首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
2.
3.
4.
Capillary orientation (anisotropy) was compared in hindlimb muscles of mammals of different size and/or different aerobic capacity (dog, goat, pony, and calf). All muscles were fixed by vascular perfusion at sarcomere lengths ranging from 1.5 to 2.7 micron. The ratios of capillary counts per fiber cross-sectional area on two sets of sections (0 and 90 degrees) to the muscle fiber axis were used to estimate capillary anisotropy and the coefficient c(K,0) relating 1) capillary counts on transverse sections (a commonly used parameter to assess muscle capillarity) and 2) capillary length per volume of fiber (i.e., capillary length density). Capillary orientation parallel to the muscle fiber axis decreased substantially with muscle fiber shortening. In muscles fixed at sarcomere lengths of 2.69 microns (dog vastus intermedius) and 1.52 microns (dog gastrocnemius), capillary tortuosity and branching added 7 and 64%, respectively, to capillary length density. The data obtained in this study are highly consistent with the previously demonstrated relationship between capillary anisotropy and sarcomere length in extended vs. contracted rat muscles, by use of the same method. Capillary anisotropy in mammalian locomotory muscles is curvilinearly related to sarcomere length. No systematic difference was found in capillary tortuosity with either body size, athletic ability, or aerobic capacity. Capillary tortuosity is a consequence of fiber shortening rather than an indicator of the O2 requirements of the tissue.  相似文献   

5.
6.
7.
8.
The fusion index (FI) is an index that can evaluate the tetanic progression of the skeletal muscles. Although the FI-frequency curve (FFC), which is obtained by changing the stimulation frequency, is greatly affected by muscle fiber type and fiber compositions, there are no reports of a mathematical equation that can express the FFC. In this study, the FFC was measured for the gastrocnemius, vastus intermedius, and soleus muscles of rats, and the mathematical equation (FFC-equation) was proposed. The FFC-equation (FI(f)) was proportional to the h-th power of f, and was in inverse proportion to the sum of the h-th power of k and the h-th power of f. f was the stimulation frequency, k was the stimulation frequency at 50% of FI, and h reflected the gradient of FFC. As a result, the approximated curve produced by the FFC-equation corresponded with the measured FFC. k reflected the fiber compositions and h represented the ratio of relaxation time to contraction time of the twitch contraction. The calcium ion fluctuation in muscle plasma may be described by the FFC-equation obtained from the experimental data.  相似文献   

9.
10.
11.
12.
13.
14.
The activity of succinic dehydrogenase, myosin ATPase, as well as lactic dehydrogenase (LDG) spectrum and cross-section area of different type of muscle fibers have been studied for 3 weeks after denervation (control) and after denervation and intraperitoneal injection of 10(-6) M FeCl3. Intraperitoneal injection of FeCl3 prevented the development of denervation phenomena (increase in cross-section area of muscle fibers, changes in LDG spectrum).  相似文献   

15.
16.
17.
To gain insights into the mechanism of the central helix of calmodulin and troponin-C in the Ca2(+)-regulation of force development in striated and smooth muscles, the present study was made of the TFP induced inhibition of contraction, and of the uptake of these proteins by skinned fibers. Calmodulin was four-fold more sensitive to TFP than TnC, but the inhibition was found to be identical for skeletal and cardiac muscles despite the differences in their troponin-C isoforms. Also, the results were comparable between fast-twitch fiber, when calmodulin was exchanged for troponin-C to act on TnI, and smooth muscle, where calmodulin acts on myosin light chain kinase. These findings indicate that the inhibition of force by TFP is entirely due to its binding to the hydrophobic sites in the central helix. The uptakes of troponin-C and calmodulin were also different, and this is explained by a TFP-independent domain in troponin-C that binds TnI.  相似文献   

18.
The tetracaine and cinchocaine in concentration less than 2 mM and 0.5 mM, respectively, stimulate ATP-dependent Ca-loading by enhancing the initial rate of Ca2+-accumulation, do not affect the Ca2+-binding and Ca-ATPase activity of sarcoplasmic reticulum vesicles. These data suggest blocking of Ca2+-efflux from vesicles which occurs during Ca-accumulation. Higher concentrations of the same compounds (above 2 mM and 0.5 mM for tetracaine and cinchocaine, respectively) caused inhibition of the Ca-ATPase activity and decreased the ability of SR vesicles to retain Ca2+, probably, due to their nonspecific lipophilic action.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号