首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Spontaneously hypertensive rats (SHR) are characterized by several neuroendocrine abnormalities including a chronic hypersecretion of thyrotropin (TSH) of unknown etiology. We hypothesized that the inappropriately high TSH secretion in SHR may be the result of an impaired thyroid hormone negative feedback regulation of hypothalamic thyrotropin-releasing hormone (TRH) and/or pituitary TSH production. To test this hypothesis, SHR or their normotensive Wistar-Kyoto (WKY) controls were treated with either methimazole (0.02% in drinking water) to induce hypothyroidism or administered L-thyroxine (T4) at a dose of 0.8 or 2.0 micrograms/100 g body weight/day to induce hyperthyroidism. All treatments were continued for 14 days after which animals were killed under low stress conditions. TSH concentrations in plasma and anterior pituitary tissue were 2-fold higher (P less than 0.01) in euthyroid SHR compared to WKY control rats while thyroid hormone (T3 and T4) levels were in the normal range. Hypothyroidism induced by either methimazole or thyroidectomy caused a significant (P less than 0.01) rise of plasma TSH levels in both WKY and SHR rats. However, relative to the TSH concentrations in control animals, the increase of plasma TSH in SHR was significantly blunted (P less than 0.01) in comparison to the WKY group. Hypothyroidism caused a significant depletion of TRH in stalk-median eminence (SME) tissue in both groups of rats. However, no differences between SHR and WKY rats were observed. The administration of thyroid hormone caused a dose dependent suppression of plasma TSH levels in both strains of rats. However, at both doses tested plasma TSH concentrations in SHR rats were significantly less suppressed (P less than 0.05) than those in WKY animals. Under in vitro conditions basal and potassium induced TRH release from SMEs derived from SHR was significantly (P less than 0.05) higher than that from WKY rats, whether expressed in absolute terms or as percent of content. These findings suggest that the thyroid hormone negative feedback regulation of TSH secretion may be impaired in SHR rats. Our data do not allow conclusions as to whether defects in the regulation of TSH production are located exclusively at the hypothalamic level. Since the overproduction of hypothalamic TRH and hypophysial TSH should lead to an increased thyroid hormone biosynthesis other defects in the hypothalamus-pituitary-thyroid-axis may contribute to the abnormal regulation of TSH secretion in SHR rats.  相似文献   

2.
The pattern of TSH secretion in man in pulsatile in addition to the well known circadian variation. The mechanism triggering TSH pulses remains unclear to date. Infusions of somatostatin or dopamine rapidly lowering basal TSH levels without suppressing the pulsatile pattern suggest that an episodic disinhibition exerted by a physiological inhibitor is not a likely cause. On the same basis, thyroid hormones do not appear to be candidates, since they similarly inhibit basal TSH levels after a time lag of several hours but again do not suppress pulsatile release of the hormone. In contrast, bolus injections of dexamethasone completely abolish pulsatile release of TSH for several hours despite a normal sensitivity of the pituitary to exogenous TRH, suggesting a hypothalamic action of the drug. The hypothesis that pulsatile TSH release might be governed by a pulsatile mode of a hypothalamic stimulator is supported by the observation that an infusion of nifedipine, a calcium channel blocker, which in vitro selectively inhibits the TRH effect on TSH but not prolactin secretion, exerts a comparable effect when it is infused in vivo.  相似文献   

3.
Thyrotropin (TSH) is a glycoprotein hormone whose secretion from the anterior pituitary is regulated, in part, by the hypothalamic tripeptide thyrotropin-releasing hormone (TRH). We have used serial lectin affinity analysis to explore whether TRH, in addition to promoting TSH secretion, alters the carbohydrate structure of secreted TSH. Hypothyroid mouse hemipituitaries were incubated in medium containing [3H] mannose, [3H]glucosamine, or [3H]fucose either with or without 10(-7) M TRH. TSH was immunoprecipitated, proteolytically digested into glycopeptides, and chromatographed on serial lectin-Sepharose columns. Under basal conditions, 37% of secreted [3H]mannose-labeled TSH glycopeptides failed to bind to concanavalin A (ConA)-Sepharose, 55% bound and eluted with 10 mM alpha-methylglucoside, and 8% bound and eluted with 500 mM alpha-methylmannoside. Approximately 35% of glycopeptides not binding to ConA-Sepharose were bound by pea lectin-Sepharose, suggesting the presence of certain core fucosylated triantennary complex oligosaccharides. TRH caused a 2-fold increase in secretion of [3H]mannose-labeled TSH glycopeptides due almost exclusively to a specific increase in structures that bound to ConA-Sepharose and eluted with 10mM alpha-methylglucoside, corresponding to biantennary complex or unusual hybrid species. There was no change in the distribution of intrapituitary TSH glycopeptides with TRH. Acid hydrolysis of secreted proteins showed little metabolism of the tritiated sugar precursors, except for a 20% conversion of [3H]mannose to [3H]fucose. Moreover, ConA-Sepharose chromatography of secreted [3H]glucosamine- and [3H]fucose-labeled TSH glycopeptides showed similar increases in ConA-Sepharose binding with TRH as noted with [3H]mannose labeling. Subsequent lectin analysis of secreted [3H] mannose-labeled TSH glycopeptides on erythroagglutinating phytohemagglutinin-Sepharose and leukoagglutinating phytohemagglutinin-Sepharose disclosed no significant differences in TRH-treated versus control samples. These data suggest that secreted mouse TSH has greater carbohydrate heterogeneity than has been recognized previously. In addition, TRH in vitro promotes the secretion of specific TSH molecules apparently enriched in biantennary complex or unusual hybrid oligosaccharides.  相似文献   

4.
The circadian rhythm in plasma TSH concentration was demonstrated in euthyroid subjects and in treated hypothyroid patients. Our results suggest that two hypothalamic areas, involved in TRH secretion, are responsables in basal as well impulsive pituitary TSH dismission.  相似文献   

5.
TRH is a peptide produced by the hypothalamus which major function in mammals is the regulation of TSH secretion by the pituitary. In fish, TRH does not appear to affect TSH secretion, suggesting that it might regulate other functions. In this study, we assessed the effects of central (intracerebroventricular, icv) injections of TRH on feeding and locomotor behavior in goldfish. TRH at 10 and 100 ng/g, but not 1 ng/g, significantly increased feeding and locomotor behaviors, as indicated by an increase in food intake and in the number of total feeding acts as compared to saline-injected fish. In order to assess possible interactions between TRH and other appetite regulators, we examined the effects of icv injections of TRH on the hypothalamic expression of orexin, orexin receptor and CART. The mRNA expression levels of all three peptides were significantly increased in fish injected with TRH at 100 ng/g as compared to saline-injected fish. Fasting increased TRH, orexin, and orexin receptor hypothalamic mRNA levels and decreased CART hypothalamic mRNA levels. Our results suggest that TRH is involved in the regulation of feeding/locomotor activity in goldfish and that this action is associated with a stimulation of both the orexin and CART systems.  相似文献   

6.
7.
The concept of the regulatory role of the hypothalamic and brain neurotransmitters in the secretion of the hypothalamic releasing hormones and corresponding anterior pituitary hormones has been generally accepted. The tuberoinfundibular portal vessels form an anatomical framework for regulating these hormones. Our present knowledge about the origin and course of the main aminergic and peptidergic bundles and their collaterals into the hypothalamus conforms with the accepted concept. The general methods in neuroendocrinology are well established. In our study, the unique TSH burst induced by a short cold-exposure has proved very useful, since it is mediated through the activation of TRH in the hypothalamus. When used together with the TSH-response caused by the exogenous TRH and with stereotaxic microinfusions of various chemicals into specific areas in the brain, the level of action of the pharmacological agents can be determined. Methodological pitfalls are, however, possible unless care is taken to avoid unspecific stress factors, general anaesthesia and intracerebral injections at unphysiological concentrations. The role of different neurotransmitters in the central TRH-TSH regulation has been clarified in recent years and the simple concepts of the early days elaborated accordingly. The cold-stimulated TSH secretion can be modified by several neurotransmitters. Noradrenaline is a stimulatory transmitter at high hypothalamic centers, but it may also retard TRH release into the portal vessels. It also seems possible that alpha 1- and alpha 2-receptors mediate opposite effects. Nigrostriatal (but not tuberoinfundibular) dopamine has only an inhibitory action on TRH release and/or synthesis. The importance of 5-HT is still controversial, partly because of the unspecificity of the experimental tools available. Evidently both stimulating and inhibiting components are involved. The role of different 5-HT receptors remains to be established. The function of GABA is complicated, too, the real GABAergic action being an inhibition of TRH release from the medial basal hypothalamus. Only histamine and some amino acids affect TRH-induced TSH secretion. Hence the anterior pituitary in the rat is not so important a locus as the hypothalamus in the action of neurotransmitters on the TRH-TSH regulation.  相似文献   

8.
Effects of orexin A on secretion of thyrotropin-releasing hormone (TRH) and thyrotropin (TSH) in rats were studied. Orexin A (50 microg/kg) was injected iv, and the rats were serially decapitated. The effects of orexin A on TRH release from the rat hypothalamus in vitro and on TSH release from the anterior pituitary in vitro were also investigated. TRH and thyroid hormone were measured by individual radioimmunoassays. TSH was determined by the enzyme-immunoassay method. The hypothalamic TRH contents increased significantly after orexin A injection, whereas its plasma concentrations tended to decrease, but not significantly. The plasma TSH levels decreased significantly in a dose-related manner with a nadir at 15 min after injection. The plasma thyroid hormone levels showed no changes. TRH release from the rat hypothalamus in vitro was inhibited significantly in a dose-related manner with the addition of orexin A. TSH release from the anterior pituitary in vitro was not affected with the addition of orexin A. The findings suggest that orexin A acts on the hypothalamus to inhibit TRH release.  相似文献   

9.
The hypothalamic peptide hormone TRH is also found in other tissues, including the thyroid. While TRH may be regulated by T3 in the hypothalamus, other regulators of TRH have not been identified and the regulation of TRH in nonhypothalamic tissues is unknown. We recently demonstrated the biosynthesis of TRH in the CA77 neoplastic thyroidal C cell line. We studied the regulation of TRH by dexamethasone in this cell line because glucocorticoids have been postulated to inhibit TSH secretion by decreasing TRH in the hypothalamus. Furthermore, TRH in the thyroid inhibits thyroid hormone release. Thus by regulating thyroidal TRH, glucocorticoids could also directly affect thyroid hormone secretion. Treatment of CA77 cells for 4 days with dexamethasone produced dose-dependent increases in both TRH mRNA and cellular and secreted TRH. Increases in TRH mRNA and peptide levels could be seen with 10(-9) M dexamethasone. A 4.8-fold increase in TRH mRNA and a 4-fold increase in secreted peptide were seen with 10(-7) M dexamethasone. Dexamethasone treatment did not increase beta-actin mRNA levels or cell growth. These results suggest that glucocorticoids may be physiological regulators of TRH in normal C cells. In addition to their inhibitory effects on TSH, glucocorticoids may decrease thyroid hormone levels by increasing thyroidal TRH. Since the glucocorticoid effects on C cell TRH are the converse of what is expected for hypothalamic TRH, glucocorticoid effects in these two tissues may be mediated by different regulators.  相似文献   

10.
11.
Jean H. Dussault 《CMAJ》1974,111(11):1195-1197
Serum thyrotropin (TSH) and prolactin levels were measured after intravenous administration of 400 μg of synthetic thyrotropin-releasing hormone (TRH) in 13 normal subjects and six hypothyroid patients before and after three days of administration of dexamethasone 2 mg per day. In the normal subjects dexamethasone suppressed baseline serum levels and secretion of TSH after TRH stimulation. On the other hand, it had no effect on the hypothyroid patients. In the control group dexamethasone also suppressed baseline serum levels but not secretion of prolactin after TRH stimulation. Dexamethasone had no effect on prolactin levels in the hypothyroid group. It is concluded that in normal patients short-term administration of dexamethasone has an inhibitory effect on TSH secretion at the pituitary level. As for prolactin, our results could indicate that TRH is a more potent stimulator of prolactin secretion than of TSH secretion, or that TSH and prolactin pituitary thresholds for TRH are different.  相似文献   

12.
We studied the in vitro and in vivo influence of physiologically relevant zinc concentrations on the thyrotropin function both at the pituitary and hypothalamic level. Zinc gluconate (Zn Glu) concentrations from 5 to 100 microM decreased basal TSH release from anterior pituitary gland in vitro, but did not affect TSH-stimulated release by TRH, cAMP or high K+ concentrations. Zn Glu altered neither the basal nor stimulated production of TRH by hypothalami in vitro. In vivo brain third ventricle injection of Zn Glu decreased serum TSH 30-60 min after injection. The ability of physiological concentrations of zinc to influence TSH secretion both in vitro and in vivo suggest that this trace element might be involved in the regulation of thyrotropin function.  相似文献   

13.
The diurnal variation of TRH concentrations in different parts of hypothalamus was studied in 80 male rats, which were killed in groups of 5 at 3 h intervals. The hypothalamus was dissected into three parts: I) medial basal hypothalamus (MBH), II) anterior hypothalamus, and III) dorsal hypothalamus. Anterior pituitary and serum TSH concentrations were also measured. TRH concentrations were higher in MBH than in the other parts of the hypothalamus: at night 300–450 pg/mg of wet weight of tissue. When the lights were turned on, MBH-TRH levels began to decrease, reaching a nadir of 210 pg/mg at 12 noon. After 15 h, MBH-TRH levels began to increase again. The changes in TRH levels in anterior hypothalamus were usually opposite to those in MBH (r = ?0.6185). Serum TSH levels were about 800 ng/ml during the day and were decreased to about one half of these levels when the lights were turned off. Serum TSH levels were positively correlated with anterior hypothalamic TRH levels (r = 0.6457) and inversely correlated with MBH-TRH levels (r = ?0.7747). Anterior pituitary TSH levels showed small but statistically insignificant variations. In conclusion, there were statistically interrelated diurnal rhythms in anterior hypothalamic and MBH-TRH levels and serum TSH concentrations.  相似文献   

14.
The effects of histamine (HA) and related compounds on thyrotropin-releasing hormone (TRH) and thyrotropin (TSH) secretion in rats were studied. Histidine (1.0 g/kg), HA (5.0 mg/kg) or histamine antagonists mepyramine (MP) (100 mg/kg) or famotidine (FA) (5.0 mg/kg) were injected intraperitoneally, and the rats were decapitated at various intervals after the injection. The hypothalamic immunoreactive TRH (ir-TRH) content increased significantly after histidine or HA injection, decreased significantly after FA injection, but was not changed by MP. The plasma ir-TRH concentration did not change significantly after injection of these drugs. The plasma TSH levels decreased significantly in a dose-related manner after histidine or HA injection and increased significantly in a dose-related manner after FA injection. The plasma thyroid hormone levels showed no changes. In the FA-pretreated group, the inhibitory effect of histidine or HA on TSH levels was prevented, but not in the MP-pretreated group. The plasma ir-TRH and TSH responses to cold were inhibited by histidine or HA and enhanced by FA. The plasma TSH response to TRH was inhibited by histidine or HA and enhanced by FA. The inactivation of TRH immunoreactivity by hypothalamus or plasma in vitro after histidine, HA, MP or FA was not different from that of the control. These findings suggest that histamine may act both on the hypothalamus and the pituitary to inhibit TRH and TSH release, and that its effects may be mediated via H2-receptor.  相似文献   

15.
We previously observed that under a 12-hour light/12-hour dark schedule (lights off at 19.00 h), adult male Sprague-Dawley rats showed a circadian rhythm for serum thyroid-stimulating hormone (TSH) with a zenith near midday. In the present work, the ontogenesis of serum TSH rhythm was determined as well as pituitary TSH variations. In addition, hypothalamic and blood TRH were measured in these rats aged 15, 25, 40 and 70 days when sacrificed. As from the first age studied (15 days), a hypothalamic thyrotropin-releasing hormone (TRH) circadian rhythm was present. The mesor and the amplitude of this hypothalamic TRH rhythm increased while the rats were growing up, in contrast with the decrease observed for these parameters as far as blood TRH circadian rhythm is concerned. The time of the acrophase moved from 17.32 h in the 15-day-old rats to 13.57 h in the 70-day-old rats, being constantly in phase opposition with the blood TRH acrophase. The low amplitude pituitary TSH circadian rhythm detected in the young rat disappeared in the adult while, in contrast, the serum TSH rhythm became consistent to reach the well-characterized circadian midday peak in the 70-day-old rats.  相似文献   

16.
To investigate the hypothesis of an altered hypothalamic dopaminergic activity in primary hypothyroidism, eight patients with hypothyroidism and seven normal subjects, all female, were studied. All of them were submitted to two tests: TRH stimulation and after the administration of dopamine receptor-blocking drug, Domperidone. The hypothyroid patients with basal TSH values less than or equal to 60 mU/L (4 cases--group 1) had lower PRL levels than the remaining 4 subjects with TSH greater than 60 mU/L (group 2) (p less than 0.001), despite all patients presenting the PRL levels within the normal range. A significant increase occurred for both TSH and PRL after the administration of TRH and Domperidone in normal as well as in the hypothyroid subjects, except for TSH in group 1 after the administration of Domperidone. The area under the curve for PRL response to THR was not different between the normal subjects and both hypothyroid groups, while that under the curve for TSH was greater in the hypothyroidism as a whole than in the normal subjects (p = 0.006) and between the hypothyroid groups, being greater in group 2 than in 1 (p less than 0.009). In relation to Domperidone, the area under the curve for TSH was significantly higher in group 2 when compared to the normal controls (p less than 0.001), while for PRL it was not different between hypothyroid groups in relation to normal controls and when groups I and II were compared. These results suggest that the hypothalamic dopamine activity is not altered in primary hypothyroidism and favor the small relevance of dopamine on the control of TSH secretion.  相似文献   

17.
Regulation of thyrotropin (TSH) release by thyrotropin releasing hormone (TRH) in the anterior pituitary gland (AP) of pregnant rats was studied. The pregnant (day 7, 14, and 21) and diestrous rats were decapitated. AP was divided into 2 halves, and then incubated with Locke's solution at 37 degrees C for 30 min following a preincubation. After replacing with media, APs were incubated with Locke's solution containing 0, or 10 nM TRH for 30 min. Both basal and TRH-stimulated media were collected at the end of incubation. Medial basal hypothalamus (MBH) was incubated with Locke's medium at 37 degrees C for 30 min. Concentrations of TSH in medium and plasma samples as well as the cyclic 3':5' adenosine monophosphate (cAMP) content in APs and the levels of TRH in MBH medium were measured by radioimmunoassay. The levels of plasma TSH were higher in pregnant rats of day 21 than in diestrous rats. The spontaneous release of TSH in vitro was unaltered by pregnancy. TRH increased the release of TSH by AP, which was higher in pregnant than in diestrous rats. Maternal serum concentration of total T3 was decreased during the pregnancy. The basal release of hypothalamic TRH in vitro was greater in late pregnant rats than in diestrous rats. After TRH stimulation, the increase of the content of pituitary cAMP was greater in late pregnant rats than in diestrus animals. These results suggest that the greater secretion of TSH in pregnant rats is in part due to an increase of spontaneous release of TRH by MBH and a decrease of plasma thyroid hormones. Moreover, the higher level of plasma TSH in rats during late pregnancy is associated with the greater response of pituitary cAMP and TSH to TRH.  相似文献   

18.
The hypothalamic content and concentration of thyrotropin-releasing hormone (TRH) were determined by radioimmunoassay in normal, thyroidectomized, hypophysectomized and cold-exposed rats with or without thyroxine. In normal animals, the single administration of thyroxine (1,5 and 20 microgram/100 g B.W.) altered neither the content nor the concentration of TRH in the hypothalamus. However, seven days' administration of this hormone resulted in the dose-dependent increase in the hypothalamic TRH levels. In thyroidectomized rats the hypothalamic TRH levels were slightly reduced in spite of the marked increase of plasma TSH levels and decrease of pituitary TSH levels. In the animals given thyroxine (10 microgram/100 g B.W.) for 7 days in addition to thyroidectomy, however, the TRH levels exceeded that in the animals which underwent throidectomy alone. The hypothalamic TRH levels were markedly reduced in hypophysectomized rats. Conversely, in hypophysectomized rats given 7 days' thyroxine (1 and 5 microgram/100 g B.W.), the levels were increased dose-dependently. In cold-exposed rats, the plasma TSH levels roughly doubled, but the TRH levels remained unchanged. These findings strongly suggest that the feedback site of thyroxine extends not only to the pituitary gland but also to the hypothalamus, and that thyroxine has an increasing effect of the hypothalamic TRH level, though the mechanism(s) remain to be clarified.  相似文献   

19.
Plasma TSH was determined in 12 normal subjects before and after administration of mg 400 of cimetidine i.v., an H2-receptor antagonist. TSH concentration remained unchanged. In 7 normal subjects, pretreated with bromocriptine; variation of plasma prolactin were studied before and after administration of mg 400 and 800 of cimetidine. Bromocriptine inhibited the increase of prolactin secretion, induced by cimetidine. It can be assumed that: a) cimetidine doesn't release hypothalamic TRH in portal vessels; b) that drug has no direct effect on pituitary cells; c) hypothalamic H2-receptor blockade by cimetidine decreases dopamine release from hypothalamus to pituitary gland.  相似文献   

20.
While exploring the interaction between thyrotropin releasing hormone (TRH) and normal rat anterior pituitary cells in monolayer culture we observed that cells dissociated with the use of trypsin did not respond to TRH with an increase in either TSH or prolactin (PRL) release. The dissociated cells were cultured for 3 days, then washed to remove serum proteins and exposed to 10?6M TRH for 3 hours. TSH and PRL secretion from stimulated and unstimulated cultures was determined by radio-immunoassay and normalized using cell protein. When such trypsin-dissociated cells were exposed to 0.5 mM dibutyryl cyclic AMP the release of both TSH and PRL doubled indicating that the intracellular secretory machinery was functional and that the block to TRH was proximal to the formation of cyclic AMP and presumably at the level of a TRH surface receptor. Previous studies have shown that such trypsin-dissociated cells respond to LHRH and a crude hypothalamic extract with a dose dependent increase in LH, FSH and ACTH release. This rules out a non-specific effect of trypsin. When pituitary cells were dissociated with a non-trypsin technique, the unstimulated release of both TSH and PRL was comparable to that found with the trypsin-dissociated cultures. However, these cultures did respond to TRH with an increase in TSH release although again no effect was seen with PRL. The susceptibility of the cells to trypsin suggests the possibility that a protein moiety may be closely associated with the function of the receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号