首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Thirteen days of foraging studies, on normally developing colonies of Vespula vulgaris, were carried out between 5 July and 7 October over several years. Seven categories of workers were considered: two of outgoers – earth carriers and non-earth outgoers, and five of incomers – pulp, flesh, full fluid, and partial fluid carriers, and empty incomers. The pre-exponential small-cell colony is characterised by a more-or-less equal frequency of pulp and flesh carriers and a relatively high frequency of non-earth outgoers. These characteristics are related to the needs of a colony rapidly to build its worker population. The exponential small-cell colony is characterised by an increased frequency of earth and pulp carriers, with the latter being more frequent than flesh carriers. These characteristics are related to the enlargement of the nest cavity, the building of small cells and the decreasing weight of workers. The large-cell colony is characterised by a relative lack of earth and pulp carriers, with flesh carriers being more frequent than pulp carriers. The relative lack of earth carriers is probably because the large-celled combs occupy the nest cavity created during the exponential small-cell colony. The relative lack of pulp carriers is probably due to the re-use of pulp from discarded small cells for large cells. The percentage differences between early morning and evening worker categories compared with normal daily foraging (from Archer, 2000) are determined. Despite much variation, during the early morning there were relatively more full fluid carriers and relatively fewer flesh carriers. During the evening, there were relatively more partial fluid carriers and relatively fewer solid carriers. The dissolved component of the fluid is hypothesised to provide a food source to maintain a high, stable nest temperature.Received 20 March 2003; revised 10 November 2003; accepted 21 November 2003.  相似文献   

2.
Summary. A numerical model has been developed to calculate the total number of transits in each worker foraging category for the 170 days of development of a successful colony. Seven categories of workers are considered: two of outgoers (earth carriers and non-earth outgoers), and five of incomers (pulp, flesh, full fluid, and partial fluid carriers, and empty incomers). The model allows for variation in the length of the foraging day and for hypothetical smaller and larger colonies. Estimates of each category are given for the queen, smaller and larger worker colony. Estimates of 1.3–4.5 million, for smaller and larger colonies, each of incomer and outgoer transits are calculated from the model. The slight excess of outgoer over incomer transits could be accounted for, in part, by the mortality of workers away from the nest. Percentages of each worker category are given for the pre-exponential small-cell, exponential small-cell and large-cell colonies. It is hypothesized that there is a balance between fluid and solid transits for efficient brood rearing. There may be restraints in the social wasp system that restrict brood rearing. Estimates which are independent of the foraging model are calculated for the number of loads to create the nest cavity and build the pulp nest which broadly agree with the model outputs.Received 15 July 2004; revised 15 December 2004; accepted 23 December 2004.  相似文献   

3.
This study investigates variation in collective behavior in a natural population of colonies of the harvester ant, Pogonomyrmex barbatus. Harvester ant colonies regulate foraging activity to adjust to current food availability; the rate at which inactive foragers leave the nest on the next trip depends on the rate at which successful foragers return with food. This study investigates differences among colonies in foraging activity and how these differences are associated with variation among colonies in the regulation of foraging. Colonies differ in the baseline rate at which patrollers leave the nest, without stimulation from returning ants. This baseline rate predicts a colony's foraging activity, suggesting there is a colony-specific activity level that influences how quickly any ant leaves the nest. When a colony's foraging activity is high, the colony is more likely to regulate foraging. Moreover, colonies differ in the propensity to adjust the rate of outgoing foragers to the rate of forager return. Naturally occurring variation in the regulation of foraging may lead to variation in colony survival and reproductive success.  相似文献   

4.
Summary: Because the size of Atta spp. along foraging trails is partly determined by the characteristics of the plants harvested, and considering that parasitic phorid flies are attracted mostly to large individuals, we hypothesized that plant toughness affects the susceptibility of Atta spp. to these parasitoids. To test this hypothesis, we evaluated parasitism rates of the phorid Neodohrniphora sp. and its effect on Atta sexdens (L.) foragers in a laboratory colony. We manipulated forager size by alternating tough (Anthocephalus chinensis, Rubiaceae) and tender (Rosa chinensis, Rosaceae) plants given to the colony. Ants foraging on tough leaves were larger than ants foraging on soft leaves, and there was a significant reduction in forager size for both plants when the colony was exposed to Neodohrniphora sp. However, there were no relative differences on forager size between the two plants after the introduction of the parasitoid. The lack of response of Neodohrniphora sp. to the increase in ant size when the colony was given tough leaves may be attributed to the unusually large number of suitable hosts in a laboratory colony. However, large foragers are much less abundant in the field, in which case shifts in the size of the workforce triggered by different substrates could affect the incidence of parasitism.  相似文献   

5.
The short-term regulation of foraging in harvester ants   总被引:1,自引:0,他引:1  
In the seed-eating ant Pogonomyrmex barbatus, the return ofsuccessful foragers stimulates inactive foragers to leave thenest. The rate at which successful foragers return to the nestdepends on food availability; the more food available, the morequickly foragers will find it and bring it back. Field experimentsexamined how quickly a colony can adjust to a decline in therate of forager return, and thus to a decline in food availability,by slowing down foraging activity. In response to a brief, 3-to 5-min reduction in the forager return rate, foraging activityusually decreased within 2–3 min and then recovered within5 min. This indicates that whether an inactive forager leavesthe nest on its next trip depends on its very recent experienceof the rate of forager return. On some days, colonies respondedmore to a change in forager return rate. The rapid colony responseto fluctuations in forager return rate, enabling colonies toact as risk-averse foragers, may arise from the limited intervalover which an ant can track its encounters with returning foragers.  相似文献   

6.
The proportion of foragers in ant colonies is a fairly constant species-specific characteristic that could be determined by intrinsic or extrinsic factors. If intrinsic factors are relevant, species with similar life history characteristics (e.g., colony size and foraging strategies) would be expected to have a similar proportion of foragers in their colonies. Within the genus Pogonomyrmex, North American species can vary largely in their colony size, whereas only species with small colonies are known in South America. We studied the characteristics of the foraging subcaste in three sympatric South American species of Pogonomyrmex harvester ants, and compared it with the available information on other species of the same genus. We used two mark-recapture methods and colony excavations to estimate the number and proportion of foragers in the colonies of P. mendozanus, P. inermis, and P. rastratus, and to test the relationship between forager external activity levels and abundance per colony. Forager abundance in the three studied species was lower than in most North American species. The percentage of foragers in their colonies ranged 7–15 %, more similar to North American species with large colonies than to those with small colony size. Foraging activity was positively correlated with forager abundance in all three species, implying that colony allocation to number of foragers allows for higher food acquisition. Further comparative studies involving a wider range of traits in South and North American species would allow to unveil the role of environmental factors in shaping each species’ particular traits.  相似文献   

7.
Summary A model of individual foraging in social insects as presented that formalises the dynamics of foraging and concentrates on the collective rather than the individual benefit, quantifying the relationships between a colony's foraging area, number of foragers and foraging energy budget and the food sources' rate of arrival, disappearance and capture. A series of experiments, in which a number of prey were offered to colonies of the individually foraging antPachycondyla (ex-Neoponera) apicalis confirm the hypotheses implicit in the model and measured the rates of capture and competition. 60 days observation of 3P. apicalis colonies' foraging activity are summarised and used in conjunction with the model to obtain estimations of the density and rate of arrival of available prey in the foraging area. We examine how a colony's foraging benefit may be influenced by its foraging area, the number of foragers, and the forager/non-forager ratio and show that a colony's jocial structure strongly limits its potential foraging benefit. Within these limits,P. apicalis does not appear to be an optimal forager.  相似文献   

8.
Numerous studies have documented that honeybee colonies can rapidly adjust the number of foragers collecting pollen in response to changes in quantities of brood, pollen and nectar in the nest. However, few studies have examined the behaviour of individual pollen foragers while in the nest between trips. Thus, little is known about how a pollen forager actually assesses its colony's needs. To understand this process better, we observed the behaviour of 319 pollen foragers while in their nests between foraging trips. We observed foragers in two types of nest environments: one with a relatively high need for pollen and one with a relatively low need for pollen. Foragers performed as many as 14 activities during two phases demarcated by the unloading of pollen loads. They inspected empty cells and cells with pollen, and performed the waggle dance at higher relative frequencies before unloading (P≤ 0.0004 each act). They antennated nestmates, autogroomed and received trophallaxis at higher relative frequencies after unloading (P≤ 0.0004 each act). All acts were performed both before and after unloading, but not always by each bee. Pollen foragers discriminated among cells based on cell contents in two contexts. First, they inspected cells already containing pollen more often than expected by chance. Second, their pattern of inspecting cells with different contents differed from their pattern of unloading pollen loads in those cells. Pollen foragers performed 42.3±4.6% (least square mean±SE) of preunloading inspection events on empty cells, but unloaded in them only 19.9±4.6% of the time. They performed 42.2±4.6% of preunloading inspection events on cells already containing pollen, but unloaded in them 79.4±4.6% of the time (P< 0.0001). Our data show that pollen foragers can determine the contents of cells in the nest and suggest that the regulation of pollen collection involves direct assessment of colony need by pollen foragers. Copyright 2002 The Association for the Study of Animal Behaviour. Published by Elsevier Science Ltd. All rights reserved.  相似文献   

9.
Many dynamical networks, such as the ones that produce the collective behavior of social insects, operate without any central control, instead arising from local interactions among individuals. A well-studied example is the formation of recruitment trails in ant colonies, but many ant species do not use pheromone trails. We present a model of the regulation of foraging by harvester ant (Pogonomyrmex barbatus) colonies. This species forages for scattered seeds that one ant can retrieve on its own, so there is no need for spatial information such as pheromone trails that lead ants to specific locations. Previous work shows that colony foraging activity, the rate at which ants go out to search individually for seeds, is regulated in response to current food availability throughout the colony's foraging area. Ants use the rate of brief antennal contacts inside the nest between foragers returning with food and outgoing foragers available to leave the nest on the next foraging trip. Here we present a feedback-based algorithm that captures the main features of data from field experiments in which the rate of returning foragers was manipulated. The algorithm draws on our finding that the distribution of intervals between successive ants returning to the nest is a Poisson process. We fitted the parameter that estimates the effect of each returning forager on the rate at which outgoing foragers leave the nest. We found that correlations between observed rates of returning foragers and simulated rates of outgoing foragers, using our model, were similar to those in the data. Our simple stochastic model shows how the regulation of ant colony foraging can operate without spatial information, describing a process at the level of individual ants that predicts the overall foraging activity of the colony.  相似文献   

10.
Abstract.  1. Ergonomic optimisation theory proposes that by increasing variation in worker morphology, social insect colonies may increase their dietary breadth; however, little is known about how this relationship operates at the colony level. This study examines the colony-level pattern of forager size allocation to resource sites in a natural setting.
2. Using a biologically relevant measure of toughness, it is shown that leaf-cutter ant colonies exploit a variety of plant resources that vary significantly in toughness at any given time.
3. Forager size is shown to be matched to the toughness of plant material, with larger ants harvesting tougher material.
4. Furthermore, outbound foragers travelling to a harvest site are matched in size to the toughness of plant material contained within the site and are not a random selection of available foragers. The match between forager size and plant toughness may reduce the number of wasted trips and ill-matched foragers.
5. The observed colony-level pattern of forager allocation could be the result of learning by individual foragers, or the result of information shared at the colony level.  相似文献   

11.
Summary We studied the effects of intrinsic colony characteristics and an imposed contingency on the life span and behavior of foragers in the swarm-founding social waspPolybia occidentalis. Data were collected on marked, known-age workers introduced into four observation colonies.To test the hypothesis that colony demographic features affect worker life span, we examined the relationships of colony age and size with worker life span using survivorship analysis. Colony age and size had positive relationships with life span; marked workers from two larger, older colonies had longer life spans (¯X = 24.7 days) than those from two smaller, younger colonies (¯X = 20.1 days).We quantified the effects of experimentally imposed nest damage on forager behavior, to determine which of three predicted behavioral responses by foragers to this contingency (increased probability of foraging for building material, increased rate of foraging, or decrease in age of onset of foraging) would be employed. Increasing the colony level of need for materials used in nest construction (wood pulp and water) by damaging the nests of two colonies did not cause an increase in either the proportion of marked workers that gathered nest materials or in foraging rates of marked individuals, when compared with introduced workers in two simultaneously observed control colonies. Instead, nest damage caused a decrease in the age at which marked workers first foraged for pulp and water. The response to an increase in the need for building materials was an acceleration of behavioral development in some workers.  相似文献   

12.
Summary: Size polymorphism is an important life history trait in bumblebees with strong impact on individual behavior and colony organization. Within a colony larger workers tend to serve as foragers, while smaller workers fulfill in-hive tasks. It is often assumed that size-dependent division of labor relates to differences in task performance. In this study we examined size-dependent interindividual variability in foraging, i.e. whether foraging behavior and foraging capability of bumblebee workers are affected by their size. We observed two freely foraging Bombus terrestris colonies and measured i) trip number, ii) trip time, iii) proportion of nectar trips, and iv) nectar foraging rate of different sized foragers. In all observation periods large foragers exhibited a significantly higher foraging rate than small foragers. None of the other three foraging parameters was affected by worker size. Thus, large foragers contributed disproportionately more to the current nectar influx of their colony. We provide a detailed discussion of the possible proximate mechanisms underlying the differences in foraging rate.  相似文献   

13.
Summary Establishment and maintenance of foraging trails to an artificial nectar source by ten colonies ofParaponera davata (Fabr.) in Panama is reported. The first forager to locate the artificial nectar source was responsible for recruiting additional foragers and for marking trails to orient these foragers. More than half of the trail marking was performed by the first two ants to mark the path back to the colony, although up to 11 ants per colony per hour marked trails. The number of trail marks and the number of marking ants decreased through time, presumably as foragers learned the location of the artificial nectar source. Four categories of recruits were noted: markers, foragers, patrollers, and visitors.  相似文献   

14.
Social insect colonies operate without central control or any global assessment of what needs to be done by workers. Colony organization arises from the responses of individuals to local cues. Red harvester ants (Pogonomyrmex barbatus) regulate foraging using interactions between returning and outgoing foragers. The rate at which foragers return with seeds, a measure of food availability, sets the rate at which outgoing foragers leave the nest on foraging trips. We used mimics to test whether outgoing foragers inside the nest respond to the odor of food, oleic acid, the odor of the forager itself, cuticular hydrocarbons, or a combination of both with increased foraging activity. We compared foraging activity, the rate at which foragers passed a line on a trail, before and after the addition of mimics. The combination of both odors, those of food and of foragers, is required to stimulate foraging. The addition of blank mimics, mimics coated with food odor alone, or mimics coated with forager odor alone did not increase foraging activity. We compared the rates at which foragers inside the nest interacted with other ants, blank mimics, and mimics coated with a combination of food and forager odor. Foragers inside the nest interacted more with mimics coated with combined forager/seed odors than with blank mimics, and these interactions had the same effect as those with other foragers. Outgoing foragers inside the nest entrance are stimulated to leave the nest in search of food by interacting with foragers returning with seeds. By using the combined odors of forager cuticular hydrocarbons and of seeds, the colony captures precise information, on the timescale of seconds, about the current availability of food.  相似文献   

15.
Foraging for pollen is an important behavior of the honey bee because pollen is their sole source of protein. Through nurse bees, larvae are the principal consumers of pollen. Fatty acid esters extractable from the surface of larvae, called brood pheromone, release multiple colony-level and individual foraging behaviors increasing pollen intake. In this study pollen forager turnaround time was measured in observation hives supplemented with brood pheromone versus a blank control treatment. Treatment with brood pheromone significantly decreased pollen forager turnaround time in the hive between foraging bouts by approximately 72%. Concurrently, brood pheromone increased the ratio of pollen to non-pollen foragers entering colonies. Brood pheromone has been shown to release most of the mechanisms known to increase pollen intake by colonies acting as an important regulator of colony foraging decisions and growth.  相似文献   

16.
Pollen collection in honey bees is regulated around a homeostatic set-point. How the control of pollen collection is achieved is still unclear. Different feedback mechanisms have been proposed but little is known about the experience of pollen foragers in the hive. A detailed documentation of the behavior of pollen foragers in the hive under different pollen need conditions is presented here. Taking a broad observational approach, we analyze the behavior of individual pollen foragers in the hive between collecting trips and quantify the different variables constituting the in-hive stay. Comparing data from two colonies and 143 individuals during experimentally induced times of low vs. times of high pollen need, we show that individual foragers modulate their in-hive working tempo according to the actual pollen need of the colony: pollen foragers slowed down and stayed in the hive longer when pollen need was low and spent less time in the hive between foraging trips when pollen need by their colony was high. Furthermore, our data show a significant change in the trophallactic experience of pollen foragers with changing pollen need conditions of their colony. Pollen foragers had more short (< 3 s) trophallactic contacts when pollen need was high, resulting in an increase of total number of trophallactic contacts. Thus, our results support the hypothesis that trophallactic experience is one of the various information pathways used by pollen foragers to assess their colony's pollen need.  相似文献   

17.
Paxton  R. J. 《Insectes Sociaux》2000,47(1):63-69
Summary: Stingless bee queens have for long been assumed to mate once on a nuptial flight, early in life. To evaluate critically monandry in one stingless bee, Scaptotrigona postica, worker offspring (adults or brood) were genetically analysed with microsatellite loci, five of which were developed specifically for the species. Marker loci were highly variable; unbiased estimates of heterozygosity were > 0.5. "Foreign" workers, either those having drifted from other colonies (circa 2%) or those of a replacement queen, were identified with the genetic markers and removed from further analysis. Worker genotypes were consistent with some queens having mated once and others having mated with up to six different males. Scaptotrigona postica queens are therefore facultatively polyandrous. Effective mating frequencies, me, were generally lower than the number of patrilines observed. Relatedness estimates of nestmates from individual colonies concurred with those derived from direct counts of the number of patrilines and their proportional representation. Putative genotypes of a colony's queen and her mates were deduced from those of her workers. Queens were generally not related to their mates. For one polyandrous queen, her six mates were related to each other, possibly because of numerically biased representation of males from different colonies at mating sites. However, males at an aggregation outside a colony came from numerous colonies.  相似文献   

18.
Leaf-cutting ants (Atta spp.) create physical pathways to support the transport of resources on which colony growth and reproduction depend. We determined the scaling relationship between the rate of resource acquisition and the size of the trail system and foraging workforce for 18 colonies of Atta colombica and Atta cephalotes. We examined conventional power-law scaling patterns, but did so in a multivariate analysis that reveals the simultaneous effects of forager number, trail length and trail width. Foraging rate (number of resource-laden ants returning to the nest per unit time) scaled at the 0.93 power of worker numbers, the -1.02 power of total trail length and the 0.65 power of trail width. These scaling exponents indicate that individual performance declines only slightly as more foragers are recruited to the workforce, but that trail length imposes a severe penalty on the foraging rate. A model of mass traffic flow predicts the allometric patterns for workforce and trail length, although the effect of trail width is unexpected and points to the importance of the little-known mechanisms that regulate a colony's investment in trail clearance. These results provide a point of comparison for the role that resource flows may play in allometric scaling patterns in other transport-dependent entities, such as human cities.  相似文献   

19.
Summary. Trail traffic of the leaf-cutting ant Atta cephalotes involves intermingled flows of outbound and returning foragers. Head-on encounters between workers from the opposite flows are a common occurrence in this traffic. Each encounter momentarily delays the two ants involved, and these small delays might pose a significant cost to the colony's foraging performance when summed over thousands of workers along many metres of trail. We videotaped outbound and returning foragers over a 1 m course, and measured the encounter rates they experienced and their velocity. Our analysis indicates that locomotion speed is diminished by increasing encounter rate, but that the effect is small relative to the effects of ant body size and load mass. Head-on encounters allow exchange of information and leaf fragments between workers, and we consider how the benefits of such encounters may make this form of traffic organization superior to segregated outbound and returning lanes, despite the measurable c ost of encounters in mixed traffic.  相似文献   

20.
We demonstrate the effects of age and genotype on the likelihoodthat an individual worker honeybee (Apis mellifera L.) willbecome a forager. We established experimental colonies thatwere each initially composed of identifiable, nonforaging workersof similar ages (1–5 days old). Workers in each test colonywere the progeny of two queens, providing age and genotypicgroups of workers for comparisons. We then recorded the daythat each worker was first observed foraging. Older workerswere more likely to become foragers under our experimental conditions,even when age differences were just 1 day. At a given age, workersfrom different queens varied in their likelihood of becomingforagers. However, we found that neither age nor genotype (queensource) directly affected the likelihood that a forager wouldrevert to within-nest, larval care activities after the removalof nonforaging bees from colonies. The likelihood of revertingwas only dependent on how long a worker was a forager beforeremoving the nonforagers of the colony.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号