首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Objective

Sugar consumption has increased dramatically over the last decades in Western societies. Especially the intake of sugar-sweetened beverages seems to be a major risk for the development of obesity. Thus, we compared liquid versus solid high-sugar diets with regard to dietary intake, intestinal uptake and metabolic parameters in mice and partly in humans.

Methods

Five iso-caloric diets, enriched with liquid (in water 30% vol/vol) or solid (in diet 65% g/g) fructose or sucrose or a control diet were fed for eight weeks to C57bl/6 mice. Sugar, liquid and caloric intake, small intestinal sugar transporters (GLUT2/5) and weight regulating hormone mRNA expression, as well as hepatic fat accumulation were measured. In obese versus lean humans that underwent either bariatric surgery or small bowel resection, we analyzed small intestinal GLUT2, GLUT5, and cholecystokinin expression.

Results

In mice, the liquid high-sucrose diet caused an enhancement of total caloric intake compared to the solid high-sucrose diet and the control diet. In addition, the liquid high-sucrose diet increased expression of GLUT2, GLUT5, and cholecystokinin expression in the ileum (P<0.001). Enhanced liver triglyceride accumulation was observed in mice being fed the liquid high-sucrose or -fructose, and the solid high-sucrose diet compared to controls. In obese, GLUT2 and GLUT5 mRNA expression was enhanced in comparison to lean individuals.

Conclusions

We show that the form of sugar intake (liquid versus solid) is presumably more important than the type of sugar, with regard to feeding behavior, intestinal sugar uptake and liver fat accumulation in mice. Interestingly, in obese individuals, an intestinal sugar transporter modulation also occurred when compared to lean individuals.  相似文献   

2.
Georgopoulos S  McKee A  Kan HY  Zannis VI 《Biochemistry》2002,41(30):9293-9301
Apolipoprotein E (apoE) isoforms are key determinants of susceptibility to late-onset Alzheimer's disease (AD). The epsilon 4 and epsilon 2 alleles have been associated with increased and decreased risk for AD, respectively. We have generated and characterized transgenic mice in which the human apoE2 gene is expressed under the control of the platelet-derived growth factor B-chain (PDGF-B) promoter, or the transferrin (TF) promoter. S1 nuclease analysis and immunoblotting showed that the PDGF-B apoE2 mice express apoE2 exclusively in the brain whereas the TF apoE2 mice express apoE2 in the liver and in the brain. In the TF apoE2 mouse line, apoE2 is also detected in the plasma. The PDGF-B apoE2 and the TF apoE2 transgenic mice were bred back to apoE(-)(/)(-) background. Immunohistochemical analysis showed that the PDGF apoE2 x apoE(-)(/)(-) and the TF apoE2 x apoE(-)(/)(-) mice express human apoE2 within the neocortex in hippocampal neurons and glial cells, respectively. ApoE(-)(/)(-) mice have been shown to develop age-dependent loss of synaptophysin. Immunoblotting of mouse brain extracts and immunohistochemical analysis of brain sections showed that apoE expression in both apoE2 x apoE(-)(/)(-) transgenic lines was associated with significant recovery of brain synaptophysin levels as compared to the levels of apoE(-)(/)(-) littermates of the same age. These apoE2-expressing mice, when bred back on amyloid precursor protein (APP) transgenic mice or other mouse lines featuring alterations in lipoprotein metabolism, may provide new mouse models for elucidating the role of apoE2 in lipid homeostasis in the brain and in the pathogenesis of AD.  相似文献   

3.
The allele E4 of apolipoprotein E4 (apoE4), which is the most prevalent genetic risk factor of Alzheimer's disease (AD), inhibits synaptogenesis and neurogenesis and stimulates apoptosis in brains of apoE4 transgenic mice that have been exposed to an enriched environment. In the present study, we investigated the hypothesis that the brain activity-dependent impairments in neuronal plasticity, induced by apoE4, are mediated via the amyloid cascade. Importantly, we found that exposure of mice transgenic for either apoE4, or the Alzheimer's disease benign allele apoE3, to an enriched environment elevates similarly the hippocampal levels of amyloid-beta peptide (Abeta) and apoE of these mice, but that the degree of aggregation and spatial distribution of Abeta in these mice are markedly affected by the apoE genotype. Accordingly, environmental stimulation triggered the formation of extracellular plaque-like Abeta deposits and the accumulation of intra-neuronal oligomerized Abeta specifically in brains of apoE4 mice. Further experiments revealed that hippocampal dentate gyrus neurons are particularly susceptible to apoE4 and environmental stimulation and that these neurons are specifically enriched in both oligomerized Abeta and apoE. These findings show that the impairments in neuroplasticity which are induced by apoE4 following environmental stimulation are associated with the accumulation of intraneuronal Abeta and suggest that oligomerized Abeta mediates the synergistic pathological effects of apoE4 and environmental stimulation.  相似文献   

4.
Apolipoprotein E (apoE), a chaperone for the amyloid beta (Abeta) peptide, regulates the deposition and structure of Abeta that deposits in the brain in Alzheimer disease (AD). The primary apoE receptor that regulates levels of apoE in the brain is unknown. We report that the low density lipoprotein receptor (LDLR) regulates the cellular uptake and central nervous system levels of astrocyte-derived apoE. Cells lacking LDLR were unable to appreciably endocytose astrocyte-secreted apoE-containing lipoprotein particles. Moreover, cells overexpressing LDLR showed a dramatic increase in apoE endocytosis and degradation. We also found that LDLR knock-out (Ldlr-/-) mice had a significant, approximately 50% increase in the level of apoE in the cerebrospinal fluid and extracellular pools of the brain. However, when the PDAPP mouse model of AD was bred onto an Ldlr-/- background, we did not observe a significant change in brain Abeta levels either before or after the onset of Abeta deposition. Interestingly, human APOE3 or APOE4 (but not APOE2) knock-in mice bred on an Ldlr-/- background had a 210% and 380% increase, respectively, in the level of apoE in cerebrospinal fluid. These results demonstrate that central nervous system levels of both human and murine apoE are directly regulated by LDLR. Although the increase in murine apoE caused by LDLR deficiency was not sufficient to affect Abeta levels or deposition by 10 months of age in PDAPP mice, it remains a possibility that the increase in human apoE3 and apoE4 levels caused by LDLR deficiency will affect this process and could hold promise for therapeutic targets in AD.  相似文献   

5.
Apolipoprotein E4 (apoE4), the leading genetic risk factor for Alzheimer''s disease (AD), is less lipidated compared to the most common and AD-benign allele, apoE3. We have recently shown that i.p. injections of the ATP-binding cassette A1 (ABCA1) agonist peptide CS-6253 to apoE mice reverse the hypolipidation of apoE4 and the associated brain pathology and behavioral deficits. While in the brain apoE is the main cholesterol transporter, in the periphery apoE and apoA-I both serve as the major cholesterol transporters. We presently investigated the extent to which apoE genotype and CS-6253 treatment to apoE3 and apoE4-targeted replacement mice affects the plasma levels and lipid particle distribution of apoE, and those of plasma and brain apoA-I and apoJ. This revealed that plasma levels of apoE4 were lower and eluted faster following FPLC than plasma apoE3. Treatment with CS-6253 increased the levels of plasma apoE4 and rendered the elution profile of apoE4 similar to that of apoE3. Similarly, the levels of plasma apoA-I were lower in the apoE4 mice compared to apoE3 mice, and this effect was partially reversed by CS-6253. Conversely, the levels of apoA-I in the brain which were higher in the apoE4 mice, were unaffected by CS-6253. The plasma levels of apoJ were higher in apoE4 mice than apoE3 mice and this effect was abolished by CS-6253. Similar but less pronounced effects were obtained in the brain. In conclusion, these results suggest that apoE4 affects the levels of apoA-I and apoJ and that the anti-apoE4 beneficial effects of CS-6253 may be related to both central and peripheral mechanisms.  相似文献   

6.
Recruitment of inflammatory cells in the arterial wall by vascular adhesion molecules plays a key role in development of atherosclerosis. Apolipoprotein E-deficient (apoE(-/-)) mice have spontaneous hyperlipidemia and develop all phases of atherosclerotic lesions. We sought to examine plasma levels of soluble vascular cell adhesion molecule-1 (sVCAM-1) and sP-selectin in two apoE(-/-) strains C57BL/6 (B6) and BALB/c with early or advanced lesions. Mice were fed chow or a Western diet containing 42% fat, 0.15% cholesterol, and 19.5% casein. On either diet, BALB/c.apoE(-/-) mice developed much smaller atherosclerotic lesions and displayed significantly lower levels of sVCAM-1 and sP-selectin than B6.apoE(-/-) mice. The Western diet significantly elevated sVCAM-1 levels in both strains and sP-selectin levels in B6.apoE(-/-) mice. BALB/c.apoE(-/-) mice exhibited 2-fold higher HDL cholesterol levels on the chow diet and 15-fold higher HDL levels on the Western diet than B6.apoE(-/-) mice, although the two strains had comparable levels of total cholesterol and triglyceride. Thus, increased atherosclerosis is accompanied by increases in circulating VCAM-1 and P-selectin levels in the two apoE(-/-) mouse strains, and the high HDL level may protect against atherosclerosis by inhibiting the expression of adhesion molecules in BALB/c.apoE(-/-) mice.  相似文献   

7.
A large and growing body of scientific evidence demonstrates that sugar drinks are harmful to health. Intake of sugar-sweetened beverages (SSB) is a risk factor for obesity and type 2 diabetes. Mexico has one of the largest per capita consumption of soft drinks worldwide and high rates of obesity and diabetes. Fiscal approaches such as taxation have been recommended as a public health policy to reduce SSB consumption. We estimated an almost ideal demand system with linear approximation for beverages and high-energy food by simultaneous equations and derived the own and cross price elasticities for soft drinks and for all SSB (soft drinks, fruit juices, fruit drinks, flavored water and energy drinks). Models were stratified by income quintile and marginality index at the municipality level. Price elasticity for soft drinks was −1.06 and −1.16 for SSB, i.e., a 10% price increase was associated with a decrease in quantity consumed of soft drinks by 10.6% and 11.6% for SSB. A price increase in soft drinks is associated with larger quantity consumed of water, milk, snacks and sugar and a decrease in the consumption of other SSB, candies and traditional snacks. The same was found for SSB except that an increase in price of SSB was associated with a decrease in snacks. Higher elasticities were found among households living in rural areas (for soft drinks), in more marginalized areas and with lower income. Implementation of a tax to soft drinks or to SSB could decrease consumption particularly among the poor. Substitutions and complementarities with other food and beverages should be evaluated to assess the potential impact on total calories consumed.  相似文献   

8.
Apolipoprotein E (apoE) and clusterin can influence structure, toxicity, and accumulation of the amyloid-beta (Abeta) peptide in brain. Both molecules may also be involved in Abeta metabolism prior to its deposition. To assess this possibility, we compared PDAPP transgenic mice that develop age-dependent Abeta accumulation in the absence of apoE or clusterin as well as in the absence of both proteins. apoE(-/-) and clusterin(-/-) mice accumulated similar Abeta levels but much less fibrillar Abeta. In contrast, apoE(-/-)/clusterin(-/-) mice had both earlier onset and markedly increased Abeta and amyloid deposition. Both apoE(-/-) and apoE(-/-)/clusterin(-/-) mice had elevated CSF and brain interstitial fluid Abeta, as well as significant differences in the elimination half-life of interstitial fluid Abeta measured by in vivo microdialysis. These findings demonstrate additive effects of apoE and clusterin on influencing Abeta deposition and that apoE plays an important role in regulating extracellular CNS Abeta metabolism independent of Abeta synthesis.  相似文献   

9.
Alzheimer''s disease (AD) is an age-associated progressive neurodegenerative disorder with dementia, the exact pathogenic mechanisms of which remain unknown. We previously reported that homocysteic acid (HA) may be one of the pathological biomarkers in the brain with AD and that the increased levels of HA may induce the accumulation of intraneuronal amyloid-beta (Aβ) peptides. In this study, we further investigated the pathological role of HA in a mouse model of AD. Four-month-old prepathological 3xTg-AD mice exhibited higher levels of HA in the hippocampus than did age-matched nontransgenic mice, suggesting that HA accumulation may precede both Aβ and tau pathologies. We then fed 3-month-old 3xTg-AD mice with vitamin B6-deficient food for 3 weeks to increase the HA levels in the brain. Concomitantly, mice received either saline or anti-HA antibody intraventricularly via a guide cannula every 3 days during the course of the B6-deficient diet. We found that mice that received anti-HA antibody significantly resisted cognitive impairment induced by vitamin B6 deficiency and that AD-related pathological changes in their brains was attenuated compared with the saline-injected control group. A similar neuroprotective effect was observed in 12-month-old 3xTg-AD mice that received anti-HA antibody injections while receiving the regular diet. We conclude that increased brain HA triggers memory impairment and that this condition deteriorates with amyloid and leads to subsequent neurodegeneration in mouse models of AD.  相似文献   

10.
Chronic exposure to high glucose and fatty acid levels caused by dietary sugar and fat intake induces β cell apoptosis, leading to the exacerbation of type 2 diabetes. Oleic acid and linoleic acid are two major dietary fatty acids, but their effects in diabetes are unclear. We challenged β cell-specific glucokinase haploinsufficient (Gck(+/-)) mice with a diet containing sucrose and oleic acid (SO) or sucrose and linoleic acid (SL) and analyzed β cell apoptosis. In Gck(+/-) but not wild-type mice, SL significantly decreased the β cell mass and β cell proportion in islet cells arising from increased apoptosis to a greater degree than did SO. The mRNA expression of SREBP-1c was significantly higher, and that of E-cadherin was significantly lower in the islets of Gck(+/-) mice fed SL compared with mice fed SO. We next evaluated monotherapy with desfluorositagliptin, a dipeptidyl peptidase-4 (DPP-4) inhibitor, in these mouse groups. DPP-4 inhibitor protected against β cell apoptosis, restored the β cell mass, and normalized islet morphology in Gck(+/-) mice fed SL. DPP-4 inhibition normalized the changes in the islet expression of SREBP-1c and E-cadherin mRNA induced by the SL diet. Furthermore, linoleic acid induced β cell apoptosis to a greater degree in the presence of high glucose levels than in the presence of low glucose levels in vitro in islets and MIN6 cells, whereas a GLP-1 receptor agonist prevented apoptosis. In conclusion, SL exacerbated β cell apoptosis in diabetic Gck(+/-) mice but not in euglycemic wild-type mice, and DPP-4 inhibition protected against these effects.  相似文献   

11.
Li J  Lu Z  Wang Q  Su Z  Bao Y  Shi W 《Physiological genomics》2012,44(6):345-351
Bglu3 is a quantitative trait locus for fasting glucose on distal chromosome 1 identified in an intercross between C57BL/6 (B6) and C3H/HeJ (C3H) apolipoprotein E-deficient (apoE(-/-)) mice. This locus was subsequently replicated in two separate mouse intercrosses. The objective of this study was to characterize Bglu3 through construction and analysis of a congenic strain and identify underlying candidate genes. Congenic mice were constructed by introgressing a genomic region harboring Bglu3 from C3H.apoE(-/-) into B6.apoE(-/-) mice. Mice were started with a Western diet at 6 wk of age and maintained on the diet for 12 wk. Gene expression in the liver was analyzed by microarrays. Congenic mice had significantly higher fasting glucose levels and developed more significant glucose intolerance compared with B6.apoE(-/-) mice on the Western diet. Microarray analysis revealed 336 genes to be differentially expressed in the liver of congenic mice. Further pathway analysis suggested a role for acute phase response signaling in regulating glucose intolerance. Apcs, encoding an acute phase response protein serum amyloid P (SAP), is located underneath the linkage peak of Bglu3. Multiple single nucleotide polymorphisms between B6 and C3H mice were detected within and surrounding Apcs. Apcs expression in the liver was significantly higher in congenic and C3H mice compared with B6 mice. The Western diet consumption led to a gradual rise in plasma SAP levels, which was accompanied by rising fasting glucose in both B6 and C3H apoE(-/-) mice. Expression of C3H Apcs in B6.apoE(-/-) mice aggravated glucose intolerance. Bglu3 is confirmed to be a locus affecting diabetes susceptibility, and Apcs is a probable candidate gene.  相似文献   

12.
《Endocrine practice》2021,27(10):1056-1061
ObjectiveNonnutritive (NNSs) are used in place of sugars to reduce caloric and glycemic intake while providing desired sweetness, commonly replacing sugar-sweetened beverages (SSBs) with “diet” (zero-calorie) alternatives. Concern has developed due to observational data associating NNSs with obesity and adiposity-based chronic disease. This counterpoint argues that, in general, NNSs used in place of added or excess sugars in the diet are likely beneficial.MethodsA literature review was conducted on interventional trials investigating NNSs and obesity or type 2 diabetes mellitus. Key words used in the search included artificial sweeteners, nonnutritive sweeteners, saccharin, sucralose, aspartame, stevia/steviol, acesulfame potassium, meal replacements, type 2 diabetes mellitus, obesity, and weight.ResultsInterventional data and indirect interventional data consistently showed beneficial effects on weight and cardiometabolic health, including glycemia, when SSBs or other energy-dense foods were replaced by artificially sweetened beverages or artificially sweetened meal replacements.ConclusionAlthough NNSs correlate with obesity and adiposity-based chronic disease, those data are fraught with confounding and error. Plausibility has been suggested on the basis of preclinical research on neuroendocrine control of appetite, satiety, and cravings plus the gut microbiome. However, interventional data reveal that replacing caloric/glycemic energy intake via NNSs creates an energy deficit resulting in weight loss and improvement in disease—especially dysglycemic disease. Intensive dietary intervention using artificially sweetened meal replacements shows a marked clinical benefit without detriment from their NNSs. Furthermore, beverages sweetened with NNSs rather than SSBs have been noted to be a critical component for those succeeding in maintaining weight loss. Although individual responses to the effects of NNSs are always warranted just like in any clinical situation, patients should not be advised to avoid NNSs in the context of dietary intervention to improve quality and energy deficit.  相似文献   

13.
Abstract: Recent studies suggest that apolipoprotein E (apoE) plays a specific role in brain cholinergic function and that the E4 allele of apoE (apoE4), a major risk factor for Alzheimer's disease (AD), may predict the extent of cholinergic dysfunction and the efficacy of cholinergic therapy in this disease. Animal model studies relevant to this hypothesis revealed that apoE-deficient (knockout) mice have working memory impairments that are associated with distinct dysfunction of basal forebrain cholinergic neurons. Cholinergic replacement therapy utilizing M1-selective muscarinic agonists has been proposed as effective treatment for AD patients. In the present study, we examined whether the memory deficits and brain cholinergic deficiency of apoE-deficient mice can be ameliorated by the M1-selective agonist 1-methylpiperidine-4-spiro-(2'-methylthiazoline), [AF150(S)]. Treatment of apoE-deficient mice with AF150(S) for 3 weeks completely abolished their working memory impairments. Furthermore, this reversal of cognitive deficit was associated with a parallel increase of histochemically determined brain choline acetyltransferase and acetylcholinesterase levels and with the recovery of these cholinergic markers back to control levels. These findings show that apoE deficiency-related cognitive and cholinergic deficits can be ameliorated by M1-selective muscarinic treatment. They also provide a novel model system for development and evaluation of therapeutic strategies directed specifically at the AD patients whose condition is attributed to the apoE genotype.  相似文献   

14.
Although apolipoprotein (apo) E4 is present in amyloid plaques and neurofibrillary tangles, its pathogenic role in Alzheimer's disease (AD) is unclear. Neuronal expression of apoE4 or apoE4 fragments in transgenic mice increases tau phosphorylation. To identify the kinase responsible for the increase, we studied transgenic mice expressing human apoE3 or apoE4 in neurons under the control of the neuron-specific enolase promoter. Brain levels of phosphorylated tau (p-tau) and phosphorylated (active) extracellular signal-regulated kinase (p-Erk) increased with age in both groups but were considerably higher in the apoE4 mice. Other candidate kinases, including glycogen synthase kinase 3beta and cyclin-dependent kinase-5 and its activators p25 and p35, were not significantly altered. The increases in p-Erk and p-tau were highest in the hippocampus, intermediate in the cortex, and lowest in the cerebellum. In the hippocampus, p-Erk and p-tau accumulated in the hilus and CA3 region of the dentate gyrus, where high levels of zinc are found along mossy fibers. In Neuro-2a cells stably expressing apoE3 or apoE4, treatment with ZnCl2 generated 2-fold more p-Erk and 3-fold more p-tau in the apoE4-expressing cells. Phosphorylation of Erk and tau was reduced by preincubation with the Erk pathway inhibitor U0126. Thus, increased tau phosphorylation in apoE4 transgenic mice was associated with Erk activation and could be modified by zinc, suggesting that apoE4 and zinc act in concert to contribute to the pathogenesis of AD.  相似文献   

15.
Multiple genetic and environmental factors are likely to contribute to the development of Alzheimer's disease (AD). The most important known risk factor for AD is presence of the E4 isoform of apolipoprotein E (apoE). Epidemiological studies demonstrated that apoE4 carriers have a higher risk and develop the disease and an early onset. Moreover, apoE4 is the only molecule that has been associated with all the biochemical disturbances characteristic of the disease: amyloid-beta (Abeta) deposition, tangle formation, oxidative stress, lipid homeostasis deregulation, synaptic plasticity loss and cholinergic dysfunction. This large body of evidence suggest that apoE is a key player in the pathogenesis of AD. This short review examines the current facts and hypotheses of the association between apoE4 and AD, as well as the therapeutic possibilities that apoE might offer for the treatment of this disease.  相似文献   

16.
Brain plaque deposits of amyloid-beta peptide (Abeta) is a pathological hallmark of Alzheimer's disease (AD) and apolipoprotein E (apoE) is thought to be involved in its deposition. One hypothesis for the role of apoE in the pathogenesis of AD is that apoE may be involved in deposition or clearance of Abeta by direct protein-to-protein interaction. Lipidated apoE4 bound preferentially to an intermediate aggregated form of Abeta and formed two- to three-fold more binding complexes than isoforms apoE2 or apoE3. The interaction was detected by a sandwich ELISA with capture antibodies specific for the N-terminus of apoE, whereas the interaction was not recognized with a C-terminal antibody. The observations indicate that the C-terminus of apoE4 interacts with the intermediate form of Abeta. The differential risk of AD related to apoE genotype may be the result of an enhanced capacity of apoE4 binding to an intermediate aggregated form of Abeta.  相似文献   

17.
Apolipoprotein E is a multifunctional protein synthesized by hepatocytes and macrophages. Plasma apoE is largely liver-derived and known to regulate lipoprotein metabolism. Macrophage-derived apoE has been shown to reduce the progression of atherosclerosis in mice. We tested the hypothesis that liver-derived apoE could directly induce regression of pre-existing advanced atherosclerotic lesions without reducing plasma cholesterol levels. Aged low density lipoprotein (LDL) receptor-deficient (LDLR(-/-)) mice were fed a western-type diet for 14 weeks to induce advanced atherosclerotic lesions. One group of mice was sacrificed for evaluation of atherosclerosis at base line, and two other groups were injected with a second generation adenoviruses encoding human apoE3 or a control empty virus. Hepatic apoE gene transfer increased plasma apoE levels by 4-fold at 1 week, and apoE levels remained at least 2-fold higher than controls at 6 weeks. There were no significant changes in plasma total cholesterol levels or lipoprotein composition induced by expression of apoE. The liver-derived human apoE gained access to and was retained in arterial wall. Compared with base-line mice, the control group demonstrated progression of atherosclerosis; in contrast, hepatic apoE expression induced highly significant regression of advanced atherosclerotic lesions. Regression of lesions was accompanied by the loss of macrophage-derived foam cells and a trend toward increase in extracellular matrix of lesions. As an index of in vivo oxidant stress, we quantitated the isoprostane iPF(2 alpha)-VI and found that expression of apoE markedly reduced urinary, LDL-associated, and arterial wall iPF(2 alpha)-VI levels. In summary, these results demonstrate that liver-derived apoE directly induced regression of advanced atherosclerosis and has anti-oxidant properties in vivo that may contribute to its anti-atherogenic effects.  相似文献   

18.
The incidence of Alzheimer's disease (AD) is greater in women than men at any age, as is the development of amyloid pathology in several transgenic mouse models of AD. Due to the involvement of metals in AD pathogenesis, variations between the sexes in metal metabolism may contribute to the sex difference in AD risk. In this study, we investigated sex differences in brain metal levels across the lifespan in mice of two different background strains, as well as in mice overexpressing the human amyloid precursor protein (APP) and amyloid-beta protein (Abeta). We demonstrate consistently lower Cu and higher Mn levels in females compared with males at any age studied. The sex differences in Cu and Mn levels are independent of APP/Abeta expression. AD brain exhibits decreased Cu and increased Mn levels, as do transgenic mice overexpressing APP or Abeta. The age-dependent elevations of Cu, Fe and Co levels were found to be significantly greater in mice of B6/SJL background compared with B6/DBA. If depleting Cu and/or rising Mn levels contribute to AD pathogenesis, natural sex differences in these brain metal levels may contribute to the increased propensity of females to develop AD.  相似文献   

19.
Several lines of evidence suggest that dysregulated lipid metabolism may participate in the pathogenesis of Alzheimer’s disease (AD). Epidemiologic studies suggest that elevated mid-life plasma cholesterol levels may be associated with an increased risk of AD and that statin use may reduce the prevalence of AD. Cellular studies have shown that the levels and distribution of intracellular cholesterol markedly affect the processing of amyloid precursor protein into Aβ peptides, which are the toxic species that accumulate as amyloid plaques in the AD brain. Most importantly, genetic evidence identifies apolipoprotein E, the major cholesterol carrier in the central nervous system, as the primary genetic risk factor for sporadic AD. In humans, apoE exists as three major alleles (apoE2, apoE3, and apoE4), and inheritance of the apoE4 allele increases the risk of developing AD at an earlier age. However, exactly how apoE functions in the pathogenesis of AD remains to be fully determined. Our studies have identified that the cholesterol transporter ABCA1 is a crucial regulator of apoE levels and lipidation in the brain. Deficiency of ABCA1 leads to the loss of approximately 80% of apoE in the brain, and the residual 20% that remains is poorly lipidated. Several independent studies have shown this poorly lipidated apoE increases amyloid burden in mouse models of AD, demonstrating that apoE lipidation by ABCA1 affects key steps in amyloid deposition or clearance. Conversely, robust overexpression of ABCA1 in the brain promotes apoE lipidation and nearly eliminates the formation of mature amyloid plaques. These studies show that the lipid binding capacity of apoE is a major mechanism of its function in the pathogenesis of AD, and suggest that increasing apoE lipidation may be of therapeutic importance for this devastating disease.  相似文献   

20.

Background

Animal studies suggest that brain apolipoprotein E (apoE) levels influence amyloid-β (Aβ) deposition and thus risk for Alzheimer's disease (AD). We have previously demonstrated that deletion of the ATP-binding cassette A1 transporter (ABCA1) in mice causes dramatic reductions in brain and cerebrospinal fluid (CSF) apoE levels and lipidation. To examine whether polymorphisms in ABCA1 affect CSF apoE levels in humans, we measured apoE in CSF taken from 168 subjects who were 43 to 91 years old and were either cognitively normal or who had mild AD. We then genotyped the subjects for ten previously identified ABCA1 single nucleotide polymorphisms (SNPs).

Results

In all subjects, the mean CSF apoE level was 9.09 μg/ml with a standard deviation of 2.70 μg/ml. Levels of apoE in CSF samples taken from the same individual two weeks apart were strongly correlated (r2 = 0.93, p < 0.01). In contrast, CSF apoE levels in different individuals varied widely (coefficient of variation = 46%). CSF apoE levels did not vary according to AD status, APOE genotype, gender or race. Average apoE levels increased with age by ~0.5 μg/ml per 10 years (r2 = 0.05, p = 0.003). We found no significant associations between CSF apoE levels and the ten ABCA1 SNPs we genotyped. Moreover, in a separate sample of 1225 AD cases and 1431 controls, we found no association between the ABCA1 SNP rs2230806 and AD as has been previously reported.

Conclusion

We found that CSF apoE levels vary widely between individuals, but are stable within individuals over a two-week interval. AD status, APOE genotype, gender and race do not affect CSF apoE levels, but average CSF apoE levels increase with age. Given the lack of association between CSF apoE levels and genotypes for the ABCA1 SNPs we examined, either these SNPs do not affect ABCA1 function or if they do, they do not have strong effects in the CNS. Finally, we find no evidence for an association between the ABCA1 SNP rs2230806 and AD in a large sample set.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号