首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The activation of Ag-specific, Ia molecule-restricted, TCR V beta 3+ T cell clones by staphylococcal toxic shock syndrome toxin-1 (TSST-1), was investigated. The results show that although Ag- and TSST-1-induced activation of T cell clones both require TCR expression and similar biologic activation signals, the Ia molecule requirement for TSST-1 recognition was much less stringent than that observed for antigenic peptide recognition. In addition, T cell clones recognized TSST-1 without processing by APC. These results suggest that the ability of TSST-1 to polyclonally activate T cells is dependent on TCR recognition of the intact toxin molecule bound to a nonpolymorphic region(s) of the Ia molecule resulting in the same activation events induced by Ag recognition.  相似文献   

2.
Evidence is presented for an endogenous route of Ag processing for CD4+ T cell recognition of influenza hemagglutinin that requires obligatory traffic of de novo synthesized hemagglutinin across the lumen of the endoplasmic reticulum for processing in a cytosolic compartment. I-Ad-restricted T cell clones that recognize synthetic peptides corresponding to two distinct antigenic regions of the HA1 subunit, HA1 56-76 and HA1 177-199, are cytotoxic and, dependent on epitope specificity can recognize endogenously processed Ag and lyse class II+ target cells infected with a recombinant vaccinia-X31 HA virus. HA1 56-76 specific T cell clones fail to recognize (target cells infected with) influenza X31 viruses, containing a single residue change, HA1 63 Asp----Asn that introduces an oligosaccharide attachment site: Asp63Cys64Thr65. Recognition is restored, however, by tunicamycin treatment of mutant virus infected target cells. Inasmuch as N-glycosylation of nascent hemagglutinin polypeptides occurs in the lumen of the endoplasmic reticulum, this indicates a route of endogenous processing for hemagglutinin, requiring transport across the endoplasmic reticulum, which has been confirmed by the failure of CD4+ T cells to recognize a recombinant VACC-hemagglutinin virus in which the same single residue change, HA1 63 Asp----Asn has been introduced by site directed mutagenesis.  相似文献   

3.
The CD8 coreceptor enhances T cell function by stabilizing the TCR/peptide/MHC complex and/or increasing T cell avidity via interactions with the intracellular kinases Lck and LAT. We previously reported a CD4(+) T cell (TIL 1383I), which recognizes the tumor-associated Ag tyrosinase in the context of HLA-A2. To determine whether CD8 independent tumor cell recognition is a property of the TCR, we used retroviral transduction to express the TIL 1383I TCR in the CD8(-) murine lymphoma, 58 alpha(-)/beta(-). Immunofluorescent staining of TCR-transduced cells with human TCR V beta subfamily-specific and mouse CD3-specific Abs confirmed surface expression of the transferred TCR and coexpression of mouse CD3. Transduced effector cells secreted significant amounts of IL-2 following Ag presentation by tyrosinase peptide-pulsed T2 cells as well as stimulation with HLA-A2(+) melanoma lines compared with T2 cells alone or HLA-A2(-) melanoma cells. Further analysis of TCR-transduced clones demonstrated a correlation between T cell avidity and cell surface expression of the TCR. Therefore, the TIL 1383I TCR has sufficient affinity to mediate recognition of the physiologic levels of Ag expressed by tumor cells in the absence of CD8 expression.  相似文献   

4.
Nine independent pigeon cytochrome c-specific T cell clones were analyzed by using a panel of antigenic peptide analogs presented in association with three allelic IE-encoded MHC glycoproteins. Eight of the T cell clones expressed a TCR composed of a unique alpha- and beta-chain amino acid sequence, and concordantly, each of these T cell clones exhibited a unique Ag specificity. This was true for several clones which differed only in TCR V-J junctional regions. Interestingly, for a given clone, the response to some of the peptide analogs depended to a large extent on the allelic form of the presenting MHC molecule. A simple interpretation of these data would suggest that certain positions of the peptide Ag are most important for Ag-MHC molecule interactions, and that these specific interactions can influence the antigenic epitope recognized by the TCR. We suggest that an antigenic peptide binds to an MHC glycoprotein in a distinct way, but may retain a measure of flexibility.  相似文献   

5.
Granulomatous inflammation in schistosomiasis is strictly dependent on CD4+ Th lymphocytes sensitized to egg Ags, but its intensity is genetically regulated. C3H and CBA (H-2k) are strains of mice that develop large granulomas; they also strongly respond to the major egg Ag Sm-p40. We now show that the immunodominant epitope recognized by CD4+ Th cells from infected H-2k mice is confined to 13-mer peptide 234-246 (PKSDNQIKAVPAS), which elicits an I-Ak-restricted Th1-type response. Using a panel of alanine-monosubstituted peptides, we identified Asp237 as the main contact residue with I-Ak. On the other hand, three TCR contact residues were essential to stimulate epitope-specific T cell hybridomas: for two hybridomas these were Asn238, Gln239, and Lys241; and for one, Asn238, Lys241, and Pro244. In one instance, alanine substitution for Gln239 generated an antagonist that blocked subsequent stimulation with wild-type peptide. Most importantly, replacement of Asn238, Gln239, or Lys241 caused a profound loss of polyclonal CD4+ T cell reactivity from schistosome-infected mice. This study identifies the critical residues of immunodominant peptide 234-246 involved in the T cell response against the Sm-p40 egg Ag and suggests that suitable altered peptides may be capable of precipitating its down-regulation.  相似文献   

6.
A minor T cell determinant from pigeon cytochrome c, composed of residues 43 to 58 (p43-58), was synthesized along with a series of 48 analogs containing amino or carboxyl-terminal deletions or single amino acid substitutions. These peptides were analyzed functionally for their ability to elicit unique T cell populations on immunization of C57BL/10 mice and to stimulate a degenerate T cell clone capable of recognizing p43-58 in association with two different Ia molecules, A beta b:A alpha b and A beta d:A alpha d. These experiments allowed us to identify the residues in the determinant that are critical for T cell activation. Residues 50 and 52 had the dominant influence on T cell specificity, and residues 47, 48, 49, 51, and 53 had weak effects. Residues 46 and 54 were hardly recognized by the TCR at all, but appeared to influence the potency of the determinant by interacting with the Ia molecule. Finally, substitutions at positions 55 to 58 had no effect, but removal of these residues reduced the potency of the peptide, suggesting a contribution from the peptide backbone of this part of the molecule during T cell activation. An analysis of the spatial relationship of these dominant epitopic and agretopic residues suggests that this determinant does not assume a pure alpha-helical secondary structure when bound to the Ia molecule.  相似文献   

7.
Upon antigenic stimulation with OVA-pulsed syngeneic macrophages, the mouse T cell hybridoma 231F1 produced glycosylation inhibiting factor (GIF) having affinity for OVA and IgE-suppressive factors, whereas another T cell hybridoma, 12H5, cells produced OVA-binding glycosylation enhancing factor (GEF) and IgE-potentiating factor. The OVA-binding GIF from the 231F1 cells is an Ag-specific Ts cell factor, whereas OVA-binding GEF from the 12H5 cells is an Ag-specific augmenting factor. Both hybridomas express CD3 complex and functional TCR-alpha beta. Cross-linking of TCR-alpha beta or CD3 molecules on the hybridomas by anti-TCR-alpha beta mAb or anti-CD3 mAb and protein A resulted in the formation of the same factors as those obtained by the stimulation of the cells with OVA-pulsed syngeneic macrophages. It was also found that both the 231F1 cells and 12H5 cells formed IgE-binding factors upon incubation with H-2d and H-2b APC, respectively, with a synthetic peptide corresponding to residues 307-317 in the OVA molecules (P307-317). Six other synthetic peptides, including those containing the major immunogenic epitope, i.e., P323-339, failed to stimulate the hybridomas in the presence of APC. Indeed, all of the 10 T cell hybridoma clones, which could produce either OVA-binding GIF or OVA-binding GEF, responded to P307-317 and APC for the formation of IgE-binding factors. In contrast, GIF/GEF derived from six other hybridoma clones, whose TCR recognized P323-339 in the context of a MHC product, failed to bind to OVA-coupled Sepharose. The results indicate the correlation between the fine specificity of TCR and the affinity of GIF/GEF to the nominal Ag. The amino acid sequence of P307-317 suggested that TCR on the cell sources of Ag-binding factors are specific for an external structure of the Ag molecules.  相似文献   

8.
Resting B cells stimulated the proliferation of two T cell clones much less efficiently than T cell-depleted low-density APC. In contrast, low-density cells and resting B cells stimulated the clones to produce similar levels of inositol phosphates, a rapid biochemical event dependent only on occupancy of the TCR. The inefficient stimulation of T cell proliferation by resting B cell APC was dramatically improved by the addition of allogeneic low-density accessory cells incapable of being recognized by the TCR on the responding T cells. The results are most consistent with a model where low-density and resting B cell APC display similar amounts of Ag/Ia molecule complexes capable of being recognized by the TCR on the responding T cells but differ in the provision of costimulatory signals that, together with TCR occupancy, are required for IL-2 production.  相似文献   

9.
Human T cell clones present antigen   总被引:1,自引:0,他引:1  
Two human T cells clones are described which react with influenza virus hemagglutinin type H3 and synthetic peptides of H3 when presented by PBMC APC. Both T cell clones also responded to peptide Ag in the absence of additional APC suggesting that T cells can simultaneously present and respond to Ag. T cell clones could only present peptide Ag and not an appropriate strain of inactivated whole influenza virus thus indicating an inability to process Ag conventionally. Peptide presentation by T cells was dose dependent, restricted by MHC class II Ag and was dependent on the number of Ag presenting T cells per culture. Experiments with nested peptides showed that the same epitope was recognized in the presence and absence of PBMC APC. No Ag or IL-2 from the propagation procedure was carried over into assays and two-color fluorescence-activated cell sorter analysis of each clone detected no contaminating cells with the phenotype of monocytes, macrophages or B cells; in each T cell clone, all cells expressing MHC class II Ag co-expressed CD3. These date therefore provide strong evidence that human T cell clones can simultaneously present and respond to appropriate forms of Ag.  相似文献   

10.
Recognition of peptide Ags by T cells through the TCR can be highly specific. In this report we show the degeneracy of Ag recognition at both MHC and TCR levels. We present evidence that unrelated promiscuous Th cell epitopes from various protein sources exhibit sufficient structural homology, despite minimal structural identity, to elicit cross-reactive proliferative responses at the bulk T cell level. This epitopic mimicry was also observed when peptide (CS.T3(378-395) and TT(830-844))-specific CD4+ T cell lines and T cell hybridoma clones were used in proliferation and Ag presentation assays. A scrambled CS.T3(378-395) peptide did not show any proliferation, indicating that the specificity of the cross-reactive responses may be linked with the primary structure of the peptides. Blocking of CS.T3(378-395)-specific CD4+ T cell proliferation by anti-MHC class II mAb showed that recognition of promiscuous T cell epitopes is largely in association with MHC class II molecules. These findings suggest that promiscuous Th epitopes may be useful in designing peptide-based vaccine constructs. At the same time these results show that at the T cell level there may be a great deal of immunological cross-reactivity between heterologous pathogens, and because of this the host's response to a pathogen may be modified by its previous experience with other unrelated pathogens.  相似文献   

11.
A synthetic peptide approach has been used to identify the epitopes recognized by clonal and polyclonal human T cells reactive to the recombinant mycobacterial 65-kDa protein Ag. Three of the four epitopes identified were recognized as cross-reactive between Mycobacterium tuberculosis and Mycobacterium leprae, although their amino acid sequence in two of three cases was not identical. The peptide (231-245) defining an epitope recognized as specific to the M. tuberculosis complex contains two substitutions compared with the homologous M. leprae region of which one or both are critical to T cell recognition. The reactive T cell clones showed helper/inducer phenotype (CD4+, CD8-), and secrete IL-2, granulocyte-macrophage-CSF, and IFN-gamma upon Ag stimulation. The same clones display cytotoxicity against macrophages pulsed with the relevant peptides or mycobacteria.  相似文献   

12.
T cell responses to myelin basic protein (MBP) are potentially involved in the pathogenesis of multiple sclerosis (MS). Immunization with irradiated MBP-reactive T cells (T cell vaccination) induces anti-idiotypic T cell responses that suppress circulating MBP-reactive T cells. This T cell-T cell interaction is thought to involve the recognition of TCR expressed on target T cells. The study was undertaken to define the idiotypic determinants responsible for triggering CD8+ cytotoxic anti-idiotypic T cell responses by T cell vaccination in patients with MS. A panel of 9-mer synthetic TCR peptides corresponding to complementarity-determining region 2 (CDR2) and CDR3 of the immunizing MBP-reactive T cell clones were used to isolate anti-idiotypic T cell lines from immunized MS patients. The resulting TCR-specific T cell lines expressed exclusively the CD8 phenotype and recognized preferentially the CDR3 peptides. CDR3-specific T cell lines were found to lyze specifically autologous immunizing MBP-reactive T cell clones. The findings suggest that CDR3-specific T cells represented anti-idiotypic T cell population induced by T cell vaccination. In contrast, the CDR2 peptides were less immunogenic and contained cryptic determinants as the CDR2-specific T cell lines did not recognize autologous immunizing T cell clones from which the peptide sequence was derived. The study has important implications in our understanding of in vivo idiotypic regulation of autoimmune T cells and the regulatory mechanism underlying T cell vaccination.  相似文献   

13.
Synthetic peptides have been used to exactly define a T cell epitope region from the immunogenic 18-kDa protein of Mycobacterium leprae. Four M. leprae reactive CD4+ T cell clones, isolated from two healthy individuals vaccinated with killed M. leprae, recognized a determinant initially defined by the peptide (38-50). However, fine mapping of the minimal sequence required for T cell recognition revealed heterogeneity among the T cell clones with regard to the N- and carboxyl-terminal boundaries of the epitopes recognized. MHC restriction analysis showed that the immunogenic peptides were presented to the T cells in an HLA-DR4,Dw4-restricted manner in all cases. The results suggest that a polyclonal T cell response representing different fine specificities is directed toward a possible immunodominant epitope from the M. leprae 18-kDa Ag in individuals carrying this MHC haplotype.  相似文献   

14.
The characterization of human T cell antigenic sites on influenza A nucleoprotein (NP) is important for subunit vaccine development for either antibody boosting during infection or to stimulate T cell-mediated immunity. To identify such sites, 31 synthetic peptides that cover more than 95% of the amino acid sequence from NP of influenza A/NT/60/68 virus were tested for their ability to stimulate PBL from 42 adult donors. The most frequently recognized region was covered by a peptide corresponding to residues 206-229 of NP, with 20/42 (48%) of responders. In many individuals this was also one of the peptides that stimulated the strongest T cell responses. Other regions that were also frequently recognized were 341-362 by 13/42 (30%), 297-318 by 10/42 (23%), and 182-205 by 9/42 (21%) of individuals. These peptides covered highly conserved regions in NP of influenza A viruses, suggesting that they could be useful in boosting cross-reactive immunity against the known type A virus strains. In order to define the class II restriction molecules used to present particular T cell epitopes, 22 persons from the donor panel were HLA-typed. The majority of persons who expressed DR2, and proliferated to NP also responded to the major immunodominant region 206-229. In addition, this peptide was also immunodominant in the one person expressing DRw13. The observation that recognition of this peptide is associated with DR2 was confirmed by using short term T cell lines and APC from a panel of typed donors. Further results with virus-specific T cell lines and clones and transfected L cells expressing DR molecules showed that DR1 could also present this peptide. Therefore the results suggest that recognition of 206-229 is associated with at least three different DR haplotypes and this may explain the high frequency with which this peptide is recognized in the population. The fine specificity of the response to peptide 206-229 was distinct when presented by DR1- or DR2-expressing APC. The DR1 response was dependent on the N terminus, and the DR2 response was directed to the C terminus of the peptide.  相似文献   

15.
Both the underlying molecular mechanisms and the kinetics of TCR repertoire selection following vaccination against tumor Ags in humans have remained largely unexplored. To gain insight into these questions, we performed a functional and structural longitudinal analysis of the TCR of circulating CD8(+) T cells specific for the HLA-A2-restricted immunodominant epitope from the melanocyte differentiation Ag Melan-A in a melanoma patient who developed a vigorous and sustained Ag-specific T cell response following vaccination with the corresponding synthetic peptide. We observed an increase in functional avidity of Ag recognition and in tumor reactivity in the postimmune Melan-A-specific populations as compared with the preimmune blood sample. Improved Ag recognition correlated with an increase in the t(1/2) of peptide/MHC interaction with the TCR as assessed by kinetic analysis of A2/Melan-A peptide multimer staining decay. Ex vivo analysis of the clonal composition of Melan-A-specific CD8(+) T cells at different time points during vaccination revealed that the response was the result of asynchronous expansion of several distinct T cell clones. Some of these T cell clones were also identified at a metastatic tumor site. Collectively, these data show that tumor peptide-driven immune stimulation leads to the selection of high-avidity T cell clones of increased tumor reactivity that independently evolve within oligoclonal populations.  相似文献   

16.
We have identified the site encompassing residues 126-145 on the A/Japan/57 influenza hemagglutinin molecule that is recognized in association with HLA-DRw11 by a clonal population of human, influenza specific, CD4+ cytolytic T lymphocytes. The critical core sequence of the T cell determinant spans hemagglutinin residues 129-140 and overlaps a putative antibody binding site. Hemagglutinins of influenza field strains that are not recognized by the T cell clones contain sequence alterations within the 129-140 target site of the CD4+ T cells. Functional analyses, with synthetic peptides, of the contribution of each of the residues within the sequence toward the capacity of the antigenic fragment to associate with both the restriction element and the TCR revealed a continuous linear array of residues necessary for MHC binding and/or Ag receptor engagement. At least one residue, the lysine at position 134, was shown to be critical for both DRw11 association and TCR recognition. The significance of these findings for recognition of glycoproteins by human CD4+ T cells is discussed.  相似文献   

17.
In recent years, synthetic peptides have been utilized extensively to characterize the minimal essential immunodominant sites on model protein Ag. However, little work has focused on the effect that sequences flanking these minimal recognition sites may exert on T cell recognition. Previous work with staphylococcal nuclease (Nase) demonstrated that I-Ek-restricted clones recognize the peptide 81-100, whereas I-Ab-restricted clones recognize the over-lapping but non-cross-reacting peptide 91-110. Further analysis with 15 or 10 residue peptides within the region 81-110 reveals that the minimal sequence capable of stimulating I-Ek-restricted clones is contained within the decapeptide 91-100. Addition of residues 86-90, to give the peptide 86-100, enhanced the recognition substantially, whereas addition of residues 101-105 produced a 91-105 peptide with no stimulatory ability. These results suggest that interactions between the antigenic peptide 91-100 and residues within the flanking 101-105 sequence have negative consequences for presentation of the immunodominant epitope to T cell clones. Introduction of single amino acid substitutions within 91-105 produced peptides that induce responses comparable to those seen with 91-100. These results are consistent with the suggestion of negative interactions between the minimal immunodominant site and flanking sequences in that single residue substitutions may remove these negative interactions and lead to restoration of stimulatory ability. The negative effect of flanking sequences on T cell recognition of immunodominant sites presents new considerations for development of synthetic vaccines as well as for understanding the biology of Ag processing and presentation.  相似文献   

18.
MHC class Ia H chains and beta 2-microglobulin assemble with appropriate peptides to form stable cell surface molecules that serve as targets for Ag-specific CTL. The structural similarities of class Ia and the less polymorphic Q/T/M (class Ib) molecules suggest that class Ib molecules also play a role in antigen presentation, although the origin of the peptides they present remains mostly unclear. The cell line RMA-S has a defect in class I Ag presentation, presumably due to a mutation in a peptide transporter gene. This defect can be overcome by transfection of RMA-S cells with the Tap-2 gene (formerly Ham-2) that encodes an ATP-binding transporter protein. We now show that a substantial portion of alloreactive CTL specific for Qa-1 class Ib molecules recognize Qa-1b on RMA-S cells and thus differ from most class Ia specific CTL. Those anti-Qa-1b CTL that do not recognize untransfected RMA-S do lyse RMA-S transfected with Tap-2. We also examine the effects of Qdm, a gene that maps to the D region and alters recognition of Qa-1. Qdm(k) strains lack an epitope(s) recognized by some (Qdm dependent) anti-Qa-1 CTL whereas Qdm+ strains express this epitope. Thus, Qdm-dependent CTL do not recognize Qa-1 on Qdm(k) targets whereas Qdm-independent CTL recognize Qa-1 epitopes in all strains. Although Qdm-independent CTL varied as to whether they recognized RMA-S vs RMA, all nine Qdm-dependent clones only recognized Qa-1b on RMA and not RMA-S. This result is consistent with Qdm encoding a peptide dependent upon the TAP transporter for cell membrane expression.  相似文献   

19.
In a recent study, we reported extensive diversity in the Iak-restricted T cell repertoire for the hemagglutinin molecule (HA) of influenza A viruses (H3 subtype). Synthetic peptides identified six nonoverlapping epitopes on the HA1 subunit, and CD4+ T cell clones, specific for these regions, discriminated between natural variant viruses that had accumulated amino acid substitutions during antigenic drift. Here, we demonstrate similar specificity and diversity for the Iad haplotype and have identified multiple T cell epitopes within the sequences HA1 56-76, 71-91, 81-97, 177-199, 186-205, and 206-227. These also include recognition sites for neutralizing antibodies and correlations can be made between antigenic drift substitutions in H3 subtype viruses and the specificity of individual CD4+ clones for mutant HA. Moreover, these peptides appear not to exhibit structural homology and fail to compete for Ag presentation, indicating heterogeneity in peptide-Ia interaction. To explain the observation that CD4+ T cells, from two major haplotypes, recognize antibody binding regions of the HA molecule, we propose that surface Ig receptors of the Ag-specific B memory cell exert a direct effect on the processing of HA peptides and subsequent selection of the class II-restricted T cell memory repertoire after natural infection.  相似文献   

20.
While T cells have been clearly implicated in a number of disease processes including autoimmunity, graft rejection, and atypical immune responses, the precise Ags recognized by the pathogenic T cells have often been difficult to identify. This has particularly been true for MHC class II-restricted CD4+ T cells. Although such cells can be demonstrated to have undergone clonal expansion at sites of pathology, they are frequently difficult to establish as stable T cell clones. Furthermore, in general, larger peptides in higher concentrations are required to stimulate CD4+ T cells than CD8+ T cells, which makes some of the techniques developed to identify CD8+ T cell Ags impractical. To circumvent some of these problems, we developed a model system consisting of two parts. The first part involves the construction of an indicator T cell hybridoma expressing a chimeric TCR comprised of murine constant regions and human variable regions specific for influenza hemagglutinin 307-319 presented by DR4. The second part consists of a library of fibroblasts each expressing multiple peptides as amino terminal covalent extensions of the beta-chain of HLA-DR4 (DRA1*0101, DRB1*0401). Using this model system, we screened approximately 100, 000 peptides and identified three novel peptides stimulatory for the HA1.7 TCR. While there is some convergence at residues known to be important for T cell recognition, all three peptides differ markedly from each other and bear little resemblance to wild-type hemagglutinin 307-319.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号