首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The effects of feeding a breeding diet containing soy products to pregnant and lactating females on reproductive tissues and secretion of the reproductive hormones in their male progeny, immediately after weaning (postnatal day - PND 22) and after reaching puberty (PND 60) were studied. Similarly, the response of adult males to a soy maintenance diet over shorter (PND 160) and longer (PND 280) periods of time was examined. The relative weights (standardized by body weight) of the testes, epididymis and prostate, and the concentrations of luteinizing hormone (LH), testosterone and prolactin (PRL) were used as the examined endpoints. In rats on PND 22, no significant differences in the relative organs weights and the plasma hormones concentrations were found between the experimental and control groups. In rats on PND 60 which continued consuming a soy breeding diet, the relative tissue weights did not differ significantly, while the mean plasma LH and PRL concentrations were higher (p<0.01-0.001) compared to the controls. In rats on PND 160 fed soy maintenance diet, the higher relative testes (p<0.01) and epididymis (p<0.05) weights as well as plasma testosterone (p<0.001) concentration were recorded compared to the controls. In rats on PND 280 fed a soy maintenance diet, the relative weights of all reproductive tissues were similar to those of controls, however, the weight of the body and the real weights of the reproductive tissues were lower (p<0.05) than in controls. The mean plasma concentrations of the reproductive hormones did not differ significantly between the two groups. In conclusion, a supplement of soy in the rat diet may affect growth and/or development of the reproductive tissues in male rats and also affect concentrations of reproductive hormones. The effects depend on the period of life when the soy diet is applied.  相似文献   

2.
Risk of obesity in adult life is subject to programming during gestation. To examine whether in utero exposure to maternal obesity increases the risk of obesity in offspring, we developed an overfeeding-based model of maternal obesity in rats utilizing intragastric feeding of diets via total enteral nutrition. Feeding liquid diets to adult female rats at 220 kcal/kg(3/4) per day (15% excess calories/day) compared with 187 kcal/kg(3/4) per day for 3 wk caused substantial increase in body weight gain, adiposity, serum insulin, leptin, and insulin resistance. Lean or obese female rats were mated with ad libitum AIN-93G-fed male rats. Exposure to obesity was ensured to be limited only to the maternal in utero environment by cross-fostering pups to lean dams having ad libitum access to AIN-93G diets throughout lactation. Numbers of pups, birth weight, and size were not affected by maternal obesity. Male offspring from each group were weaned at postnatal day (PND)21 to either AIN-93G diets or high-fat diets (45% fat calories). Body weights of offspring from obese dams did not differ from offspring of lean dams when fed AIN-93G diets through PND130. However, offspring from obese dams gained remarkably greater (P < 0.005) body weight and higher % body fat when fed a high-fat diet. Body composition was assessed by NMR, X-ray computerized tomography, and weights of adipose tissues. Adipose histomorphometry, insulin sensitivity, and food intake were also assessed in the offspring. Our data suggest that maternal obesity at conception leads to fetal programming of offspring, which could result in obesity in later life.  相似文献   

3.
ObjectiveTo evaluate the effects of yttrium nitrate on the development of the parent, offspring and third generation of Sprague-Dawley (SD) rats by using a two-generation reproductive toxicity test.MethodsThe SD rats were randomly divided into 0 mg/kg group, 10.0 mg/kg group, 30.0 mg/kg group and 90.0 mg/kg group according to the different doses of yttrium nitrate administration. The reproductive toxicity of parent, offspring and third generation SD rats were compared.ResultsThe weight gains of F1a female rats and F2a female rats in the low-dose groups were significantly lower than those of the control groups (p < 0.05), the weight gains of F1a male rats in the medium-dose and high-dose groups were significantly lower than those of the control groups (p < 0.05), and the weight gains of F2a male rats in the low-dose, medium-dose and high-dose groups were significantly lower than those of the control groups (p < 0.05). In F0 male rats, the absolute weight and relative weight of the liver in the low-dose, middle-dose, and high-dose groups were significantly lower than those of the control group (p < 0.05). In F1b male rats, the absolute and relative weights of the liver in the medium-dose and high-dose groups were significantly lower than those of the control group (p < 0.05). In F2b male rats, the absolute and relative weights of the liver and spleen of the medium-dose and high-dose groups were significantly lower than those of the control group (p < 0.05). In F2a female rats, the absolute weight and relative weight of oviduct in the high-dose group were significantly lower than those in the control group (p < 0.05). The absolute and relative weights of lung, spleen, brain and uterus of F2b female rats in the high-dose group were higher than those of the control group (p < 0.05). But the pathological test results showed no hepatotoxicity. There was no statistically significant difference in sperm count and sperm motility between male rats in the yttrium nitrate administration groups and the control group (p > 0.05). There was no significant correlation between F0, F1a, F1b, F2a, F2b SD rats' reproductive organ lesions and the dose of yttrium nitrate.ConclusionYttrium nitrate at a dose of 90 mg/kg has no reproductive toxicity to two generations of SD rats, but 30.0 mg/kg dose of yttrium nitrate is toxic to the liver weight of male two generations of SD rats, but no hepatotoxicity.  相似文献   

4.
OBJECTIVE: The purpose of this study was to examine whether gestational exposure to major environmental endocrine‐disrupting chemicals, nonylphenol (NP), would lead to nerve behavioral and learning and memory capacity alterations in the male offspring of rats, and reproductive development alterations in the male offspring of rats. METHODS: Dams were gavaged with NP at a dose level of 50 mg/kg/day, 100 mg/kg/day or 200 mg/kg/day daily from gestational day 9 to 15, and at a dose level of 40 mg/kg/day, 80 mg/kg/day or 200 mg/kg/day daily from gestational day 14 to 19 (transplacental exposures). RESULTS: Exposure to 200 mg/kg/day NP produced a significant decrease in learning and memory functions in offspring rats (P<0.05) in Morris water maze task, as demonstrated by the increased escape latency and number of error. In Step‐down Avoidance Test, offspring rats exposed to NP spent more reaction time (RT) and presented lower latency to first step‐down than the control offspring (P<0.01). In utero exposure to 80 and 200 mg/kg/day NP produced a significant decrease in the number of live pups per litter and ratio of anogenital distance to body length on PND 0 (P<0.05), and also testes and prostate weight, activities of ALP, plasma testosterone concentration, cauda epididymis sperm counts, daily sperm production et al. respectively on PND 90 (P<0.05). Histopathological examination of the brain biopsy illustrates that exposure to NP at high dose induces the presence of abnormal distribution of spermatozoa showed in lumina of the seminiferous tubules, and absence of spermatogenesis and spermiogenesis. CONCLUSION: Gestational exposure to nonylphenol might induce neurotoxic and reproductive toxic effects on F1 male rats. Birth Defects Res (Part B) 89:418–428, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

5.
Steroid hormones and their receptors play critical roles in the growth, development, and maintenance of the male reproductive tract. Genistein, a naturally occurring isoflavonoid primarily found in soybeans, interacts with estrogen receptors alpha and beta (ER alpha and beta), with preferential affinity for ER beta. This is one mechanism whereby genistein may affect growth and development and potentially alter susceptibility to carcinogenesis. Previous studies have indicated effects of soy and/or genistein in the male rodent reproductive tract under certain exposure conditions. The current study was undertaken to determine if modulation of the expression of ER alpha and ER beta by dietary genistein may contribute to those effects. Rats in a two-generation study were fed 0, 5, 100, or 500 ppm genistein prior to mating and through pregnancy and lactation. At weaning, male pups were selected in each of the F(1) and F(2) generations and half of the pups continued on the same diet as their dams (G/G, continuous exposure) while their litter mates were placed on control chow (G/C, gestational and lactational exposure) until sacrifice on PND 140. Male reproductive organ weights, serum levels of testosterone and dihydrotestosterone (DHT), and ER alpha and ER beta protein levels in the ventral and dorsolateral prostate were the endpoints measured. Prostate sections were also evaluated microscopically. Statistically significant elevations in testosterone and DHT were observed in PND 140 animals from the F(1) generation, but they were not accompanied by organ weight changes. Body weight in the continuously dosed 500 ppm F(1) PND 140 animals was depressed relative to control, but organ weights in animals of either generation showed few treatment-related effects. While estrogen receptor levels were quite variable, levels of ER beta in the dorsolateral prostate were significantly depressed in all dose groups in the G/C exposure and the high dose group of the G/G exposure in F(1) rats, but not in F(2) rats. Given the growing body of knowledge on the significance of ER beta in the prostate, the evidence for apparent down regulation of this receptor by genistein may have implications for reproductive toxicity and carcinogenesis that warrant further investigation.  相似文献   

6.
Brominated flame retardants (BFRs) are stable environmental contaminants known to exert endocrine‐disrupting effects. Developmental exposure to polybrominated diphenyl ethers (PBDEs) is correlated with impaired thyroid hormone signaling, as well as estrogenic and anti‐androgenic effects. As previous studies have focused on a single congener or technical mixture, the purpose of the current study was to examine the effects of gestational and early postnatal exposure to an environmentally relevant mixture of BFRs designed to reflect house dust levels of PBDEs and hexabromocyclododecane on postnatal developmental outcomes. Pregnant Sprague‐Dawley rats were exposed to the PBDE mixture from preconception to weaning (PND 21) through the diet containing 0, 0.75, 250, and 750 mg mixture/kg diet. BFR exposure induced transient reductions in body weight at PND 35 in male and from PND 30–45 in female offspring (250 and 750 mg/kg). Liver weights (PND 21) and xenobiotic metabolizing enzyme activities (PND 21 and 46) were increased in both male and female offspring exposed to 250 and 750 mg/kg diets. Furthermore, serum T4 levels were reduced at PND 21 in both,male and female offspring (250 and 750 mg/kg). At PND 21, Serum alkaline phosphatase (ALP) was decreased in males exposed to 750 mg/kg dietat, and females exposed to 250 and 750 mg/kg diets. At PND 46 ALP was significantly elevated in males (250 and 750 mg/kg). Variations in the cervical vertebrae and phalanges were observed in pups at PND 4 (250 and 750 mg/kg). Therefore, BFR exposure during gestation through to weaning alters developmental programming in the offspring. The persistence of BFRs in the environment remains a cause for concern with regards to developmental toxicity  相似文献   

7.
In order to verify the effects of exposure to Cd and Zn on testicular DAAM1 gene and protein expression and also to ascertain their involvement in the protective role of Zn in prevent the testicular toxicity Cd‐induced in male offspring rats at adult age after gestational and lactational exposure, male offspring rats, from mothers receiving either tap water, Cd, Zn, or Cd + Zn during gestation and lactation periods, were scarified on postnatal days (PND) 70. The reproductive organ (testis, epididymis, and vesicle seminal) were collected, weighed, and analyzed. The results showed that exposure to Cd in utero and through lactation decreased the relative reproductive organ weight, altered the testicular histology at the interstitial and tubular levels, and causing a significant reduction in the daily sperm production (DSP) per testis and per gram of testis, and other then altering the epididymal sperm quality. Furthermore, both mRNA and protein expression of rat testicular DAAM1 were also inhibited in Cd‐treated group. Zn supply has completely corrected the most of these toxic effects. Our results imply that Zn could prevent Cd‐induced testicular toxicity and sperm quality alteration in adult male rat after gestational and lactational exposure, probably via the restoration of the testicular DAAM1 expression inhibited by Cd.  相似文献   

8.
BACKGROUND: This study was conducted to evaluate the potential adverse effects of ethylbenzene (EB) on reproductive capability from whole-body inhalation exposure of F0 and F1 parental animals. METHODS: Four groups of Crl:CD(SD)IGS BR rats (30/sex/group for F0 and 25/sex/group for F1) were exposed to 0, 25, 100, and 500 ppm EB for 6 hr/day for at least 70 consecutive days before mating. Inhalation exposure for the F0 and F1 females continued throughout mating, gestation through gestation day (GD) 20, and lactation days (LD) 5-21. On LD 1-4, females received EB in corn oil via oral gavage at dose levels of 26, 90, and 342 mg/kg/day (divided into three equal doses, approximately 2 hr apart), as calculated from a physiologically-based pharmacokinetic (PBPK) model to provide similar maternal blood area-under-concentration (AUC) as provided by inhalation. Pups were weaned on postnatal day (PND) 21 and exposure of the F1 generation started on PND 22. Estimates of internal exposure were determined by measuring EB concentrations in blood collected from F1 dams (4/group) and their culled pups 1 hr after the last gavage dose on PND 4. On PND 22, blood was collected from these same F1 dams and their weanlings for EB analysis 1 hr after a 6-hr inhalation exposure. The remainder of the F2 generation was not directly exposed. RESULTS: EB exposure did not affect survival or clinical observations. Male rats in the 500 ppm group in both generations gained weight more slowly than the controls. There were no indications of adverse effects on reproductive performance in either generation. Male and female mating and fertility indices, pre-coital intervals, spermatogenic endpoints, ovarian follicle counts, reproductive organ weights, lengths of estrous cycle and gestation, live litter size, pup weights, developmental landmarks, and postnatal survival were unaffected. No adverse exposure-related macroscopic pathology was noted at any level. CONCLUSIONS: Increased liver weights were found in the animals exposed to 500 ppm. F1 maternal whole blood EB concentrations of 0.49, 3.51, or 18.28 mg/L were found 1 hr after administration of a composite oral dose of 26, 90, or 342 mg/kg/day, respectively, but no detectable EB was found in blood samples of their F2 PND 4 culled pups. F1 maternal mean whole blood EB levels 1 hr after a 6-hr inhalation exposure on postpartum day (PPD) 22 was 0.11 mg/L (25 ppm), 0.56 mg/L (100 ppm), and 11 mg/L (500 ppm). For the offspring exposed with their dams on PND 22, F2 pup blood EB concentrations ranged from 0.017-0.039 mg/L (25 ppm), 0.165-0.465 mg/L (100 ppm), and 8.82-15.74 mg/L (500 ppm). Because decreased weight gain in the 500 ppm males was transient and no histopathological changes were associated with the increased liver weights in the 500 ppm male and female groups, these changes were not considered adverse. Therefore, for parental systemic toxicity, 100 ppm was considered a NOEL and 500 ppm a NOAEL in this study. The 500 ppm exposure concentration was considered a NOAEL for F0 and F1 reproductive toxicity and offspring developmental endpoints.  相似文献   

9.
2,3,7,8-tetrachlorododibenzo-p-dioxin (TCDD) is a highly persistent trace environmental contaminant and is one of the most potent toxicants known. Exposure to TCDD has been shown to cause oxidative stress in a variety of animal models. In this study, pregnant Long Evans rats were dosed with 1 microg TCDD/kg on gestational day (GD) 15 so as to investigate oxidative stress in the liver of male pups following gestational exposure to TCDD. Lipid peroxidation (TBARS), production of reactive oxygen species (ROS), and total glutathione (GSH) were assayed to identify changes in oxidative stress parameters in the pup liver at GD 21 and postnatal days (PND) 4, 25, 32, 49, and 63. Mean ROS levels in pups were elevated at all time points tested with a significant elevation at PND 4 and PND 25. However, pup hepatic lipid peroxidation was unchanged throughout the time course. In addition, hepatic total GSH levels were not significantly changed although the means for the TCDD-treated groups were less than those of the controls at all time points except PND 49. The results indicate that although the levels of ROS are increased following gestational/lactational exposure, this increase does not translate to direct oxidative damage or significant changes to endogenous antioxidant defense mechanisms. Further investigation into the effect of gestational/lactational exposure in pups should include additional endpoints for further characterization of the time course of the response, the effect upon extrahepatic tissues, and investigation of differences between male and female offspring.  相似文献   

10.
Environmental contaminants with estrogenic properties have been cause for heightened concern about their possible role in inducing adverse health effects. Brief exposure of rodents to high doses of natural estrogens early in life results in permanent alterations of the male reproductive tissues, but the question of whether environmentally relevant doses can cause the same effects remains controversial. The current project was designed to determine the dose-response relationship between neonatal estradiol exposure and the development of the male reproductive tract in the rat. Neonatal male Sprague-Dawley (SD) and Fisher 344 (F344) rats were exposed to beta-estradiol-3-benzoate (EB) at concentrations ranging from 0.015 microg/kg body weight (BW) to 15.0 mg/kg BW and 0.15 microg/kg BW to 1.5 mg/kg BW, respectively. Results showed an inverted U-shaped dose-response profile for testis and epididymis weights in 35-day-old SD rats, with increased organ sizes at the low-dose end of the treatment. This effect was transient and was not sustained into adulthood. Increased hepatic testosterone hydroxylase activities in low-dose animals suggest an advancement of puberty as the cause for increased reproductive organ weights. On postnatal day (PND) 90, a stimulatory low-dose response to EB was present in SD rat testicular and epididymal weights, however at one order of magnitude lower dose than that seen on PND 35, suggesting a separate effect. All SD male reproductive tract organs and serum hormones showed a permanent inhibitory response to high doses of neonatal EB. F344 rats exhibited greater estrogen sensitivity on PND 90. Despite this heightened responsiveness, F344 rats did not exhibit a low-dose effect for any endpoint. These low-dose responses to estradiol are organ and strain specific.  相似文献   

11.
In utero and lactational exposure to estrogenic agents has been shown to influence morphological and functional development of reproductive tissues. Thus, consumption of dietary phytoestrogens, such as isoflavones, during pregnancy and lactation could influence important periods of development, when the fetus and neonate are more sensitive to estrogen exposure. In this study, reproductive outcomes after developmental exposure to isoflavones were examined in Long-Evans rats maternally exposed to isoflavones via a commercial soy beverage or as the isolated isoflavone, genistein. Most reproductive endpoints examined at birth, weaning, and 2 months of age were not significantly modified in pups of either sex after lactational exposure to soy milk (provided to the dams in place of drinking water) from birth until weaning. However, soy milk exposure induced a significant increase in progesterone receptor (PR) in the uterine glandular epithelium of the 2-month-old pups. In pregnant dams treated with genistein (GEN; 15 mg/kg body weight) by gavage, from Gestational Day 14 through weaning, PR expression in the uterine glandular epithelium from 2-month-old GEN-treated females (postexposure) was also significantly increased. Diethylstilbesterol (DES) also stimulated uterine PR expression only in the glandular but not luminal epithelial cells. However, unlike DES, in utero/lactational exposure to GEN did not increase expression of the proliferation marker, proliferating cell nuclear antigen (PCNA), in the luminal epithelial cells of the 2-month-old rat uteri. These experiments demonstrate that developmental exposure to dietary isoflavones, at levels comparable to the ranges of human exposure, modify expression of the estrogen-regulated PR in the uterus of sexually mature rats weeks after exposure ended. Since the PR is essential for regulating key female reproductive processes, such as uterine proliferation, implantation, and maintenance of pregnancy, its increased expression suggests that soy phytoestrogen exposure during reproductive development may have long-term reproductive health consequences.  相似文献   

12.
The aim of this study was to analyze zinc (Zn), calcium (Ca) and phosphorus (P) contents in milk and the lactational performance in rats fed different Ca levels. Female Wistar rats were fed during pregnancy and lactation with experimental diets containing 20% protein and high (0.90%, HCa), normal (0.60%, NCa) or low (0.20%, LCa) Ca levels. Milk samples were collected after 15 days to determine the milk mineral composition. Pup weight was recorded from birth to weaning (litter size: 6-8 pups) to determine weight gain and calculate milk production. At delivery there were no significant differences in the body weight of the pups between the groups, but at day 15, the LCa group showed lower values than both NCa and HCa groups (p<0.05). The weight gain of the LCa group was significantly lower than of the HCa and NCa groups, between delivery and day 5 (p<0.05). This reduced rate of weight gain led to the LCa group reaching weaning weight later than the other groups. Milk production (g/pup/day) was significantly lower when dams were fed the LCa than the NCa and HCa diets (p<0.05). There were no significant differences among the groups in milk Ca, P and Zn levels and Ca/P ratio. The body mineral composition of the pups at birth did not differ between the groups; at weaning, however, both LCa and HCa groups had lower element contents than the NCa group (p<0.05). In conclusion, dams fed with a diet containing low Ca levels produced smaller volumes of milk and their pups reached weaning weights later than the other groups. As the milk mineral composition was not affected, it can be hypothesized that in dams fed low dietary Ca, the smaller milk yield might have been a way of maintaining milk quality. High Ca levels affected neither pregnancy outcome nor lactational performance.  相似文献   

13.
Testosterone propionate, cortisone, or sesame oil vehicle were given to rats during the last week of pregnancy so that effects of the hormones on anogenital distance, breeding capacity and vaginal opening of the female progeny could be contrasted. Testosterone significantly increased anogenital distance and delayed vaginal opening of progeny. When females that had been exposed to testosterone in utero were tested for breeding capacity, a significantly smaller number mated than in the control group. Female rats that had been exposed to cortisone in utero exhibited premature vaginal opening but did not differ from controls in anogenital distance, and, unlike the testosterone-exposed rats, mated. Cortisone-exposed rats carried litters to term and the litters did not differ from those of controls in numbers of pups or numbers of living pups at birth. The pups born to cortisone-exposed rats had greater birth weights and a higher survival rate to 20 days of age than pups of controls. Results indicate that testosterone administration to rats during pregnancy is far more detrimental to the development and subsequent function of the reproductive system of female progeny than cortisone and suggest that similar changes which occur in response to maternal stress or to administration of ACTH during pregnancy are more likely to result from increases in testosterone than from increases in glucocorticoid secretion.  相似文献   

14.
M Aschner  T W Clarkson 《Teratology》1988,38(2):145-155
To investigate the effect of amino acids and the tripeptide glutathione (GSH) on tissue uptake of methylmercury (MeHg) in the developing rat fetus in utero, pregnant rats were continuously infused into the external jugular vein with 0.1 mM L-cysteine, 0.1 mM L-leucine, 0.1 mM GSH or saline commencing on day 17 of gestation. This was followed at 24, 48, and 72 hours by external jugular infusion of 50 microM [203Hg]-MeHgCl administered in 1 ml over 1 hour. Pups were surgically removed from the uterus on gestational day 21. Whole body, brain, kidney, liver, and placental 203Hg radioactivity was measured by means of gamma-spectrometry. Brain 203Hg concentration in pups exposed in utero to L-cysteine was significantly higher compared with pups exposed to saline (P less than 0.05). Brain 203Hg concentration in pups exposed in utero to L-leucine and GSH was significantly depressed compared with pups exposed to saline (P less than 0.05). Kidney 203Hg concentration was not significantly changed in all treatment groups compared with controls. Liver 203Hg concentration was significantly depressed in L-leucine- and GSH-treated pups compared with controls (P less than 0.05). Placental 203Hg concentration was not affected by any treatment compared with controls. These effects occurred despite no difference in total 203Hg body burden among pups, irrespective of the treatment. In addition, infusion with L-cysteine resulted in a significant increase in 203Hg brain concentration in dams compared with controls, and 203Hg brain concentration in L-leucine- and GSH-treated dams was significantly depressed compared with controls. Thus 203Hg distribution in both adult and developing animals is altered by chronic amino acid or GSH infusions and suggests that MeHg uptake may be mediated through the formation of a cysteine-MeHg complex which is transported across the blood-brain barrier by the neutral amino acid carrier transport system.  相似文献   

15.
The cytochrome P450 (CYP) isoform CYP2C11 is specifically expressed in the liver of adult male rats, and 5alpha-reductase is specifically expressed in the liver of the adult female rats. The sexually dimorphic expressions of these hepatic enzymes are regulated by the sex-dependent profiles of the circulating growth hormone (GH). However, it is not well known whether hormonal imprinting or activation factors in the neonatal brain influence the sexually dimorphic expression patterns of hepatic enzymes. We therefore examined the effect of perinatal exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on sex-dependent expressions of hepatic enzymes. Pregnant rats were treated with TCDD at a dose of 0, 200, or 800 ng/kg on gestation day 15, exposing the pups to the chemical. Although the expression of CYP2C11 protein in the livers of male pups on postnatal day (PND) 49 was significantly higher than that of the controls, but the 5alpha-reductase activities in the livers of female pups were not altered by exposure to TCDD. Focusing on perinatal periods, testosterone and estrogen levels significantly increased in the brain of male pups on PND 2. The results suggest that the alteration of testosterone and estrogen levels affect hormonal imprinting in the neonatal brain of male pups, and thus induces a change in the level of male-specific hepatic CYP2C11. We conclude that perinatal exposure to TCDD at low doses may change the sexual differentiation of the neonatal brain in male rats.  相似文献   

16.
The effects of cadmium (Cd) were evaluated in offspring exposed from birth until weaning (neonatal day 0–21) and 4 weeks after exposure cessation focusing on iron (Fe) and zinc (Zn) levels in organs and hematological parameters. Wistar female rats were administered 50 mg Cd/L in drinking water (Cd-exposed) for 4 weeks before mating and during 3 weeks of gestation plus 3 weeks of lactation. Controls were supplied drinking water. At birth, part of Cd-exposed dams’ litters was cross-fostered to control dams (CCd group) and their control litters were cross-fostered to Cd-exposed dams (CdC group). This procedure enabled to discern the effects of gestational, lactational and gestational plus lactational Cd exposure until weaning in F1 offspring. Elements were analyzed by atomic absorption spectrometry; hematological parameters manually; and histopathological changes by light microscopy. Gestational plus lactational exposure in Cd-exposed dams and their offspring increased Cd and decreased Fe levels, increased Zn in dams and decreased Zn and body weights in 11- and 21-day pups. In 21-day weanling pups, decreased red blood cell (RBC) count, hemoglobin and hematocrit values and increased reticulocytes in peripheral blood were also found with concomitant histopathological finding of extramedullary hematopoiesis in the liver. In cross-fostered pups with gestational exposure (CCd pups), Fe in the liver decreased on day 11 and Zn increased in the kidney on day 21 whereas in pups with lactational exposure (CdC pups) Zn in the brain decreased on day 11 and Fe decreased in the liver and brain on day 21. Regardless of exposure cessation at weaning, in offspring with gestational plus lactational exposure (Cd-exposed) body weights, kidney and brain Fe levels and RBC and hemoglobin remained decreased in blood until puberty. Furthermore Zn levels increased in the liver, kidney and brain. It was concluded that gestational plus lactational Cd exposure caused decreases in Fe and Zn levels and hematotoxic effects in F1 offspring more pronouncedly than exposure during either gestational or lactational period alone and the adverse effects of maternally mediated Cd exposure continued after exposure cessation into adulthood.  相似文献   

17.
Previous dose range-finding studies with nonylphenol (NP) administered to rats in a soy- and alfalfa-free diet showed apparent feminization of several endpoints in male rats at doses of 25 ppm and above. One possible mechanism contributing to these effects is a reduction of testosterone at critical developmental periods. The present study was conducted as an adjunct to a multigeneration study and was designed to examine the effect of NP on testosterone production. Male rats in the F1 and F2 generations were exposed through their dams or directly to various dietary doses of NP (0, 25, 200 and 750 ppm) throughout gestation and until sacrifice at either postnatal day 2 (PND2), PND50, or PND140. Male pups in the F3 generation were examined only on PND2. At PND2, serum testosterone levels were significantly decreased in all groups exposed to NP in the F1 generation, but not in the F2 or F3 generations. The activity of 17alpha-hydroxylase/C17, 20 lyase (P450c17) in PND2 testicular homogenates was not affected by NP treatment. In F1 and F2 PND50 and PND140 rats, NP treatment did not affect serum testosterone levels. The absolute dorsolateral prostate weight was increased in the 200 and 750 ppm dose groups only in the F1 PND50 rats, however, no significant effects were observed in other male reproductive organs. NP treatment did not affect P450c17 activity in microsomes prepared from testes of F1 PND50 or PND140 rats. However, P450c17 activity was significantly decreased in testicular microsomes of F(2) PND50 (200 and 750 ppm dose groups) and PND140 (25, 200, and 750 ppm dose groups) rats. A decrease in testicular beta-nicotinamide adenine dinucleotide phosphate (NADPH) P450 reductase was also observed in all PND50 and PND140 NP-exposed rats of the F1 and F2 generations. The ability of NP to directly inhibit P450c17 activity in vitro at concentrations of 1-100 microM was also demonstrated. These results indicate that NP can inhibit the activity of enzymes involved in testosterone synthesis, but suggest minimal effects on testosterone or testosterone-dependent endpoints via this mechanism.  相似文献   

18.
Diethylstilbestrol (DES) treatment of female rats on postnatal days (PND) 1-5 reduces uterine growth, estrogen receptor (ER) level and gland number by PND 25, while daily DES treatment on PND 1-25 increases uterine growth 4-fold, further reduces ER level and completely suppresses gland formation. We now report the persistence of these effects in adults. By PND 60, uterine weight was 70% of controls in rats injected with DES on PND 1-5 but only 10% of controls in rats injected PND 1-10 or longer. In fact, uterine weights were the same on PND 10 and 60. Uterine gland numbers were reduced to 30% of controls in all DES-treated rats regardless of exposure length; however, luminal and glandular epithelial cell heights were reduced to less than 50 and 70%, respectively, of controls when DES was given on PND 1-25 but not when given on PND 1-5. Ovariectomy 7 days prior to sacrifice on PND 60 reduced uterine weight in controls by 67% and in rats injected with DES on PND 1-5 by 53%, but had no effect in rats injected with DES on PND 1-10. DES exposure at either PND 1-5 or 1-10 lowered ER levels by 35-50% at both 60 and 90 days. Treatment with a high dose of estradiol (E2) 1 week before sacrifice significantly down-regulated ER to the same concentration in all treatment groups at PND 60 and 90. Following E2 treatment, all groups also showed increased uterine weight at PND 60 and 90. These data show there is a short period of development (PND 5-10) in which further DES exposure indirectly inhibits uterine growth.  相似文献   

19.
BACKGROUND: This study was conducted to evaluate the potential adverse effects of di-2-ethylhexyl terephthalate (DEHT) on reproductive capability from exposure of F(0) and F(1) parental animals. METHODS: Four groups of male and female Crl:CD (SD)IGS BR rats (30/gender/group) were exposed to 0, 0.3%, 0.6%, and 1.0% DEHT in the feed for at least 70 consecutive days before mating for the F(0) and F(1) generations. Exposure for the F(0) and F(1) males continued throughout the mating period until euthanasia. Exposure for the F(0) and F(1) females continued throughout mating, gestation, and lactation. The F(1) and F(2) pups were weaned on postnatal day (PND) 21. Assessments included gonadal function, estrous cyclicity, mating behavior, conception rate, gestation, parturition, lactation, and weaning in the F(0) and F(1) generations, and F(1) generation offspring growth and development. RESULTS: DEHT exposure did not affect clinical observations. However, lethality was observed in F(0) and F(1) dams consuming the 1.0% diet during the post-weaning period. No treatment-related mortality occurred in any of the male groups exposed to DEHT or in the female groups exposed to 0.3% or 0.6% DEHT. Male rats consuming the 1.0% diet in both parental generations gained weight more slowly than the controls. There were no indications of adverse effects on reproductive performance in either the F(0) or F(1) generation. Male and female mating and fertility indices, pre-coital intervals, spermatogenic endpoints, reproductive organ weights, lengths of estrous cycle and gestation, live litter size, developmental landmarks, and postnatal survival were similar in all exposure groups. Additionally, ovarian follicle counts for the F(1) females in the high-exposure group were similar to the control values. No adverse exposure-related macroscopic pathology was noted at any exposure level in the F(0) and F(1) generations. CONCLUSIONS: Increases in liver weights were found in the male and female animals exposed to 0.6% or 1.0% DEHT in the diet. Because there were no accompanying histopathologic changes, this effect was not considered adverse. Significant decreases in feed consumption in the female animals from the groups consuming 1.0% DEHT in the diet during lactation accompanied reduced postnatal pup body weights and rate of weight gain. Reductions in pup body weights later in lactation may also have been due to direct consumption of the treated feed by the pups or taste aversion to the same. Reduced relative spleen weight was found in male weanling pups from the 1.0% group in both generations and reduced relative spleen and thymus weights were found in female pups from the 1.0% group in the F(2) generation at necropsy on PND 21. Therefore, for parental and pup systemic toxicity, 0.3% DEHT in the diet (182 mg/kg/day) was considered no-observed-effect level (NOEL). The 1.0% DEHT (614 mg/kg/day) in the diet exposure concentration was considered a NOEL for F(0) and F(1) reproductive toxicity endpoints.  相似文献   

20.
BACKGROUND: Gestational exposure to di-n-butyl phthalate (DBP), a ubiquitous environmental contaminant, has been shown to interfere with the development of the male reproductive tract by acting as an antiandrogen. This study was conducted to identify the critical days for the abnormal development of the male reproductive tract, specifically the testis and epididymis. METHODS: Timed-pregnant Sprague-Dawley rats were dosed with DBP at 500 mg/kg/day on gestation day (GD) 14 and 15, 15 and 16, 16 and 17, 17 and 18, 18 and 19, or 19 and 20 (GD 0=plug day). Anogenital distance (AGD) was measured on postnatal day (PND) 1 and 13, while areloa number was recorded on PND 13 only. After weaning, males were allowed to mature to PND 90 at which time they were necropsied. Areloa number and AGD were recorded and testes, epididymides, seminal vesicles, prostate gland, kidneys, and liver weighed. Blood serum was collected and assayed for total testosterone concentration. RESULTS: There were no observable effects on litter size, sex ratio, serum testosterone concentration, or mortality of pups. Statistically significant permanent reductions in AGD were seen in males exposed prenatally to DBP on GD 15 and 16 or GD 18 and 19. On PND 13, areola were present in males exposed to DBP on GD 15 and 16, 16 and 17, 17 and 18, and 19 and 20. However, permanent retention occurred only in males after DBP exposure on GD 16 and 17. Exposure to DBP on only GD 17 and 18 elicited a reduction in epididymal weights; while exposure on only GD 16 and 17 caused a significant increase in the weights of the testes due to edema. In this study, epididymal and testicular malformations were most prevalent after exposure to DBP on any gestational day. Epididymal malformations, characterized by agenesis of various regions and small or flaccid testes were significantly increased in DBP-exposed males only on GD 16 and 17. CONCLUSIONS: These findings suggest that 2-day DBP exposure is highly detrimental to the developing reproductive tract of the male fetus and the critical window for abnormal development is GD 16-18.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号