose-coated dishes they further differentiate into hypertrophic chondrocytes that synthesize type X collagen. The synthesis of type X collagen has been monitored in cultured cells by analysis of labeled collagens and in vitro translation of mRNAs. When the freshly dissociated chondrocytes are plated in anchorage-permissive dishes, most of the cells attach and dedifferentiate, as revealed by their fibroblastic morphology. Dedifferentiated chondrocytes, after several passages, can still reexpress the differentiated phenotype and continue their development to hypertrophic, type X collagen-synthesizing chondrocytes. Hypertrophic chondrocytes, when plated in anchorage permissive dishes, attach, maintaining the differentiated phenotype, and continue the synthesis of type X collagen.  相似文献   

6.
7.
Single cells from enzymatically dissociated chick embryo tibiae have been cloned and expanded in fresh or conditioned culture media. A cloning efficiency of approximately 13% was obtained using medium conditioned by dedifferentiated chondrocytes. A cloning efficiency of only 1.4% was obtained when conditioned medium from hypertrophic chondrocytes was used, and efficiencies of essentially 0 were found with fresh medium or medium conditioned by J2-3T3 mouse fibroblasts. Cell clones were selected by morphological criteria and clones showing a dedifferentiated phenotype (fibroblast-like) were further characterized. Out of 38 clones analyzed, 17 were able to differentiate to the hypertrophic chondrocyte stage and reconstitute hypertrophic cartilage when placed in the appropriate culture conditions. Cells from these clones expressed the typical markers of chondrocyte differentiation, i.e., type II and type X collagens. Clones not undergoing differentiation continued to express only type I collagen. Hypertrophic chondrocytes from differentiating clones were analyzed at the single cell level by immunofluorescence; all the cells were positive for type X collagen, while approximately 50% of them showed positivity for type II collagen.  相似文献   

8.
9.
Summary Collagen types II and X mRNAs have been demonstrated simultaneously in newly formed hypertrophic chondrocytes of embryonic chick vertebral cartilage using a double-fluorescence in situ hybridization technique. Digoxigenin- and biotin-labelled type-specific collagen II and X cDNA probes were used. In the embryonic chick vertebra at stage 45, two different fluorescence signals (Fluorescein isothiocyanate and Rhodamine) - one for collagen type II mRNA, the other for type X mRNA - showed differential distribution of the two collagen mRNAs in the proliferating and hypertrophic chondrocyte zones. Several layers of newly formed hypertrophic chondrocytes expressing both collagen types II and X genes were identified in the same section as two different fluorescent colour signals. Low levels of fluorescent signals for collagen type II mRNA were also detected in the hypertrophic chondrocyte zone. Cytological identification of maturing chondrocyte phenotypes, expressing collagen mRNAs, is easier in sections processed by non-radioactive in situ hybridization than in those subjected to radioactive in situ hybridization using 3H-labelled cDNA probes.This study demonstrates that double-fluorescence in situ hybridization is a useful tool for simultaneously detecting the expression of two collagen genes in the same chondrocyte population.  相似文献   

10.
The cell cycle kinetic characteristics of chick endochondral chondrocytes differentiating in vitro were studied by flow cytometry. In addition, the synthesis of type I and type X collagens of the same cells was evaluated by immunoprecipitation. Dedifferentiated cells, derived from chick embryo tibiae and grown attached to a substratum, were characterized by type I collagen synthesis, a high growth fraction (GF = 0.94), minimal cell loss factor (phi = 0.02), and a total cell cycle time of the proliferating cells of about 17 h (tG1 = 8 h, tS = 5 h, and tG2 + M = 4 h). Transfer of dedifferentiated cells to suspension culture on agarose-coated dishes induced differentiation to hypertrophic chondrocytes. These were characterized by type X collagen synthesis, a low growth fraction (GF = 0.52), maximal cell loss factor (phi = 1.0), and a total cell cycle time of the proliferating cells of about 73 h (tG1 = 53 h, tS = 12 h, and tG2 + M = 8 h). The transition from dedifferentiated chondrocytes to hypertrophic chondrocytes was accompanied by large increases of the duration of all the cell cycle phases and of the number of quiescent and degenerating cells. Associated with these alterations in cell cycle kinetics was a switch from type I to type X collagen synthesis. Further preliminary data suggest that the population of differentiating chondrocytes (a state between dedifferentiated and hypertrophic chondrocytes) comprises a heterogeneous population of fast and slow growing cells.  相似文献   

11.
During endochondral ossification, resting and proliferating chondrocytes mature into hypertrophic chondrocytes that initiate synthesis of type X collagen. The mechanisms regulating the differential expression of type X collagen gene were examined in confluent Day 12 secondary cultures of chick vertebral chondrocytes in monolayer treated with the vitamin A analog retinoic acid (RA). Preliminary results showed that major effects of RA on chondrocyte gene expression occurred between 24 and 48 h of treatment. Thus in subsequent experiments cultures were treated for 24, 30, 36, 42, 48, 72, 96, and 120 h. Total RNAs were isolated and analyzed by hybridization with 32P-labeled plasmid probes coding for five matrix macromolecules including type X collagen. We found that the steady-state levels of mRNAs for the large keratan sulfate/chondroitin sulfate proteoglycan (KS:CS-PG) core protein and type II collagen decreased several fold between 24 and 48 h of treatment compared to untreated cells, and remained low with further treatment. In sharp contrast, the level of type X collagen mRNA increased threefold by 42 h of treatment; thereafter it began to decrease and reached minimal levels by 72–120 h of treatment. The changes in steady-state mRNA levels during RA regimen paralleled similar changes in relative rates of protein synthesis. The transient up-regulation of type X collagen gene expression at 42 h of treatment was preceded by a five-fold increase in fibronectin gene expression, was followed by a several fold increase in type I collagen gene expression, and was accompanied by cell flattening and loss of the pericellular proteoglycan matrix. Thus, RA treatment leads to a unique biphasic modulation of type X collagen gene expression in maturing chondrocyte cultures. The underlying, RA-sensitive mechanisms effecting this modulation may reflect those normally regulating the differential expression of this collagen gene during endochondral ossification.  相似文献   

12.
Type X collagen alterations in rachitic chick epiphyseal growth cartilage   总被引:2,自引:0,他引:2  
We examined collagens of both normal and vitamin D-deficient chick epiphyseal growth cartilage. Special emphasis was placed on the study of Type X collagen, a recently described product of hypertrophic chondrocytes. Scanning electron microscopy of the epiphyseal growth cartilage of vitamin D-deficient chickens showed an enlarged growth cartilage with a disorganized extracellular matrix. The cartilage collagens were solubilized by proteolytic digestion and disulfide bond reduction of both normal and rachitic growth tissues. Sequential extraction with neutral salt and acetic acid buffers followed by pepsin digestion at 4 degrees C solubilized about 12% of normal tissues and about 7% of collagen from rachitic growth cartilage. Treatment of the pepsin-resistant collagens with neutral salt-dithiothreitol buffer under nondenaturing conditions and a subsequent pepsin digestion increased the yield of solubilized collagen to greater than 95% of the total tissue collagen. Results of the biochemical studies showed a marked increase in the relative proportion of Type X collagen (from 5.6 to 27.9%), a corresponding decrease in the proportions of Types II and IX collagens, and a moderate increase in Type XI collagen in rachitic cartilage. Amino acid analysis indicated that there were no differences in the Types II and X collagens of normal and rachitic cartilage. However, an abnormality in the relative proportions of the CNBr peptides of Type X collagen was detected in the rachitic cartilage. We suggest that the increase in collagen in the rachitic state may reflect increased levels of Type X collagen synthesis by cells in the hypertrophic region. It is likely that in rickets the overproduction of Type X collagen may be a compensatory mechanism by which the hypertrophic chondrocyte attempts to provide a maximum area of calcifiable matrix for the calcium-depleted serum.  相似文献   

13.
14.
Articular cartilage is a permanent tissue whose cells do not normally take part in the endochondral ossification process. To determine whether articular chondrocytes possess the potential to express traits associated with this process such as cell hypertrophy and type X collagen, chondrocytes were isolated from adult chicken tibial articular cartilage and maintained in long-term suspension cultures. As a positive control in these experiments, we used parallel cultures of chondrocytes from the caudal portion of chick embryo sternum. Both articular and sternal chondrocytes readily proliferated and progressively increased in size with time in culture. Many had undergone hypertrophy by 4-5 weeks. Analysis of medium-released collagenous proteins revealed that both articular and sternal chondrocytes initiated type X collagen synthesis between 3 and 4 weeks of culture; synthesis of this macromolecule increased with further growth. Immunofluorescence analysis of 5-week-old cultures showed that about 15% of articular chondrocytes and 30% of sternal chondrocytes produced type X collagen; strikingly, there appeared to be no obvious relationship between type X collagen production and cell size. The results of this study show that articular chondrocytes from adult chicken tibia possess the ability to express traits associated with endochondral ossification when exposed to a permissive environment. They suggest also that the process of cell hypertrophy and initiation of type X collagen synthesis are independently regulated both in articular and sternal chondrocytes.  相似文献   

15.
The myc oncogene is expressed by proliferating quail embryo chondrocytes (QEC) grown as adherent cells and is repressed in QEC maintained in suspension culture. To investigate the interference of myc expression during chondrocyte differentiation, QEC were infected with a retrovirus carrying the v-myc oncogene (QEC-v-myc). Uninfected or helper virus-infected QEC were used as control. In adherent culture, QEC-v-myc displayed a chondrocytic phenotype and synthesized type II collagen and Ch21 protein, while control chondrocytes synthesized type I and type II collagen with no Ch21 protein detected as long as the attachment to the plastic was kept. In suspension culture, QEC-v-myc readily aggregated and within 1 week the cell aggregates released small single cells; still they secreted only type II collagen and Ch21 protein. In the same conditions control cell aggregates released hypertrophic chondrocytes producing type II and type X collagens and Ch21 protein. In the appropriate culture conditions, QEC-v-myc reconstituted a tissue defined as nonhypertrophic, noncalcifying cartilage by the high cellularity, the low levels of alkaline phosphatase enzymatic activity, and the absence of type X collagen synthesis and of calcium deposition. We conclude that the constitutive expression of the v-myc oncogene keeps chondrocytes in stage I (active proliferation and synthesis of type II collagen) and prevents these cells from reconstituting hypertrophic calcifying cartilage.  相似文献   

16.
We have examined whether the production of hypertrophic cartilage matrix reflecting a late stage in the development of chondrocytes which participate in endochondral bone formation, is the result of cell lineage, environmental influence, or both. We have compared the ability of cultured limb mesenchyme and mesectoderm to synthesize type X collagen, a marker highly selective for hypertrophic cartilage. High density cultures of limb mesenchyme from stage 23 and 24 chick embryos contain many cells that react positively for type II collagen by immunohistochemistry, but only a few of these initiate type X collagen synthesis. When limb mesenchyme cells are cultured in or on hydrated collagen gels or in agarose (conditions previously shown to promote chondrogenesis in low density cultures), almost all initiate synthesis of both collagen types. Similarly, collagen gel cultures of limb mesenchyme from stage 17 embryos synthesize type II collagen and with some additional delay type X collagen. However, cytochalasin D treatment of subconfluent cultures on plastic substrates, another treatment known to promote chondrogenesis, induces the production of type II collagen, but not type X collagen. These results demonstrate that the appearance of type X collagen in limb cartilage is environmentally regulated. Mesectodermal cells from the maxillary process of stages 24 and 28 chick embryos were cultured in or on hydrated collagen gels. Such cells initiate synthesis of type II collagen, and eventually type X collagen. Some cells contain only type II collagen and some contain both types II and X collagen. On the other hand, cultures of mandibular processes from stage 29 embryos contain chondrocytes with both collagen types and a larger overall number of chondrogenic foci than the maxillary process cultures. Since the maxillary process does not produce cartilage in situ and the mandibular process forms Meckel's cartilage which does not hypertrophy in situ, environmental influences, probably inhibitory in nature, must regulate chondrogenesis in mesectodermal derivatives. (ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Our morphological studies have demonstrated that the appearance of localized, paired zones of primary calcification on either side of the midline of the 19-d embryonic chick sternum is heralded by the development of paired, translucent zones 2 d previously. Histological studies demonstrated that the majority of chondrocytes within these translucent zones are hypertrophic, and that the zones are surrounded by a margin of flattened nonhypertrophic cells. The discrete localization of these paired areas of hypertrophic chondrocytes and subsequent endochondral bone development allows for the direct correlation of the histological and biochemical characteristics of the zones sequentially during development and makes it possible to precisely match the synthetic activity to the cellular morphology, thereby eliminating possible minor but critical variations in developmental staging that could otherwise arise. Our studies have demonstrated that there is a direct spatial and temporal correlation between the degree of cellular maturation and the synthesis of type X collagen, and that the sudden and profound initiation of type X collagen synthesis on days 16-17 of development occurs concurrently with the attainment of hypertrophic characteristics by the majority of cells within the translucent zone. Before acquisition of these hypertrophic characteristics, the cells of this precalcification zone synthesize only type II and the minor cartilage collagens. Chondrocytes isolated from these regions in more immature sternae (i.e., 11+ d embryos) were found to synthesize high levels of type X collagen within 4 d of culture within collagen gels even though hypertrophic development and type X collagen synthesis by cells within this region would not normally have been apparent in ovo for several more days. These data indicate that there is a direct correlation between the development of hypertrophic characteristics and the synthesis of type X collagen, and that the maturation of chondrocytes in precalcification zones may be regulated by matrix components and/or stimulated by culture within collagen gels.  相似文献   

18.
A serum-free primary culture system for chicken growth plate chondrocytes has been developed which consistently undergoes mineral deposition. Upon attainment of confluency, the chondrocytes develop locally into multilayer cellular nodules leading to matrix calcification. Mineralization first occurs in matrix vesicles (MV) that are abundant in the extraterritorial matrix between the hypertrophic cells. Studies with 45Ca reveal that significant accumulation of Ca2+ occurs as early as day 12, continuing progressively throughout the culture period. By day 24, the nodules become densely calcified. Fourier transform infrared spectroscopy reveals the mineral to be similar to apatite, with features essentially identical to those of mineral formed by MV in vitro. The presence of ascorbate is critical to the culture system; in its absence, calcification is rarely observed. Ascorbate stimulates MV formation and synthesis of cellular protein, alkaline phosphatase, and especially types II and X collagens. In addition, there is strong evidence that the types II and X collagens are associated with MV. 1) Electron microscopy reveals MV embedded in a type II collagenous network; 2) Western blots of sodium dodecyl sulfate-polyacrylamide gel electrophoresis of MV using monospecific antibodies to types X and II collagen indicate that both collagens are present in specific MV fractions; 3) sucrose gradient purification of MV does not remove associated collagens; 4) graded salt extraction selectively releases type II collagen from MV; and 5) incubation of radiolabeled types II and X collagens with MV leads to their cosedimentation upon subsequent centrifugation. Taken together, the data suggest that coordinated synthesis of the collagens, alkaline phosphatase, MV formation, and Ca2+ accumulation by the cultures combine to induce mineral deposition in the multilayer nodules.  相似文献   

19.
Immunohistochemical studies of the chick columella have shown that the extracellular matrix of this ossicular cartilage template is composed largely of type II collagen. As development proceeds, synthesis of type X collagen, a hypertrophic cartilage-specific molecule, is initiated by endochondral chondrocytes within the zone of cartilage cell hypertrophy. Subsequently, these cells and their surrounding extracellular matrix are removed, resulting in marrow cavity formation. We have examined which of these processes are programmed within the columella chondrocytes themselves, and which require involvement of exogenous factors. Prehypertrophic columella from 12-day chick embryos were grown either in organ culture on Nuclepore filters or as explants on the chorioallantoic membrane of host embryos. Chondrocytes from the same source were grown in monolayer cell cultures. In both organ culture and cell culture, chondrocytes developed to the stage at which some of them entered the hypertrophic program and initiated the production of type X collagen as determined by immunofluorescence histochemistry with a monoclonal antibody specific for that collagen type. The organ cultures, however, did not progress to the next stage, in which detectable removal of the type X collagen-containing matrix occurs. When identical columella were grown on the chorioallantoic membrane of host chicks, the type X collagen-containing matrix which formed was rapidly removed, resulting in the formation of a marrow cavity. Thus, progression of endochondral chondrocytes to the deposition of type X collagen-containing matrix seems to be programmed within the cells themselves. Subsequent removal of this matrix requires the involvement of exogenous factors.  相似文献   

20.
Type X collagen was prepared from medium of long-term cultures of embryonic chick tibiotarsal chondrocytes. Antibodies to type X collagen were raised and used in immunoperoxidase localization studies with embryonic and growing chick tibiotarsus. Strong anti-type X collagen reactivity was detected mainly in the region of hypertrophic chondrocytes, and to a lesser extent in the zone of calcified cartilage. No reactivity was detected in the proliferative zone nor the superficial layer of the cartilage growth plate. These results suggest that type X collagen may play a key role in matrix calcification during growth and development of the skeletal system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号