首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
C N Cronin  J F Kirsch 《Biochemistry》1988,27(12):4572-4579
X-ray crystallographic data have implicated Arg-292 as the residue responsible for the preferred side-chain substrate specificity of aspartate aminotransferase. It forms a salt bridge with the beta or gamma carboxylate group of the substrate [Kirsch, J. F., Eichele, G., Ford, G. C., Vincent, M. G., Jansonius, J. N., Gehring, H., & Christen, P. (1984) J. Mol. Biol. 174, 497-525]. In order to test this proposal and, in addition, to attempt to reverse the substrate charge specificity of this enzyme, Arg-292 has been converted to Asp-292 by site-directed mutagenesis. The activity (kcat/KM) of the mutant enzyme, R292D, toward the natural anionic substrates L-aspartate, L-glutamate, and alpha-ketoglutarate is depressed by over 5 orders of magnitude, whereas the activity toward the keto acid pyruvate and a number of aromatic and other neutral amino acids is reduced by only 2-9 fold. These results confirm the proposal that Arg-292 is critical for the rapid turnover of substrates bearing anionic side chains and show further that, apart from the desired alteration, no major perturbations of the remainder of the molecule have been made. The activity of R292D toward the cationic amino acids L-arginine, L-lysine, and L-ornithine is increased by 9-16-fold over that of wild type and the ratio (kcat/KM)cationic/(kcat/KM)anionic is in the range 2-40-fold for R292D, whereas this ratio has a range of [(0.3-6) x 10(-6)]-fold for wild type. Thus, the mutation has produced an inversion of the substrate charge specificity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Three mutant Escherichia coli aspartate aminotransferases in which Val39 was changed to Ala, Leu, and Phe by site-directed mutagenesis were prepared and characterized. Among the three mutant and the wild-type enzymes, the Leu39 enzyme had the lowest Km values for dicarboxylic substrates. The Km values of the Ala39 enzyme for dicarboxylates were essentially the same as those of the wild-type (Val39) enzyme. These two mutant enzymes showed essentially the same kcat values for dicarboxylic substrates as did the wild-type enzyme. On the other hand, incorporation of a bulky side-chain at position 39 (Phe39 enzyme) decreased both the affinity (1/Km) and catalytic ability (kcat) toward dicarboxylic substrates. These results show that the position 39 residue is involved in the modulation of both the binding of dicarboxylic substrates to enzyme and the catalytic ability of the enzyme. Although the replacement of Val39 with other residues altered both the kcat and Km values toward various substrates including dicarboxylic and aromatic amino acids and the corresponding oxo acids, it did not alter the ratio of the kcat/Km value of the enzyme toward a dicarboxylic substrate to that for an aromatic substrate. The affinity for aromatic substrates was not affected by changing the residue at position 39. These data indicate that, although the side chain bulkiness of the residue at position 39 correlates well with the activity toward aromatic substrates in the sequence alignment of several aminotransferases [Seville, M., Vincent M.G., & Hahn, K. (1988) Biochemistry 27, 8344-8349], the residue does not seem to be involved in the recognition of aromatic substrates.  相似文献   

3.
Mutations at residue 244 (Ambler numbering system) in the class A TEM beta-lactamase confer resistance to inactivation by beta-lactamase inhibitors and result in diminished turnover of beta-lactam substrates. The Arg244Ser mutant of the OHIO-1 beta-lactamase, an SHV family enzyme, demonstrates variable susceptibilities to beta-lactamase inhibitors and has significantly reduced catalytic efficiency. The minimum inhibitory concentrations (MICs) for Escherichia coli DH5alpha expressing the Arg244Ser beta-lactamase were reduced when compared to the strain bearing the OHIO-1 beta-lactamase: ampicillin, 512 vs. 8192 micrograms ml-1; cephaloridine, 4 vs. 32 micrograms ml-1, respectively. The MICs for the beta-lactam beta-lactamase inhibitor combinations demonstrated resistance only to ampicillin-clavulanate, 16/8 vs. 8/4 micrograms ml-1 respectively. In contrast, there was increased susceptibility to ampicillin-sulbactam, ampicillin-tazobactam, and piperacillin-tazobactam. When compared to the OHIO-1 beta-lactamase homogenous preparations of the Arg244Ser beta-lactamase enzyme demonstrated increased Km and decreased kcat values for benzylpenicillin (Km=17 vs. 50 microM, kcat=345 vs. 234 s-1) and cephaloridine (Km=97 vs. 202 microM, kcat=1023 vs. 202 s-1). Although the Ki and IC50 values were increased for each inhibitor when compared to OHIO-1 beta-lactamase, the turnover numbers (tn) required for inactivation were increased only for clavulanate. For the Arg244Ser mutant enzyme of OHIO-1, the increased Ki, decreased tn for the sulfones, and different partition ratio (kcat/kinact) support the notion that not all class A enzymes are inactivated in the same manner, and that certain class A beta-lactamase enzymes may react differently with identical substitutions in structurally conserved amino acids. The resistance phenotype of a specific mutations can vary depending on the enzyme.  相似文献   

4.
Aromatic amino acid aminotransferase is active toward both aromatic and dicarboxylic amino acids, and the mechanism for this dual substrate recognition has been an issue in the enzymology of this enzyme. Here we show that, in the reactions with aromatic and dicarboxylic ligands, the pK(a) of the Schiff base formed between the coenzyme pyridoxal 5'-phosphate and Lys258 or the substrate increases successively from 6.6 in the unliganded enzyme to approximately 8.8 in the Michaelis complex and to >10.5 in the external Schiff base complex. Mutations of Arg292 and Arg386 to Leu, which mimic neutralization of the positive charges of the two arginine residues by the ligand carboxylate groups, increased the Schiff base pK(a) by 0.1 and 0.7 unit, respectively. In contrast to these moderate effects of the Arg mutations, the cleavage of the Lys258 side chain of the Schiff base, which was brought about by preparing a mutant enzyme in which Lys258 was changed to Ala and the Schiff base was reconstituted with methylamine, produced the Schiff base pK(a) value of 10.2, that being 3.6 units higher than that of the wild-type enzyme. The observation indicates that the Schiff base pK(a) in the enzyme is lowered by the torsion around the C4-C4' axis of the Schiff base and suggests that the pK(a) is mainly controlled by changing the torsion angle during the course of catalysis. This mechanism, first observed for the reaction of aspartate aminotransferase with aspartate [Hayashi, H., Mizuguchi, H., and Kagamiyama, H. (1998) Biochemistry 37, 15076-15085], does not require the electrostatic contribution from the omega-carboxylate group of the substrate, and can explain why in aromatic amino acid aminotransferase the aromatic substrates can increase the Schiff base pK(a) during catalysis to the same extent as the dicarboxylic substrates. This is the first example in which the torsion pK(a) coupling of the pyridoxal 5'-phosphate Schiff base has been demonstrated in pyridoxal enzymes other than aspartate aminotransferase, and suggests the generality of the mechanism in the catalysis of aminotransferases related to aspartate aminotransferase.  相似文献   

5.
Tanaka K  Suzuki T 《FEBS letters》2004,573(1-3):78-82
The purpose of this study is to elucidate the mechanisms of guanidine substrate specificity in phosphagen kinases, including creatine kinase (CK), glycocyamine kinase (GK), lombricine kinase (LK), taurocyamine kinase (TK) and arginine kinase (AK). Among these enzymes, LK is unique in that it shows considerable enzyme activity for taurocyamine in addition to its original target substrate, lombricine. We earlier proposed several candidate amino acids associated with guanidine substrate recognition. Here, we focus on amino-acid residue 95, which is strictly conserved in phosphagen kinases: Arg in CK, Ile in GK, Lys in LK and Tyr in AK. This residue is not directly associated with substrate binding in CK and AK crystal structures, but it is located close to the binding site of the guanidine substrate. We replaced amino acid 95 Lys in LK isolated from earthworm Eisenia foetida with two amino acids, Arg or Tyr, expressed the modified enzymes in Escherichia coli as a fusion protein with maltose-binding protein, and determined the kinetic parameters. The K95R mutant enzyme showed a stronger affinity for both lombricine (Km=0.74 mM and kcat/Km=19.34 s(-1) mM(-1)) and taurocyamine (Km=2.67 and kcat/Km=2.81), compared with those of the wild-type enzyme (Km=5.33 and kcat/Km=3.37 for lombricine, and Km=15.31 and kcat/ Km=0.48for taurocyamine). Enzyme activity of the other mutant, K95Y, was dramatically altered. The affinity for taurocyamine (Km=1.93 and kcat/Km=6.41) was enhanced remarkably and that for lombricine (Km=14.2 and kcat/Km=0.72) was largely decreased, indicating that this mutant functions as a taurocyamine kinase. This mutant also had a lower but significant enzyme activity for the substrate arginine (Km=33.28 and kcat/Km=0.01). These results suggest that Eisenia LK is an inherently flexible enzyme and that substrate specificity is strongly controlled by the amino-acid residue at position 95.  相似文献   

6.
Trp140 of E. coli aspartate aminotransferase has been converted to Phe or Gly by site-directed mutagenesis. As compared to the wild-type enzyme, either of the mutant enzymes showed 10- to 100-fold increase in Km's for natural dicarboxylic substrates, but did not show appreciable changes in Km's for aromatic substrates. Teh kcat values for dicarboxylic and aromatic substrates were greatly decreased by [Trp140----Gly] mutation, but were decreased to lesser extents by [Trp140----Phe] mutation. These findings suggested that N(1) of Trp140 may not be essential for catalysis, but may be partly involved in the binding of the distal carboxylate group of the dicarboxylic substrates.  相似文献   

7.
Through comparison with the high-resolution structure of Clostridium symbiosum glutamate dehydrogenase, the different substrate specificities of the homologous enzymes phenylalanine dehydrogenase and leucine dehydrogenase were attributed to two residues, glycine 124 and leucine 307, in Bacillus sphaericus phenylalanine dehydrogenase, which are replaced with alanine and valine in leucine dehydrogenases. As predicted, making these substitutions in phenylalanine dehydrogenase decreased the specific activity towards aromatic substrates and enhanced the activity towards some aliphatic amino acids in standard assays with fixed concentrations of both substrates. This study did not, however, distinguish effects on affinity from those on maximum catalytic rate. A fuller kinetic characterization of the single- and double-mutant enzymes now reveals that the extent of the shift in specificity was underestimated in the earlier study. The maximum catalytic rates for aromatic substrates are reduced for all the mutants, but, in addition, the apparent Km values are higher for the single-mutant G124A and double-mutant G124A/L307V compared with the wild-type enzyme. Conversely, specificity constants (kcat/Km) for the nonpolar aliphatic amino acids and the corresponding 2-oxoacids for the mutants are all markedly higher than for the wild type, with up to a 40-fold increase for l-norvaline and a 100-fold increase for its 2-oxoacid in the double mutant. In some cases a favourable change in Km was found to outweigh a smaller negative change in kcat. These results emphasize the risk of misjudging the outcome of protein engineering experiments through too superficial an analysis. Overall, however, the success of the predictions from molecular modelling indicates the usefulness of this strategy for engineering new specificities, even in advance of more detailed 3D structural information.  相似文献   

8.
The tyrosine (eTATase) and aspartate (eAATase) aminotransferases of Escherichia coli transaminate diacarboxylic amino acids with similar rate constants. However, eTATase exhibits approximately 10(2)-10(4)-fold higher second-order rate constants for the transamination of aromatic amino acids than does eAATase. A series of natural and unnatural amino acid substrates was used to quantitate specificity differences for these two highly related enzymes. A general trend toward lower transamination activity with increasing side-chain length (extending from aspartate to glutamate to alpha-aminoadipate) is observed for both enzymes. This result suggests that dicarboxylate ligands associate with the two highly related enzymes in a similar manner. The high reactivity of the enzymes with L-Asp and L-Glu can be attributed to an ion pair interaction between the side-chain carboxylate of the amino acid substrate and the guanidino group of the active site residue Arg 292 that is common to both enzymes. A strong linear correlation between side-chain hydrophobicity and transamination rate constants obtains for n-alkyl side-chain amino substrates with eTATase, but not for eAATase. The present kinetic data support a model in which eAATase contains one binding mode for all classes of substrate, whereas the active site of eTATase allows an additional mode that has increased affinity for hydrophobic amino acid.  相似文献   

9.
Chymotrypsin-like serine proteases are found in high abundance in mast cell granules. By site-directed mutatgenesis, we have previously shown that basic amino acids in positions 143 and 192 (Arg and Lys respectively) of the human mast cell chymase are responsible for an acidic amino acid residue preference in the P2'' position of substrates. In order to study the influence of these two residues in determining the specificity of chymase inhibitors, we have synthesized five different potent inhibitors of the human chymase. The inhibitory effects of these compounds were tested against the wild-type enzyme, against two single mutants Arg143Gln and Lys192Met and against a double mutant, Arg143Gln+Lys192Met. We observed a markedly reduced activity of all five inhibitors with the double mutant, indicating that these two basic residues are involved in conferring the specificity of these inhibitors. The single mutants showed an intermediate phenotype, with the strongest effect on the inhibitor by the mutation in Lys192. The Lys192 and the double mutations also affected the rate of cleavage of angiotensin I but did not seem to affect the specificity in the cleavage of the Tyr4-Ile5 bond. A more detailed knowledge about which amino acids that confer the specificity of an enzyme can prove to be of major importance for development of highly specific inhibitors for the human chymase and other medically important enzymes.  相似文献   

10.
Iyidogan P  Lutz S 《Biochemistry》2008,47(16):4711-4720
Human deoxycytidine kinase (dCK) is responsible for the phosphorylation of a number of clinically important nucleoside analogue prodrugs in addition to its natural substrates, 2'-deoxycytidine, 2'-deoxyguanosine, and 2'-deoxyadenosine. To improve the low catalytic activity and tailor the substrate specificity of dCK, we have constructed libraries of mutant enzymes and tested them for thymidine kinase (tk) activity. Random mutagenesis was employed to probe for amino acid positions with an impact on substrate specificity throughout the entire enzyme structure, identifying positions Arg104 and Asp133 in the active site as key residues for substrate specificity. Kinetic analysis indicates that Arg104Gln/Asp133Gly creates a "generalist" kinase with broader specificity and elevated turnover for natural and prodrug substrates. In contrast, the substitutions of Arg104Met/Asp133Thr, obtained via site-saturation mutagenesis, yielded a mutant with reversed substrate specificity, elevating the specific constant for thymidine phosphorylation by over 1000-fold while eliminating activity for dC, dA, and dG under physiological conditions. The results illuminate the key contributions of these two amino acid positions to enzyme function by demonstrating their ability to moderate substrate specificity.  相似文献   

11.
Two aminotransferases from Escherichia coli were purified to homogeneity by the criterion of gel electrophoresis. The first (enzyme A) is active on L-aspartic acid, L-tyrosine, L-phenylalanine, and L-tryptophan; the second (enzyme B) is active on the aromatic amiono acids. Enzyme A is identical in substrate specificity with transaminase A and is mainly an aspartate aminotransferase; enzyme B has never been described before and is an aromatic amino acid aminotransferase. The two enzymes are different in the Vmax and Km values with their common substrates and pyridoxal phosphate, in heat stability (enzyme A being heat-stable and enzyme B being heat-labile at 55 degrees) and in pH optima with the amino acid substrates. They are similar in their amino acid composition, each enzyme appears to consist of two subunits, and enzyme B may be converted to enzyme A by controlled proteolysis with subtilsin. The conversion was detected by the generation of new aspartate aminotransferase activity from enzyme B and was further verified by identification by acrylamide gel electrophoresis of the newly formed enzyme A. The two enzymes appear to be products of two genes different in a small, probably terminal, nucleotide sequence.  相似文献   

12.
The specific activity of subtilisin E, an alkaline serine protease of Bacillus subtilis, was substantially increased by optimizing the amino acid residue at position 31 (Ile in the wild-type enzyme) in the vicinity of the catalytic triad of the enzyme. Eight uncharged amino acids (Cys, Ser, Thr, Gly, Ala, Val, Leu, and Phe) were introduced at this site, which is next to catalytic Asp32, using site-directed mutagenesis. Mutant enzymes were expressed in Escherichia coli and were prepared from the periplasmic space. Only the Val and Leu substitutions gave active enzyme, and the Leu31 mutant was found to have a greatly increased activity compared to the wild-type enzyme. The other six mutant enzymes showed a marked decrease in activity. This result indicates that a branched-chain amino acid at position 31 is essential for the expression of subtilisin activity and that the level of the activity depends on side chain structure. The purified Leu31 mutant enzyme was analyzed with respect to substrate specificity, heat stability, and optimal temperature. It was found that the Leu31 replacement caused a prominent 2-6-fold increase in catalytic efficiency (kcat/Km) due to a larger kcat for peptide substrates.  相似文献   

13.
Adenylosuccinate synthetases from different sources contain an N-terminal glycine-rich sequence GDEGKGK, which is homologous to the conserved sequence GXXXXGK found in many other guanine nucleotide-binding proteins or enzymes. To determine the role of this sequence in the structure and function of Escherichia coli adenylosuccinate synthetase, site-directed mutagenesis was performed to generate five mutant enzymes: G12V (Gly12----Val), G15V (Gly15----Val), G17V (Gly17----Val), K18R (Lys18----Arg), and I19T (Ile19----Thr). Comparison of the kinetic properties of the wild-type enzyme and those of the mutant enzymes revealed that the sequence is critical for enzyme activity. Replacement of Gly12, Gly15, or Gly17 with Val, or replacement of Lys18 with Arg, resulted in significant decreases in the kcat/Km values of the enzyme. Because the consensus sequence GXXXXGK(T/S) has been found in many GTP-binding proteins, isoleucine at position 19 in the E. coli adenylosuccinate synthetase was changed to threonine to produce the sequence GDEGKGKT. This mutation, which more closely resembles the consensus sequence, resulted in a 160-fold increase in the Km value for substrate GTP; however, there were no great changes for the other two substrates, IMP and aspartate. Based on these data, we suggest that the N-terminal glycinerich sequence in E. coli adenylosuccinate synthetase plays a more important role in enzyme catalysis than in substrate binding. In addition, a hydrophobic amino acid residue such as isoleucine, leucine, or valine, rather than threonine, may play a critical role in GTP binding in adenosuccinate synthetase. These findings suggest that the glycine-rich sequence in adenylosuccinate synthetase functions differently relative to those in other GTP binding proteins or enzymes.  相似文献   

14.
The active site of Sulfolobus solfataricus aspartate aminotransferase   总被引:1,自引:0,他引:1  
Aspartate aminotransferase from the archaebacterium Sulfolobus solfataricus binds pyridoxal 5' phosphate, via an aldimine bond, with Lys-241. This residue has been identified by reducing the enzyme in the pyridoxal form with sodium cyanoboro[3H]hydride and sequencing the specifically labeled peptic peptides. The amino acid sequence centered around the coenzyme binding site is highly conserved between thermophilic aspartate aminotransferases and differs from that found in mesophilic isoenzymes. An alignment of aspartate aminotransferase from Sulfolobus solfataricus with mesophilic isoenzymes, attempted in spite of the low degree of similarity, was confirmed by the correspondence between pyridoxal 5' phosphate binding residues. Using this alignment it was possible to insert the archaebacterial aspartate aminotransferase into a subclass, subclass I, of pyridoxal 5' phosphate binding enzymes comprising mesophilic aspartate aminotransferases, tyrosine aminotransferases and histidinol phosphate aminotransferases. These enzymes share 12 invariant amino acids most of which interact with the coenzyme or with the substrates. Some enzymes of subclass I and in particular aspartate aminotransferase from Sulfolobus solfataricus, lack a positively charged residue, corresponding to Arg-292, which in pig cytosolic aspartate aminotransferase interacts with the distal carboxylate of the substrates (and determines the specificity towards dicarboxylic acids). It was confirmed that aspartate aminotransferase from Sulfolobus solfataricus does not possess any arginine residue exposed to chemical modifications responsible for the binding of omega-carboxylate of the substrates. Furthermore, it has been found that aspartate aminotransferase from Sulfolobus solfataricus is fairly active when alanine is used as substrate and that this activity is not affected by the presence of formate. The KM value of the thermophilic aspartate aminotransferase towards alanine is at least one order of magnitude lower than that of the mesophilic analogue enzymes.  相似文献   

15.
Alignment of 15 vertebrate alpha1,3-fucosyltransferases revealed one arginine conserved in all the enzymes employing exclusively type 2 acceptor substrates. At the equivalent position, a tryptophan was found in FUT3-encoded Lewis alpha1,3/1,4-fucosyltransferase (Fuc-TIII) and FUT5-encoded alpha1,3/1,4-fucosyltransferase, the only fucosyltransferases that can also transfer fucose in alpha1, 4-linkage. The single amino acid substitution Trp111 --> Arg in Fuc-TIII was sufficient to change the specificity of fucose transfer from H-type 1 to H-type 2 acceptors. The additional mutation of Asp112 --> Glu increased the type 2 activity of the double mutant Fuc-TIII enzyme, but the single substitution of the acidic residue Asp112 in Fuc-TIII by Glu decreased the activity of the enzyme and did not interfere with H-type 1/H-type 2 specificity. In contrast, substitution of Arg115 in bovine futb-encoded alpha1, 3-fucosyltransferase (Fuc-Tb) by Trp generated a protein unable to transfer fucose either on H-type 1 or H-type 2 acceptors. However, the double mutation Arg115 --> Trp/Glu116 --> Asp of Fuc-Tb slightly increased H-type 1 activity. The acidic residue adjacent to the candidate amino acid Trp/Arg seems to modulate the relative type 1/type 2 acceptor specificity, and its presence is necessary for enzyme activity since its substitution by the corresponding amide inactivated both Fuc-TIII and Fuc-Tb enzymes.  相似文献   

16.
Chow MA  McElroy KE  Corbett KD  Berger JM  Kirsch JF 《Biochemistry》2004,43(40):12780-12787
Several mutant Escherichia coli aspartate aminotransferases (eAATases) have been characterized in the attempt to evolve or rationally redesign the substrate specificity of eAATase into that of E. coli tyrosine aminotransferase (eTATase). These include HEX (designed), HEX + A293D (design followed by directed evolution), and SRHEPT (directed evolution). The A293D mutation realized from directed evolution of HEX is here imported into the SRHEPT platform by site-directed mutagenesis, resulting in an enzyme (SRHEPT + A293D) with nearly the same ratio of k(cat)/K(m)(Phe) to k(cat)/K(m)(Asp) as that of wild-type eTATase. The A293D substitution is an important specificity determinant; it selectively disfavors interactions with dicarboxylic substrates and inhibitors compared to aromatic ones. Context dependence analysis is generalized to provide quantitative comparisons of a common substitution in two or more different protein scaffolds. High-resolution crystal structures of ligand complexes of HEX + A293D, SRHEPT, and SRHEPT + A293D were determined. We find that in both SRHEPT + A293D and HEX + A293D, the additional mutation holds the Arg 292 side chain away from the active site to allow increased specificity for phenylalanine over aspartate. The resulting movement of Arg 292 allows greater flexibility of the small domain in HEX + A293D. While HEX is always in the closed conformation, HEX + A293D is observed in both the closed and a novel open conformation, allowing for more rapid product release.  相似文献   

17.
Chemical modification of adenylosuccinate synthetase from Escherichia coli with phenylglyoxal resulted in an inhibition of enzyme activity with a second-order rate constant of 13.6 M-1 min-1. The substrates, GTP or IMP, partially protected the enzyme against inactivation by the chemical modification. The other substrate, aspartate, had no such effect even at a high concentration. In the presence of both IMP and GTP during the modification, nearly complete protection of the enzyme against inactivation was observed. Stoichiometry studies with [7-14C]phenylglyoxal showed that only 1 reactive arginine residue was modified by the chemical reagent and that this arginine residue could be shielded by GTP and IMP. Sequence analysis of tryptic peptides indicated that Arg147 is the site of phenylglyoxal chemical modification. This arginine has been changed to leucine by site-directed mutagenesis. The mutant enzyme (R147L) showed increased Michaelis constants for IMP and GTP relative to the wild-type system, whereas the Km for aspartate exhibited a modest decrease as compared with the native enzyme. In addition, kcat of the R147L mutant decreased by a factor of 1.3 x 10(4). On the bases of these observations, it is suggested that Arg147 is critical for enzyme catalysis.  相似文献   

18.
Crystallography shows that aspartate aminotransferase binds dicarboxylate substrate analogues by bonds to Arg292 and Arg386, respectively [Jager, J, Moser, M. Sauder, U. & Jansonius, J. N. (1994) J. Mol. Biol., 239, 285-305]. The contribution of each interaction to the conformational change that the enzyme undergoes when it binds ligands via these residues, is assessed by probing mutant forms of the enzyme lacking either or both arginines. The probes used are NaH(3)BCN which reduces the cofactor imine, the reactive substrate analogue, cysteine sulfinate and proteolysis by trypsin. The unreactive substrate analogue, maleate, is used to induce closure. Each single mutant reacted only 2.5-fold more slowly with NaH(3)BCN than the wild-type indicating that charge repulsion by the arginines contributes little to maintaining the open conformation. Maleate lowered the rate of reduction of the wild-type enzyme more than 300-fold but had little effect on the reaction of the mutant enzymes indicating that the ability of this dicarboxylate analogue to bridge the arginines precisely makes the major contribution to closure. The R292L mutant reacted 20 times more rapidly with cysteine sulfinate than R386L but 5 x 10(4) times more slowly than the wild-type enzyme, consistent with the proposal that enzyme's catalytic abilities are not developed unless closure is induced by bridging of the arginines. Proteolysis of the mutants with trypsin showed that, in the wild-type enzyme, the bonds most susceptible to trypsin are those contributed by Arg292 and Arg386. Proteolysis of the next most susceptible bond, at Arg25 in the double mutant, was protected by maleate demonstrating the presence of an additional site on the enzyme for binding dicarboxylates.  相似文献   

19.
Aspartate aminotransferase from an extremely thermophilic bacterium, Thermus thermophilus HB8 (ttAspAT), has been believed to be specific for an acidic substrate. However, stepwise introduction of mutations in the active-site residues finally changed its substrate specificity to that of a dual-substrate enzyme. The final mutant, [S15D, T17V, K109S, S292R] ttAspAT, is active toward both acidic and hydrophobic substrates. During the course of stepwise mutation, the activities toward acidic and hydrophobic substrates changed independently. The introduction of a mobile Arg292* residue into ttAspAT was the key step in the change to a "dual-substrate" enzyme. The substrate recognition mechanism of this thermostable "dual-substrate" enzyme was confirmed by X-ray crystallography. This work together with previous studies on various enzymes suggest that this unique "dual-substrate recognition" mechanism is a feature of not only aminotransferases but also other enzymes.  相似文献   

20.
The substrate specificities of three class I (beta, gamma, and eta) and three class II (sigma, epsilon, and zeta) collagenases from Clostridium histolyticum have been investigated by quantitating the kcat/KM values for the hydrolysis of 53 synthetic peptides with collagen-like sequences covering the P3 through P3 subsites of the substrate. For both classes of collagenases, there is a strong preference for Gly in subsites P1' and P3. All six enzymes also prefer substrates that contain Pro and Ala in subsites P2 and P2' and Hyp, Ala, or Arg in subsite P3'. This agrees well with the occupancies of these sites by these residues in type I collagen. However, peptides with Glu in subsites P2 or P2' are not good substrates, even though Glu occurs frequently in these positions in collagen. Conversely, all six enzymes prefer aromatic amino acids in subsite P1, even though such residues do not occur in this position in type I collagen. In general, the class II enzymes have a broader specificity than the class I enzymes. However, they are much less active toward sequences containing Hyp in subsites P1 and P3'. Thus, the two classes of collagenases have similar but complementary sequence specificities. This accounts for the ability of the two classes of enzymes to synergistically digest collagen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号