共查询到20条相似文献,搜索用时 15 毫秒
1.
M R Sly D G Walker 《Comparative biochemistry and physiology. B, Comparative biochemistry》1978,61(3):471-477
1. A method for the preparation of hepatocytes from livers of 11-15-day old rats is described. These cells in general behave similarly to hepatocytes made from adult rats with respect to stimulation of gluconeogenesis by glucagon and adrenaline and the effects of added oleate. 2. Significant differences in the behaviour of hepatocytes from neonatal and adult rats were nevertheless seen in certain situations, e.g. with alanine as gluconeogenic substrate, and appeared to be related to the redox state of the cells. 3. The importance of redox state upon gluconeogenesis was examined in more detail by determining the effects of oleate, ethanol and DL-3-hydroxybutyrate alone and in combinations. Major differences between neonatal and adult hepatocytes were again observed with alanine as substrate. 4. A discussion concludes that, while some relevant differences in the enzyme complements of neonatal and adult rat livers are known, it is the high capacity of the neonatal liver to generate reducing power by oxidation of fatty acid that can explain the observed differences. 相似文献
2.
1. The fatty acid synthesis in isolated liver cells from fed rats was studied with tritiated water as the radioactive precursor. The cells incorporated 3H20 at a rate of 1.26 mumol per min per g packed cells. 2. Addition of ethanol caused a 20% decrease in the incorporation of tritium into fatty acids. The decrease was correlated to the increase in the NAD-redox level. Probably, the decreased tritium incorporation into fatty acids during ethanol metabolism is due to a decrease in the specific activity of the NADPH used for the synthesis of fatty acids, rather than to a real inhibition of the fatty acid synthesis. 3. Ethanol oxidation via NADPH-consuming pathways and ethanol per se at a concentration of 80 mM had no effect upon the incorporation of tritium into fatty acids. 4. Fructose in a concentration of 15 mM inhibited the fatty acid synthesis by 75%, and this inhibition was further augmented by ethanol. 5. The ioslated rat liver cells oxidized ethanol at a rate of 2.72, 2.93 and 3.48 mumol per min per g packed cells at 5, 20 and 80 mM ethanol, respectively. Fructose had no effect upon ethanol oxidation neither at low nor at high concentrations of ethanol. 6. Ethanol oxidation via the non alcohol dehydrogenase pathway(s) may involve a transfer of reducing equivalents from mitochondrial NADH to cyctosolic NADP+ as judged from measurements of metabolite levels. This conclusion is supported by determinations of 14C yield in glucose from [1-14C] ethanol, and the results are taken as evidence for the presence of hydrogen shuttle activity during metabolism of ethanol, catalyzed by the NAD-dependent alcohol dehydrogenase. A metabolic scheme is proposed to account for the observed changes at low and high concentrations of ethanol. 相似文献
3.
Stimulation by glucose of gluconeogenesis in hepatocytes isolated from starved rats. 总被引:1,自引:1,他引:1
下载免费PDF全文

Control properties of the gluconeogenic pathway in hepatocytes isolated from starved rats were studied in the presence of glucose. The following observations were made. (1) Glucose stimulated the rate of glucose production from 20 mM-glycerol, from a mixture of 20 mM-lactate and 2 mM-pyruvate, or from pyruvate alone; no stimulation was observed with 20 mM-alanine or 20 mM-dihydroxyacetone. Maximal stimulation was obtained between 2 and 5 mM-glucose, depending on the conditions. At concentrations above 6 mM, gluconeogenesis declined again, so that at 10 mM-glucose the glucose production rate became equal to that in its absence. (2) With glycerol, stimulation of gluconeogenesis by glucose was accompanied by oxidation of cytosolic NADH and reduction of mitochondrial NAD+ and was insensitive to the transaminase inhibitor amino-oxyacetate; this indicated that glucose accelerated the rate of transport of cytosolic reducing equivalents to the mitochondria via the glycerol 1-phosphate shuttle. (3) With lactate plus pyruvate (10:1) as substrates, stimulation of gluconeogenesis by glucose was almost additive to that obtained with glucagon. From an analysis of the effect of glucose on the curves relating gluconeogenic flux and the steady-state intracellular concentrations of gluconeogenic intermediates under various conditions, in the absence and presence of glucagon, it was concluded that addition of glucose stimulated both phosphoenolpyruvate carboxykinase and pyruvate carboxylase activity. 相似文献
4.
We examined the possibility of quantitative differences in lactate entry into periportal and perivenous hepatocytes under different nutritional states. The rate of14C-L(+)-lactate uptake was determined after 15-second incubations with freshly isolated zonally separated hepatocytes using a centrifuge stop technique at 37 °C and 4 °C, in the presence or absence of either differing amounts of unlabelled lactate or of a hepatocyte lactate transport inhibitor,-cyano-3-hydroxycinnamate. Total entry as well as carrier mediated entry of14C-L(+)-lactate into the isolated cell populations was found to be similar in periportal and perivenous hepatocytes, irrespective of the nutritional state of the animal. Periportal and perivenous hepatocytes showed a greater tendency to transport lactate when isolated from starved animals, in agreement with previously reported data from non-zonally separated isolated hepatocytes. The activity of the hepatocyte plasma-membrane lactate transporter was diminished between fourfold and eightfold in transport studies conducted at 4 °C; similar results were obtained in unseparated and zonally separated suspensions. Temperature dependence of the hepatocyte transporter is markedly less than that reported for the erythrocyte transporter. 相似文献
5.
6.
M E Tischler D Friedrichs K Coll J R Williamson 《Archives of biochemistry and biophysics》1977,184(1):222-236
Hepatocytes isolated from fed or starved rats were rapidly lysed using the recently described technique of turbulent flow (M. E. Tischler, P. Hecht, and J. R. Williamson, 1977, Arch. Biochem. Biophys., 181, 278–292). Pyridine nucleotide and metabolite contents were measured in the particulate fraction of both whole and disrupted cells after centrifugation through silicone oil. Lactate/pyruvate, β-hydroxybutyrate/acetoacetate, isocitrate/α-ketoglutarate, and malate/pyruvate ratios were determined for calculation of the free and ratios in the cytosol and mitochondria. Lactate/pyruvate ratios measured in the extracellular and cytosolic compartments were in good agreement. Ratios of β-hydroxybutyrate/acetoacetate measured in the extracellular, cytosolic, and mitochondrial compartments also agreed well. Addition of ammonia to fed or starved rat liver cells incubated with lactate, pyruvate, β-hydroxybutyrate, and acetoacetate caused an oxidation of both the NAD and NADP redox states in the mitochondria and cytosol, although the NADP system was oxidized to a greater extent. Calculation of the free NADH and NAD concentrations in the cytosol provided values of about 1 and 400 to 500 μm, respectively, under control conditions. The concentrations of free NADH and NAD in the mitochondria were considerably higher, being 300 to 400 μm and 4 to 6 mm, respectively. The free andm bound NAD systems in both the cytosol and mitochondria were more oxidized in the presence of ammonia. NAD and NADP redox potential differences across the mitochondrial membrane (ΔEh) were not significantly affected by ammonia addition and were generally similar in cells from both fed and starved rats: ?52 and ?56 mV for the NAD system and ?19 to ?29 mV for the NADP system. For the NAD system the cytosolic potential was ?260 mV in the absence of ammonia and ?250 mV in its presence, the mitochondrial values being ?315 and ?303 mV, respectively. The average cytosolic NADP potential, on the other hand, was ?400 mV in the absence and ?384 mV in the presence of ammonia. The mitochondrial fractions yielded NADP potentials of ?420 mV in the absence of ammonia with both fed and starved rats. Ammonia decreased the mitochondrial NADP potential to ?404 mV in fed rats and to ?415 mV in starved rats. The calculated free and ratios as well as metabolite concentrations were used to evaluate the mass action ratios of both cytosolic and mitochondrial enzymes. Cytosolic alanine aminotransferase remained near equilibrium in the absence and presence of ammonia, while cytosolic and mitochondrial aspartate aminotransferase reactions deviated up to fivefold. The glutamate dehydrogenase reaction was in near equilibrium with the NAD system, but deviated by three to four orders of magnitude from equilibrium with the NADP system in the direction favoring glutamate synthesis rather than deaminatión. Cytosolic malate dehydrogenase deviated from equilibrium by about one order of magnitude, while mitochondrial malate dehydrogenase and citrate synthase deviated by two to six orders of magnitude. These data emphasize the importance of regulation of the citric acid cycle at the citrate synthase step. 相似文献
7.
Alterations in energy status by menadione metabolism in hepatocytes isolated from fasted and fed rats 总被引:2,自引:0,他引:2
F A Redegeld R M Moison A S Koster J Noordhoek 《Archives of biochemistry and biophysics》1989,273(1):215-222
The biochemical mechanism of cytotoxicity, induced by the quinoid compound 2-methyl 1,4-naphthoquinone (menadione), was investigated in hepatocytes freshly isolated from fasted and fed rats. Hepatocytes from fasted rats were significantly more vulnerable to the toxicity of menadione than hepatocytes from fed rats. Menadione (150 microM) induced a 50% loss of viability of cells (LT50) from fasted rats after 55 min of incubation, whereas a LT50 of 80 min was observed after exposure of hepatocytes from fed rats to menadione. Glutathione and NADPH levels were rapidly depleted by menadione metabolism. This depletion was sustained during the incubation period. No significant differences were found in the time course and extent of the menadione-induced glutathione and NADPH depletion in hepatocytes of both nutritional states. Menadione also affected the energy status of the hepatocytes. The ATP content of cells from fasted rats decreased to 50% (AT50) within 18 min of exposure to menadione, whereas a 50% loss of ATP content of hepatocytes from fed rats was reached at 65 min. In contrast to depletion of glutathione and NADPH, the time course and extent of menadione-induced ATP depletion correlated well with the time of onset and rate of cell killing. Our results suggest that menadione metabolism may interfere with both mitochondrial and glycolytic ATP production. Depletion of ATP might be a critical step in menadione-induced cytotoxicity. 相似文献
8.
M J Geelen 《Life sciences》1977,20(6):1027-1034
Hepatocytes isolated from the liver of rats starved for two days synthesized glycogen only when incubated in the presence of both glucose and glucogenic precursors (combinations of alanine, glycerol, pyruvate, lactate or fructose). Unlabeled glucogenic precursors facilitated the incorporation of [U-14C]glucose into glycogen. Unlabeled glucose likewise greatly enhanced glycogen synthesis from isotopically labeled lactate and other glucogenic precursors.In those systems which contained no added endocrines glucose dampened glycogen phosphorylase activity in a cAMP-independent fashion. Fructose is unable to mimic the effects of glucose on glycogen deposition and on glycogen phosphorylase activity. 相似文献
9.
Isolated parenchymal cells from fed rat liver rapidly lose glycogen when incubated with glucose. The addition of glycerol or fructose but not insulin prevents much of the breakdown. When cells are incubated with glycerol and glucose, more glycogen is retained with the further addition of xylitol than of fructose or pyruvate. Oleate stimulates glycogen breakdown. The results indicate that glycerol may play an important physiological role in the control of glycogen synthesis in the liver, possibly by esterifying fatty acids. Furthermore, the results support the concept that the main effect of insulin on liver glycogen levels may be the results of diminished flow of free fatty acids to the liver. 相似文献
10.
H K Metcalfe J P Monson R D Cohen C Padgham 《The Journal of biological chemistry》1988,263(36):19505-19509
Hepatic plasma membrane lactate transport was studied in isolated hepatocytes prepared from fed, starved, and streptozotocin diabetic rats. Carrier-mediated lactate entry was determined using the lactate transport inhibitors alpha-cyano-3-hydroxycinnamate and D-3-hydroxybutyrate and was significantly greater in hepatocytes from starved compared to fed rats and in hepatocytes from diabetic fed compared to fed rats. The saturable component of lactate entry which corresponds to carrier-mediated transport was higher in the starved than in the fed state with results from diabetic fed being intermediate between the two. Insulin treatment prevented the increment in carrier-mediated lactate transport observed in hepatocytes from diabetic fed rats. The data indicate that hepatic plasma membrane lactate transport is increased under conditions of starvation and diabetes mellitus. This may partly explain the increased gluconeogenic flux under these conditions. 相似文献
11.
The reversibility of cytosolic dehydrogenase reactions in hepatocytes from starved and fed rats. Effect of fructose.
下载免费PDF全文

The metabolism of [2-3H]lactate was studied in isolated hepatocytes from fed and starved rats metabolizing ethanol and lactate in the absence and presence of fructose. The yields of 3H in ethanol, water, glucose and glycerol were determined. The rate of ethanol oxidation (3 mumol/min per g wet wt.) was the same for fed and starved rats with and without fructose. From the detritiation of labelled lactate and the labelling pattern of ethanol and glucose, we calculated the rate of reoxidation of NADH catalysed by lactate dehydrogenase, alcohol dehydrogenase and triosephosphate dehydrogenase. The calculated flux of reducing equivalents from NADH to pyruvate was of the same order of magnitude as previously found with [3H]ethanol or [3H]xylitol as the labelled substrate [Vind & Grunnet (1982) Biochim. Biophys. Acta 720, 295-302]. The results suggest that the cytoplasm can be regarded as a single compartment with respect to NAD(H). The rate of reduction of acetaldehyde and pyruvate was correlated with the concentration of these metabolites and NADH, and was highest in fed rats and during fructose metabolism. The rate of reoxidation of NADH catalysed by lactate dehydrogenase was only a few per cent of the maximal activity of the enzymes, but the rate of reoxidation of NADH catalysed by alcohol dehydrogenase was equal to or higher than the maximal activity as measured in vitro, suggesting that the dissociation of enzyme-bound NAD+ as well as NADH may be rate-limiting steps in the alcohol dehydrogenase reaction. 相似文献
12.
E Chico J S Olavarría I N de Castro 《Biochemical and biophysical research communications》1978,83(4):1422-1429
In hepatocytes isolated from fed rats, the addition of fructose caused an inhibition of respiration. In hepatocytes isolated from starved rats the Crabtree effect was not observed. No difference in oxygen uptake was found by addition of glucose to hepatocytes from fed or starved animals. The inhibition of respiration was parallel with a rise in the glycolytic flux and the oxidation of the mitochondrial respiratory carriers. The metabolic conditions in which the Crabtree effect can be operative in liver cells are discussed. 相似文献
13.
Sybil Golden Gad Riesenfeld Joseph Katz 《Archives of biochemistry and biophysics》1982,213(1):118-126
Hepatocytes were isolated from livers of mature male and female starved Japanese quail (Coturnix coturnix japonica). The hepatocytes take up lactate and dihydroxyacetone extensively, and have a very high rate of glucose synthesis from these substrates. Fructose uptake and incorporation into glucose is much less. Pyruvate and alanine are taken up extensively, but form little glucose. There is negligible lipogenesis in cells of starved quail. Alanine increases up to 10-fold incorporation of 3HOH and 14C from several substrates into fatty acids, but it remains insignificant as compared to lipogenesis by cells of fed quail. There is little utilization of glucose, even in the presence of alanine, in marked contrast to hepatocytes from fed quail. However, glucose is phosphorylated at high rates, but most of the glucose 6-phosphate is recycled to glucose. There is a marked difference in the metabolism of polyols between the sexes. Glycerol, xylitol, and sorbitol are converted nearly quantitatively into glucose by hepatocytes of starved female quail. In cells of starved males, the uptake of polyols is higher, but conversion to glucose less efficient. In cells of starved male quail, alanine markedly stimulates the uptake of glycerol and xylitol and their conversion to glucose, but has no effect on sorbitol metabolism. In cells of female quail, alanine is without a significant effect on polyol metabolism. 相似文献
14.
Loranne Agius 《Biochimica et Biophysica Acta (BBA)/General Subjects》1984,800(3):306-308
Parenchymal hepatocytes isolated from lactating rats had similar rates of amino acid incorporation into protein, but increased rates of urea formation compared to hepatocytes from non-lactating rats. The increased urea formation may be due to increased amino acid transport and degradation. The liver contributes to the increased utilization of amino acids during lactation. 相似文献
15.
16.
17.
The fine structure of hepatocytes from rats maintained on a controlled feeding schedule are described. Liver samples were processed for electron microscopy, histochemistry and chemical determinations of glycogen at precise time-intervals following a 30-hour fast and a 2-hour meal. Hepatocytes from 30-hour-fasted rats with extremely low hepatic glycogen levels were devoid of glycogen particles. Centrilobular cells showed areas of the cytoplasm rich in vesicles of smooth endoplasmic reticulum (SER) while periportal hepatocytes contained less extensive regions of SER. Soon after feeding the fasted rats, glycogen particles appeared in regions of the cell rich in SER. Centrilobular hepatocytes contained numerous glycogen areas which were infiltrated with tubules of SER, while periportal cells showed dense glycogen deposits with SER restricted to the periphery of the masses of glycogen. Throughout glycogen deposition each glycogen particle was closely associated with membranes of SER until maximum glycogen deposition was achieved 12 hours after initiation of feeding. At this point SER was reduced to the lowest amounts of the time-periods studied. During stages of glycogen depletion SER proliferated and reached the highest concentration measured in this study. Tubules of SER were present throughout the glycogen masses of centrilobular hepatocytes, whereas in periportal cells the organelle was restricted to the periphery of the glycogen masses. It is concluded that SER is associated with glycogen particles in rat hepatocytes during both deposition and depletion of glycogen. 相似文献
18.
Differential inhibition of ketogenesis by malonyl-CoA in mitochondria from fed and starved rats. 总被引:1,自引:10,他引:1
下载免费PDF全文

Rates of ketogenesis in mitochondria from fed or starved rats were identical at optimal substrate concentrations, but responded differently to inhibition by malonyl-CoA. Kinetic data suggest that the K1 for malonyl-CoA is greater in the starved animal. These results indicate that, for the regulation of ketogenesis in the starved state, the lower sensitivity of carnitine palmitoyltransferase to inhibition by malonyl-CoA may be more important than the concentration of malonyl-CoA. 相似文献
19.
Isolated liver cells prepared from starved sheep converted palmitate into ketone bodies at twice the rate seen with cells from fed animals. Carnitine stimulated palmitate oxidation only in liver cells from fed sheep, and completely abolished the difference between fed and starved animals in palmitate oxidation. The rates of palmitate oxidation to CO2 and of octanoate oxidation to ketone bodies and CO2 were not affected by starvation or carnitine. Neither starvation nor carnitine altered the ratio of 3-hydroxybutyrate to acetoacetate or the rate of esterification of [1-14C]palmitate. Propionate, lactate, pyruvate and fructose inhibited ketogenesis from palmitate in cells from fed sheep. Starvation or the addition of carnitine decreased the antiketogenic effectiveness of gluconeogenic precursors. Propionate was the most potent inhibitor of ketogenesis, 0.8 mM producing 50% inhibition. Propionate, lactate, fructose and glycerol increased palmitate esterification under all conditions examined. Lactate, pyruvate and fructose stimulated oxidation of palmitate and octanoate to CO2. Starvation and the addition of gluconeogenic precursors stimulated apparent palmitate utilization by cells. Propionate, lactate and pyruvate decreased cellular long-chain acylcarnitine concentrations. Propionate decreased cell contents of CoA and acyl-CoA. It is suggested that propionate may control hepatic ketogenesis by acting at some point in the beta-oxidation sequence. The results are discussed in relation to the differences in the regulation of hepatic fatty acid metabolism between sheep and rats. 相似文献
20.
J Peinado-Onsurbe C Soler M Soley M Llobera I Ramírez 《Biochimica et biophysica acta》1992,1125(1):82-89
Lipoprotein lipase and hepatic lipase are members of the lipase gene family sharing a high degree of homology in their amino acid sequences and genomic organization. We have recently shown that isolated hepatocytes from neonatal rats express both enzyme activities. We show here that both enzymes are, however, differentially regulated. Our main findings are: (i) fasting induced an increase of the lipoprotein lipase activity but a decrease of the hepatic lipase activity in whole liver, being in both cases the vascular (heparin-releasable) compartment responsible for these variations. (ii) In isolated hepatocytes, secretion of lipoprotein lipase activity was increased by adrenaline, dexamethasone and glucagon but was not affected by epidermal growth factor, insulin or triiodothyronine. On the contrary, secretion of hepatic lipase activity was decreased by adrenaline but was not affected by other hormones. (iii) The effect of adrenaline on lipoprotein lipase activity appeared to involve beta-adrenergic receptors, but stimulation of both beta- and alpha 1-receptors seemed to be required for the effect of this hormone on hepatic lipase activity. And (iv), increased secretion of lipoprotein lipase activity was only observed after 3 h of incubation with adrenaline and was blocked by cycloheximide. On the contrary, decreased secretion of hepatic lipase activity was already significant after 90 min of incubation and was not blocked by cycloheximide. We suggest that not only synthesis of both enzymes, but also the posttranslational processing, are under separate control in the neonatal rat liver. 相似文献