首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
J A Grasby  B A Connolly 《Biochemistry》1992,31(34):7855-7861
The stereochemical course of the reaction catalyzed by the EcoRV restriction endonuclease has been determined. This endonuclease recognizes GATATC sequence and cuts between the central T and dA bases. The Rp isomer of d(GACGATsATCGTC) (this dodecamer contains a phosphorothioate rather than the usual phosphate group between the central T and dA residues, indicated by the s) was a substrate for the endonuclease. Performing this reaction in H2 18O gave [18O]dps(ATCGTC) (a pentamer containing an 18O-labeled 5'-phosphorothioate) which was converted to [18O]dAMPS with nuclease P1. This deoxynucleoside 5'-[18O]phosphorothioate was stereospecifically converted to [18O]dATP alpha S with adenylate kinase and pyruvate kinase [Brody, R. S., & Frey, P. A. (1981) Biochemistry 20, 1245-1251]. Analysis of the position of the 18O in this product by 31P NMR spectroscopy showed that it was in a bridging position between the alpha- and beta-phosphorus atoms. This indicates that the EcoRV hydrolysis proceeds with inversion of configuration at phosphorus. The simplest interpretation is that the mechanism of this endonuclease involves a direct in-line attack at phosphorus by H2O with a trigonal bipyramidal transition state. A covalent enzyme oligodeoxynucleotide species can be discounted as an intermediate. An identical result has been previously observed with the EcoR1 endonuclease [Connolly, B. A., Eckstein, F., & Pingoud, A. (1984) J. Biol. Chem. 259, 10760-10763]. X-ray crystallography has shown that both of these endonucleases contain a conserved array of amino acids at their active sites. Possible mechanistic roles for these conserved amino acids in the light of the stereochemical findings are discussed.  相似文献   

2.
The restriction endonuclease EcoRI hydrolyzes the Rp diastereomer of d(pGGsAATTCC), an analogue of d(pGGAATTCC) containing a chiral phosphorothioate group at the cleavage site between the deoxyguanosine and the deoxyadenosine residues (Connolly, B.A., Potter, B.V.L., Eckstein, F., Pingoud, A., and Grotjahn, L. (1984) Biochemistry 23, 3343-3453). Performing the reaction in H2(18)O leads to d(pGG) and the hexanucleotide d([18O, S]pAATTCC) which has an 18O-containing phosphorothioate group at the 5' terminus. Further hydrolysis of this hexamer with nuclease P1 yields deoxyadenosine 5'-O-[18O]phosphorothioate which can be stereospecifically phosphorylated with adenylate kinase and pyruvate kinase to give Sp-[18O] deoxyadenosine 5'-O-(1-thiotriphosphate). 31P NMR spectroscopy shows the oxygen-18 in this compound to be in a bridging position between the alpha- and beta-phosphorus atoms. Thus, the hydrolysis reaction catalyzed by EcoRI proceeds with inversion of configuration at phosphorus. This result is compatible with a direct enzyme-catalyzed nucleophilic attack of H2O at phosphorus without involvement of a covalent enzyme intermediate.  相似文献   

3.
A radiometric method has been devised for the determination of small quantities of NADH formed in preceding dehydrogenase reactions. In a coupled enzymatic reaction, phosphoglycerate kinase (PGK) catalyzes the transfer of [32P]orthophosphate from [gamma-32P]ATP to 3-phosphoglycerate; the intermediate, 1,3-[1-32P]diphosphoglycerate, is dephosphorylated by glyceraldehyde-3-phosphate dehydrogenase (GAP-DH). [32P]Orthophosphate is released proportionally to NADH and can be measured after adsorption of [gamma-32P]ATP to activated charcoal. With this method, 0.2 pmol of NADH are detectable in the presence of a 10(4)-fold excess of NAD over NADH.  相似文献   

4.
Reaction of nucleoside phosphorothioates with N-bromosuccinimide in dioxane and H218O leads to the exchange of sulfur for oxygen-18. Using the Sp-isomers of adenosine 5'-O-(1-thiodiphosphate) and adenosine 3',5'-cyclic phosphorothioate, it can be shown by 31P NMR spectroscopy that this reaction proceeds with inversion of configuration yielding the Rp-isomers of [alpha-18O]ADP and [18O]cAMP, respectively. Adenosine 5'-O-(2-thiotriphosphate) and adenosine 5'-O-(3-thiotriphosphate) are likewise converted to [beta-18O]ATP and [gamma-18O]ATP although the stereochemistry of the former reaction has yet to be evaluated. With very slight modifications this reaction is applicable to all the common bases.  相似文献   

5.
W A Bl?ttler  J R Knowles 《Biochemistry》1979,18(18):3927-3933
We report the synthesis of adenosine [gamma-(S)-16O,17O,18O]triphosphate, an isotopically labeled species of ATP that is chiral at the gamma-phosphoryl group, the configuration of which has been confirmed by independent stereochemical analysis. This molecule has been used as a substrate in the reactions catalyzed by glycerol kinase and by acetate kinase. The resulting samples of isotopically labeled sn-glycerol 3-phosphate and of acetyl phosphate have been used as substrates in the alkaline phosphatase mediated transfer of the chiral phosphoryl groups to (S)-propane-1,2-diol, whence the configuration at phosphorus has been determined [Abbott, S. J., Jones, S. R., Weinman, S. A., & Knowles, J. R. (1978) J. Am. Chem. Soc. 100, 2558]. It is shown that glycerol kinase and acetate kinase (and, by virtue of an earlier correlation, pyruvate kinase and hexokinase) proceed by pathways that result in inversion of the configuration at phosphorus. The sterochemical approach provides an access to the otherwise cryptic events that are involved in phosphoryl-group transfer within the ternary complexes of these kinases and their substrates.  相似文献   

6.
When cultured human lymphoblasts are starved 3 h for an essential amino acid, rates of purine nucleotide synthesis decrease markedly because of a decrease in the intracellular phosphoribosylpyrophosphate concentration (Boss, G.R., and Erbe, R.W. (1982) J. Biol. Chem. 257, 4242-4247; Boss, G. R. (1984) J. Biol. Chem. 259, 2936-2941). In amino acid-starved cells, glucose transport was not changed, whereas total glucose consumption and lactate production decreased by approximately 25 and 10%, respectively. Carbon flow through the oxidative pentose phosphate pathway, measured by 14CO2 release from [1-14C]glucose, decreased by 18% during amino acid starvation. However, kinetic studies of ribulose-5-phosphate 3-epimerase and phosphoriboisomerase suggested that the ribulose 5-phosphate produced by this pathway is converted mostly to xylulose 5-phosphate instead of to ribose 5-phosphate so that this pathway produces little phosphoribosylpyrophosphate. The activity of the nonoxidative pentose phosphate pathway, measured by high performance liquid chromatography following the incorporation of [1-14C]glucose into phosphoribosylpyrophosphate, ATP, and GTP, decreased by approximately 55% during amino acid starvation. None of the enzymes of either pathway changed in specific activity during amino acid starvation. We conclude that the nonoxidative pentose phosphate pathway is the major source of phosphoribosylpyrophosphate for purine nucleotide synthesis and that this pathway is regulated by a metabolite which changes in concentration during amino acid starvation.  相似文献   

7.
Nucleoside phosphotransferase from barley seedlings was used to catalyze the equilibration of adenosine-5'-[18O]phosphorothioate having the S configuration at phosphorus with [adenine-8-14C]adenosine to produce [adenine-8-14C]adenosine-5'-[18O]phosphorothioate and adenosine. The configuration of the chiral phosphorus in adenosine-5'-[18O]phosphorothioate which was used as the donor substrate was then compared with that of the [adenine-8-14C]adenosine-5'-[18O]phosphorothioate isolated from the reaction mixture. They were found to be the same, showing that the reaction proceeds with 99.7% retention of configuration of the [18O]phosphorothioate. This is interpreted to be indicative of the involvement of a thiophosphoryl-enzyme intermediate in the nucleoside phosphotransferase reaction. The synthesis of adenosine-5'-[18O]phosphorothioate having the R and S configurations at the phosphorus atoms is described.  相似文献   

8.
The phosphodiesterase from snake venom catalyzes the hydrolysis of the Rp diastereomer of thymidine 5'-(4-nitrophenyl [17O,18O]phosphate) in H216O with retention of configuration at phosphorus. This result is in agreement with those previously reported for the hydrolysis of chiral phosphorothioate substrates (Bryant, F. R., and Benkovic, S. J. (1979) Biochemistry 18, 2825-2828; Burgers, P. M. J., Eckstein, F., and Hunneman, D. H. (1979) J. Biol. Chem. 254, 7476-7478). The hydrolysis reaction catalyzed by this enzyme occurs via formation of a covalent nucleotidylated enzyme intermediate.  相似文献   

9.
The stereochemical course of the phosphoryl transfer reaction catalyzed by T4 polynucleotide kinase has been determined using the chiral ATP analog, (Sp)-adenosine-5'-(3-thio-3-[18O]triphosphate). T4 polynucleotide kinase catalyzes the transfer of the gamma-thiophosphoryl group of (Sp)-adenosine-5'-(3-thio-3-[18O]triphosphate) to the 5'-hydroxyl group of ApA to give the thiophosphorylated dinucleotide adenyl-5'-[18O]phosphorothioate-(3'-5')adenosine. A sample of adenyl-5'-[18O]phosphorothioate-(3'-5')adenosine was subjected to venom phosphodiesterase digestion. The resulting adenosine-5'-[18O]phosphorothioate was shown to have the Rp configuration, thus indicating that the thiophosphoryl transfer reaction occurs with overall inversion of configuration of phosphorus.  相似文献   

10.
The stereochemical course of rabbit liver fructose bisphosphatase (EC 3.1.3.11) was determined by hydrolyzing the substrate analogue (Sp)-[1-18O]fructose 1-phosphorothioate 6-phosphate in H(2)17O, incorporating the chiral, inorganic phosphorothioate product into adenosine 5'-O-(2-thiotriphosphate) (ATP beta S), and analyzing the isotopic distribution of 18O in ATP beta S by 31P NMR. The result indicates that the 1-phosphoryl group is transferred with inversion of configuration. A series of single-turnover experiments ruled out an acyl phosphate intermediate in the hydrolysis. Consequently, fructose bisphosphatase catalyzes the hydrolysis of fructose 1,6-bisphosphate via a direct transfer of the phosphoryl moiety to water.  相似文献   

11.
The stereochemical course of hydrolysis catalyzed by the cyclic GMP phosphodiesterase from bovine retinal rod outer segments was determined. The Sp diastereomer of guanosine 3',5'-cyclic monophosphorothioate was hydrolyzed by cyclic GMP phosphodiesterase in H2(18)O to give [16O,18O]guanosine 5'-monophosphorothioate. This isotopomer was reacted with diphenyl phosphorochloridate to form the two diastereomers of P1-(5'-guanosyl) P2-(diphenyl) 1-thiodiphosphate. The 31P NMR spectrum of this mixture of diastereomers was identical to that obtained from [16O,18O]guanosine 5'-monophosphorothioate resulting from the hydrolysis of the Rp diastereomer of guanosine 5'-p-nitrophenyl phosphorothioate by snake venom phosphodiesterase. This finding indicates that the 18O is bridging in the Rp diastereomer of the P1-(5'-guanosyl) P2-(diphenyl) 1-thiodiphosphate and nonbridging in the Sp diastereomer. As the snake venom phosphodiesterase reaction is known to proceed with retention of configuration, it follows that hydrolysis by retinal rod cyclic GMP phosphodiesterase proceeds with inversion of configuration at the phosphorus atom.  相似文献   

12.
Polynucleotide kinase (bacteriophage-T4-infected Escherichia coli B) catalyses the transfer of the [gamma-16O,17O,18O]phosphoryl group from 5'[gamma(S)-16O,17O,18O]ATP to 3'-AMP with inversion of configuration at the phosphorus atom. The simplest interpretation of this observation is that the [gamma-16O,17O,18O]phosphoryl group is transferred directly from ATP to the co-substrate by an 'in-line' mechanism.  相似文献   

13.
Incubation of a highly purified bovine spleen protein tyrosine kinase with [gamma-32P]ATP and Mg2+ resulted in a gradual radioactive labeling of the protein kinase (50 kDa) with no change in the protein kinase activity toward angiotensin II. On the other hand, treatment of the protein tyrosine kinase with an immobilized alkaline phosphatase caused essentially complete loss in the kinase activity, which could be restored by incubation of the enzyme with ATP and Mg2+. By using the alkaline phosphatase-treated kinase, time courses of the protein phosphorylation and the enzyme activation were demonstrated to correlate closely. These results indicate that this protein tyrosine kinase relies on autophosphorylation for activity and that the purified enzyme usually exists in a fully phosphorylated state. The radioactive labeling of the purified kinase during incubation with [gamma-32P]ATP resulted from a phosphate exchange reaction: the exchange of [gamma-32P]phosphate of ATP with the protein bound phosphate as previously suggested (Kong, S.K., and Wang, J.H. (1987) J. Biol. Chem. 262, 2597-2603). It could be shown that the autophosphorylation of phosphatase-treated tyrosine kinase was strongly inhibited by the substrate angiotensin II, whereas the exchange reaction carried out with untreated tyrosine kinase was not. Autophosphorylation is suggested to be an intermolecular reaction since its initial rate is proportional to the square of the protein concentration.  相似文献   

14.
A. Gardemann  M. Stitt  H.W. Heldt 《BBA》1983,722(1):51-60
The effect of stromal metabolites on the light-activated form of ribulose-5-phosphate kinase was studied with the enzyme rapidly extracted from illuminated spinach chlorplasts. In some instances, the effect of metabolites on the dark-inactivated enzyme extracted from darkened chloroplasts was also investigated. (1) The light-activated form of the enzyme is competitively inhibited with respect to ribulose 5-phosphate by 6-phosphogluconate, ribulose 1,5-bisphosphate, 3-phosphoglycerate and phosphate. Also, fructose 1,6-bisphosphate is inhibitory. All these compounds, except ribulose 1,5-bisphosphate, show an increasing inhibitory effect at lower pH values. Therefore, in the presence of these inhibitors, ribulose-5-phosphate kinase becomes strongly pH dependent. These compounds also exert an inhibitory effect on the dark-inactivated enzyme. (2) The assay of stromal levels of 6-phosphogluconate showed that this compound increased dramatically during a light-dark transient. (3) The dark-inactivated form of ribulose-5-phosphate kinase is strongly inhibited by ADP, the inhibition being competitive with respect to ATP. (4) A simulation of stromal metabolite levels in the enzyme activity assay indicates that in illuminated chloroplasts ribulose-5-phosphate kinase attains only about 4% of its maximal activity. When the fully light-activated enzyme is assayed under conditions occurring in the stroma in the dark, the activity is further decreased by a factor of 20. The same assay with the dark-inactivated enzyme yields an activity of virtually zero. (5) These results demonstrate that in the chloroplasts ribulose-5-phosphate kinase can not only be very efficiently switched off in the dark, but also be subjected to fine control during the illuminated state through the action of stromal metabolites.  相似文献   

15.
The xylene ring of riboflavin originates by dismutation of the precursor, 6,7-dimethyl-8-ribityllumazine. The formation of the latter compound requires a 4-carbon unit as the precursor of carbon atoms 6 alpha, 6, 7, and 7 alpha of the pyrazine ring. The formation of riboflavin from GTP and ribose phosphate by cell extract from Candida guilliermondii has been observed by Logvinenko et al. (Logvinenko, E. M., Shavlovsky, G. M., Zakal'sky, A. E., and Zakhodylo, I. V. (1982) Biokhimiya 47, 931-936). We have studied this enzyme reaction in closer detail using carbohydrate phosphates as substrates and synthetic 5-amino-6-ribitylamino-2,4-(1H,3H)-pyrimidinedione or its 5'-phosphate as cosubstrates. Several pentose phosphates and pentulose phosphates can serve as substrate for the formation of riboflavin with similar efficiency. The reaction requires Mg2+. Various samples of ribulose phosphate labeled with 14C or 13C have been prepared and used as enzyme substrates. Radioactivity was efficiently incorporated into riboflavin from [1-14C]ribulose phosphate, [3,5-14C]ribulose phosphate, and [5-14C]ribulose phosphate, but not from [4-14C]ribulose phosphate. Label from [1-13C]ribose 5-phosphate was incorporated into C6 and C8 alpha of riboflavin. [2,3,5-13C]Ribose 5-phosphate yielded riboflavin containing two contiguously labeled segments of three carbon atoms, namely 5a, 9a, 9 and 8, 7, 7 alpha. 5-Amino-6-[1'-14C] ribitylamino-2,4 (1H,3H)-pyrimidinedione transferred radioactivity exclusively to the ribityl side chain of riboflavin in the enzymatic reaction. It follows that the 4-carbon unit used for the biosynthesis of 6,7-dimethyl-8-ribityllumazine consists of the pentose carbon atoms 1, 2, 3, and 5 in agreement with earlier in vivo studies.  相似文献   

16.
An equilibrium mixture of highly enriched [18(O)]Pi (represents the mixture of [[18(O)4]Pi, [[18(O)3]Pi, [18(O)2]Pi as represented in the figures, unless otherwise specified), alpha-D-ribose 1-[16(O)]phosphate, and hypoxanthine plus inosine was equilibrated with calf spleen purine-nucleoside phosphorylase (EC 2.4.2.1). The 31P NMR spectrum clearly indicated the formation of alpha-D-ribose 1-[18(O)4]-phosphate and of [16(O)]Pi. Incubation for the same time span in the absence of alpha-D-ribose 1-phosphate left the [18(O)4]Pi isotopic distribution unchanged. The results clearly demonstrated that the C--O bond of alpha-D-ribose 1-phosphate is cleaved in the enzymatic reaction. It is unlikely that the enzyme catalyzes the exchange of oxygen between Pi and H2O. Several possible mechanistic pathways are ruled out by the results, which demand attack by a phosphate oxygen at the anomeric C-1' atom.  相似文献   

17.
Lipid phosphorylation takes place within the chloroplast envelope. In addition to phosphatidic acid, phosphatidylinositol phosphate, and their corresponding lyso-derivatives, we found that two novel lipids underwent phosphorylation in envelopes, particularly in the presence of carrier-free [gamma-(32)P]ATP. These two lipids incorporated radioactive phosphate in chloroplasts in the presence of [gamma-(32)P]ATP or [(32)P]P(i) and light. Interestingly, these two lipids were preferentially phosphorylated in envelope membranes in the presence [gamma-(32)P]CTP, as the phosphoryl donor, or [gamma-(32)P]ATP, when supplemented with CDP and nucleoside diphosphate kinase II. The lipid kinase activity involved in this reaction was specifically inhibited in the presence of cytosine 5'-O-(thiotriphosphate) (CTPgammaS) and sensitive to CTP chase, thereby showing that both lipids are phosphorylated by an envelope CTP-dependent lipid kinase. The lipids were identified as phosphorylated galactolipids by using an acid hydrolysis procedure that generated galactose 6-phosphate. CTPgammaS did not affect the import of the small ribulose-bisphosphate carboxylase/oxygenase subunit into chloroplasts, the possible physiological role of this novel CTP-dependent galactolipid kinase activity in the chloroplast envelope is discussed.  相似文献   

18.
5-Oxoprolinase catalyzes the ATP-dependent decyclization of 5-oxo-L-proline to L-glutamate. Previous studies provided evidence for the intermediate formation of a phosphorylated form of 5-oxoproline (Seddon, A. P., and Meister, A. (1986) J. Biol. Chem. 261, 11538-11541) and of a tetrahedral intermediate (Li, L., Seddon, A. P., and Meister, A. (1987) J. Biol. Chem. 262, 11020-11025). A new approach to the study of the reaction mechanism using the 18O isotope effect on the 13C NMR signals for 5-oxoproline and glutamate is reported here. The 13C chemical shifts induced by 18O substitution for the carbonyl group of 5-oxoproline and the gamma-carboxyl group of glutamate are about 0.03 ppm with respect to the corresponding 16O-compounds. Using 5-[18O]oxo[5-13C]proline (97 and 79.5 atom % excess, 13C and 18O, respectively), the disappearance of the 18O-labeled and unlabeled 5-oxoproline and formation of the corresponding glutamate species were followed in the reactions catalyzed by purified preparations of 5-oxoprolinase isolated from Pseudomonas putida and from rat kidney. This procedure permits simultaneous determinations of the rates of 18O exchange and of the overall decyclization reaction. The ratios of 18O exchange rates to the overall reaction rates for the bacterial and kidney enzyme catalyzed-reactions were 0.28 and 0.14, respectively. The findings support the view that the coupling of ATP hydrolysis to 5-oxoproline decyclization involves formation of a phosphorylated tetrahedal intermediate. Although the exchange phenomena are consistent with the mechanistic interpretations, they seem not to be required for catalysis.  相似文献   

19.
sn-Glycerol 3-phosphorothioate, a bacteriocidal analog of sn-glycerol 3-phosphate in strains of Escherichia coli with a functioning glycerol phosphate transport system, was investigated for its ability to be incorporated into phospholipid under in vitro and in vivo conditions. A cell-free particulate fraction from E. coli strain 8 catalyzes the transfer of sn-[3H]glycerol 3-phosphoro[35S]thioate to chloroform-soluble material in the presence of either CDP-diglyceride or palmitoyl coenzyme A. With CDP-diglyceride as the co-substrate, the product of the reaction was tentatively identified as phosphatidylglycerol phosphorothioate. No formation of phosphatidylglycerol was observed, suggesting that the specific phosphatase required for the synthesis of phosphatidylglycerol does not catalyze, or else at a greatly reduced rate, the hydrolysis of the phosphorothioate monoester linkage. The kinetics of incorporation of sn-[3H]glycerol 3-phosphate and phosphorothioate into chloroform-soluble material in the presence of CDP-diglyceride are almost identical. In the presence of palmitoyl coenzyme A, sn-[3H]glycerol 3-phosphoro[35S]thioate was converted to the phosphorothioate analog of phosphatidic acid. Kinetic analysis showed that the apparent Km values for the incorporation of the phosphate and the phosphorothioate derivatives into phospholipid were 0.4 and 0.8 mM, respectively. The Vmax for the phosphorothioate analog was approximately half that for the phosphate derivative. Chemically synthesized thiophosphatidic acid was not a substrate for CTP:phosphatidic acid cytidylyltransferase. sn-[3H]Glycerol 3-phosphoro[35S]thioate was incorporated into phospholipid by cultures of E. coli strain 8. The major phosphorothioate-containing phospholipid synthesized in vivo was identified as 1,2-diacyl-sn-[3H]glycerol 3-phosphoro[35S]thioate. The phosphorothioate analog of phosphatidylglycerol phosphate was not observed despite our observations that this analog can be synthesized in vitro. Our results indicate that the phosphorothioate analog is an effective sn-glycerol 3-phosphate surrogate and suggest that a major reason for its toxicity toward E. coli strain 8 may be due to a total blockade of endogenous phospholipid biosynthesis.  相似文献   

20.
The phosphatidylinositol-specific phospholipase C (PI-PLC) from mammalian sources catalyzes the simultaneous formation of both inositol 1,2-cyclic phosphate (IcP) and inositol 1-phosphate (IP). It has not been established whether the two products are formed in sequential or parallel reactions, even though the latter has been favored in previous reports. This problem was investigated by using a stereochemical approach. Diastereomers of 1,2-dipalmitoyl-sn-glycero-3-(1D- [16O,17O]phosphoinositol) ([16O,17O]DPPI) and 1,2-dipalmitoyl-sn-glycero-3-(1D-thiophosphoinositol) (DPPsI) were synthesized, the latter with known configuration. Desulfurization of the DPPsI isomers of known configurations in H2(18)O gave [16O,18O]DPPI with known configurations, which allowed assignment of the configurations of [16O,17O]DPPI on the basis of 31P NMR analyses of silylated [16O,18O]DPPI and [16O,17O]DPPI (the inositol moiety was fully protected in this operation). (Rp)- and (Sp)-[16O,17O]DPPI were then converted into trans- and cis-[16O,17O]IcP, respectively, by PI-PLC from Bacillus cereus, which had been shown to proceed with inversion of configuration at phosphorus [Lin, G., Bennett, F. C., & Tsai, M.-D. (1990) Biochemistry 29, 2747-2757]. 31P NMR analysis was again used to differentiate the silylated products of the two isomers of IcP, which then permitted assignments of IcP with unknown configuration derived from transesterification of (Rp)- and (Sp)-[16O,17O]DPPI by bovine brain PI-PLC-beta 1. The results indicated inversion of configuration, in agreement with the steric course of the same reaction catalyzed by PI-PLCs from B. cereus and guinea pig uterus reported previously. For the steric course of the formation of inositol 1-phosphate catalyzed by PI-PLC, (Rp)- and (Sp)-[16O,17O]DPPI were hydrolyzed in H2(18)O to afford 1-[16O,17O,18O]IP, which was then converted to IcP chemically and analyzed by 31P NMR. The results indicated that both B. cereus PI-PLC and the PI-PLC-beta 1 from bovine brain catalyze conversion of DPPI to IP with overall retention of configuration at phosphorus. These results suggest that both bacterial and mammalian PI-PLCs catalyze the formation of IcP and IP by a sequential mechanism. However, the conversion of IcP to IP was detectable by 31P NMR only for the bacterial enzyme. Thus an alternative mechanism in which IcP and IP are formed by totally independent pathways, with formation of IP involving a covalent enzyme-phosphoinositol intermediate, cannot be ruled out for the mammalian enzyme. It was also found that both PI-PLCs displayed lack of stereo-specifically toward the 1,2-diacylglycerol moiety, which suggests that the hydrophobic part of phosphatidylinositol is not recognized by PI-PLC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号