首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The Ciona forkhead/HNF-3beta gene (Ci-fkh) is expressed in the primary axial tissues of the developing tadpole, including the notochord, endoderm, and rudimentary floor plate of the CNS. In an effort to determine the basis for this complex pattern of expression we have conducted a detailed analysis of the Ci-fkh 5'-regulatory region. Different 5' sequences were attached to a lacZ reporter gene and analyzed in electroporated Ciona embryos. A short regulatory sequence (AS) located approximately 1.7 kb upstream of the transcribed region is shown to be essential for expression in all three axial tissues. The proximal 20 bp of the AS contains overlapping Snail repressor elements and a T-box motif. Deleting these sequences causes the loss of reporter gene expression in the endoderm, as well as expanded expression in the neural tube. These results suggest that a T-box gene such as Ci-VegTR activates Ci-fkh expression in the endoderm, while the Ci-Sna repressor excludes expression from the lateral ependymal cells and restricts the Ci-fkh pattern to the rudimentary floor plate in ventral regions of the neural tube. We also present evidence for Ci-fkh positive autofeedback, whereby the Ci-Fkh protein binds to critical activator sites within the Ci-fkh 5'-regulatory region and helps maintain high levels of expression. We discuss these results with respect to forkhead/HNF-3beta regulation in vertebrates.  相似文献   

3.
4.
Bertrand V  Hudson C  Caillol D  Popovici C  Lemaire P 《Cell》2003,115(5):615-627
In chordates, formation of neural tissue from ectodermal cells requires an induction. The molecular nature of the inducer remains controversial in vertebrates. Here, using the early neural marker Otx as an entry point, we dissected the neural induction pathway in the simple embryos of Ciona intestinalis. We first isolated the regulatory element driving Otx expression in the prospective neural tissue, showed that this element directly responds to FGF signaling and that FGF9/16/20 acts as an endogenous neural inducer. Binding site analysis and gene loss of function established that FGF9/16/20 induces neural tissue in the ectoderm via a synergy between two maternal response factors. Ets1/2 mediates general FGF responsiveness, while the restricted activity of GATAa targets the neural program to the ectoderm. Thus, our study identifies an endogenous FGF neural inducer and its early downstream gene cascade. It also reveals a role for GATA factors in FGF signaling.  相似文献   

5.
The FGF pathway regulates a variety of developmental processes in animals through activation and/or repression of numerous target genes. Here we have identified a Xenopus homolog of potassium channel tetramerization domain containing 15 (KCTD15) as an FGF-repressed gene. Kctd15 expression is first detected at the gastrula stage and gradually increases until the tadpole stage. Whole-mount in situ hybridization reveals that the spatial expression of kctd15 is tightly regulated during early embryogenesis. While kctd15 is uniformly expressed throughout the presumptive ectoderm at the early gastrula stage, its expression becomes restricted to the non-neural ectoderm and is excluded from the neural plate at the early neurula stage. At the mid-neurula stage, kctd15 shows a more restricted distribution pattern in regions that are located at the anterior, lateral or medial edge of the neural fold, including the preplacodal ectoderm, the craniofacial neural crest and the prospective roof plate. At the tailbud stage, kctd15 expression is mainly detected in neural crest- or placode-derived tissues that are located around the eye, including the mandibular arch, trigeminal ganglia and the olfactory placode. FGF represses kctd15 expression in ectodermal explants, and the inhibition of FGF receptor with a chemical compound dramatically expands the region expressing kctd15 in whole embryos. Dorsal depletion of kctd15 in Xenopus embryos leads to bent axes with reduced head structures, defective eyes and abnormal somites, while ventral depletion causes defects in ventral and caudal morphologies. These results suggest that kctd15 is an FGF-repressed ectodermal gene required for both dorsal and ventral development.  相似文献   

6.
At the end of gastrulation in avians and mammals, the endoderm germ layer is an undetermined sheet of cells. Over the next 24-48 h, endoderm forms a primitive tube and becomes regionally specified along the anterior-posterior axis. Fgf4 is expressed in gastrulation and somite stage embryos in the vicinity of posterior endoderm that gives rise to the posterior gut. Moreover, the posterior endoderm adjacent to Fgf4-expressing mesoderm expresses the FGF-target genes Sprouty1 and 2 suggesting that endoderm respond to an FGF signal in vivo. Here, we report the first evidence suggesting that FGF4-mediated signaling is required for establishing gut tube domains along the A-P axis in vivo. At the gastrula stage, exposing endoderm to recombinant FGF4 protein results in an anterior shift in the Pdx1 and CdxB expression domains. These expression domains remain sensitive to FGF4 levels throughout early somite stages. Additionally, FGF4 represses the anterior endoderm markers Hex1 and Nkx2.1 and disrupts foregut morphogenesis. FGF signaling directly patterns endoderm and not via a secondary induction from another germ layer, as shown by expression of dominant-active FGFR1 specifically in endoderm, which results in ectopic anterior expression of Pdx1. Loss-of-function studies using the FGF receptor antagonist SU5402 demonstrate that FGF signaling is necessary for establishing midgut gene expression and for maintaining gene expression boundaries between the midgut and hindgut from gastrulation through somitogenesis. Moreover, FGF signaling in the primitive streak is necessary to restrict Hex1 expression to anterior endoderm. These data show that FGF signaling is critical for patterning the gut tube by promoting posterior and inhibiting anterior endoderm cell fate.  相似文献   

7.
FGF signalling controls the timing of Pax6 activation in the neural tube   总被引:3,自引:0,他引:3  
We have recently demonstrated that Pax6 activation occurs in phase with somitogenesis in the spinal cord. Here we show that the presomitic mesoderm exerts an inhibitory activity on Pax6 expression. This repressive effect is mediated by the FGF signalling pathway. The presomitic mesoderm displays a decreasing caudorostral gradient of FGF8, and grafting FGF8-soaked beads at the level of the neural tube abolishes Pax6 activation. Conversely, when FGF signalling is disrupted, Pax6 is prematurely activated in the neural plate. We propose that the progression of Pax6 activation in the neural tube is controlled by the caudal regression of the anterior limit of FGF activity. Hence, as part of its posteriorising activity, FGF8 downregulation acts as a switch from early (posterior) to a later (anterior) state of neural epithelial development.  相似文献   

8.
9.
Mesodermal tissues arise from diverse cell lineages and molecular strategies in the Ciona embryo. For example, the notochord and mesenchyme are induced by FGF/MAPK signaling, whereas the tail muscles are specified autonomously by the localized determinant, Macho-1. A unique mesoderm lineage, the trunk lateral cells, develop from a single pair of endomesoderm cells, the A6.3 blastomeres, which form part of the anterior endoderm, hematopoietic mesoderm and muscle derivatives. MAPK signaling is active in the endoderm descendants of A6.3, but is absent from the mesoderm lineage. Inhibition of MAPK signaling results in expanded expression of mesoderm marker genes and loss of endoderm markers, whereas ectopic MAPK activation produces the opposite phenotype: the transformation of mesoderm into endoderm. Evidence is presented that a specific Ephrin signaling molecule, Ci-ephrin-Ad, is required to establish asymmetric MAPK signaling in the endomesoderm. Reducing Ci-ephrin-Ad activity via morpholino injection results in ectopic MAPK signaling and conversion of the mesoderm lineage into endoderm. Conversely, misexpression of Ci-ephrin-Ad in the endoderm induces ectopic activation of mesodermal marker genes. These results extend recent observations regarding the role of Ephrin signaling in the establishment of asymmetric cell fates in the Ciona notochord and neural tube.  相似文献   

10.
11.
12.
The central and peripheral nervous systems (CNS and PNS) of the ascidian tadpole larva are comparatively simple, consisting of only about 350 cells. However, studies of the expression of neural patterning genes have demonstrated overall similarity between the ascidian CNS and the vertebrate CNS, suggesting that the ascidian CNS is sufficiently complex to be relevant to those of vertebrates. Recent progress in the Ciona intestinalis genome project and cDNA project together with considerable EST information has made Ciona an ideal model for investigating molecular mechanisms underlying the formation and function of the chordate nervous system. Here, we characterized 56 genes specific to the nervous system by determining their full-length cDNA sequences and confirming their spatial expression patterns. These genes included those that function in the nervous systems of other animals, especially those involved in photoreceptor-mediated signaling and neurotransmitter release. Thus, the nervous system-specific genes in Ciona larvae will provide not only probes for determining their function but also clues for exploring the complex network of nervous system-specific genes.  相似文献   

13.
14.
15.
Neural tube closure is a critical morphogenetic event that is regulated by dynamic changes in cell shape and behavior. Although previous studies have uncovered a central role for the non-canonical Wnt signaling pathway in neural tube closure, the underlying mechanism remains poorly resolved. Here, we show that the missing in metastasis (MIM; Mtss1) protein, previously identified as a Hedgehog response gene and actin and membrane remodeling protein, specifically binds to Daam1 and couples non-canonical Wnt signaling to neural tube closure. MIM binds to a conserved domain within Daam1, and this interaction is positively regulated by Wnt stimulation. Spatial expression of MIM is enriched in the anterior neural plate and neural folds, and depletion of MIM specifically inhibits anterior neural fold closure without affecting convergent extension movements or mesoderm cell fate specification. Particularly, we find that MIM is required for neural fold elevation and apical constriction along with cell polarization and elongation in both the superficial and deep layers of the anterior neural plate. The function of MIM during neural tube closure requires both its membrane-remodeling domain and its actin-binding domain. Finally, we show that the effect of MIM on neural tube closure is not due to modulation of Hedgehog signaling in the Xenopus embryo. Together, our studies define a morphogenetic pathway involving Daam1 and MIM that transduces non-canonical Wnt signaling for the cytoskeletal changes and membrane dynamics required for vertebrate neural tube closure.  相似文献   

16.
Ectodermal placodes, from which many cranial sense organs and ganglia develop, arise from a common placodal primordium defined by Six1 expression. Here, we analyse placodal Six1 induction in Xenopus using microinjections and tissue grafts. We show that placodal Six1 induction occurs during neural plate and neural fold stages. Grafts of anterior neural plate but not grafts of cranial dorsolateral endomesoderm induce Six1 ectopically in belly ectoderm, suggesting that only the neural plate is sufficient for inducing Six1 in ectoderm. However, extirpation of either anterior neural plate or of cranial dorsolateral endomesoderm abolishes placodal Six1 expression indicating that both tissues are required for its induction. Elevating BMP-levels blocks placodal Six1 induction, whereas ectopic sources of BMP inhibitors expand placodal Six1 expression without inducing Six1 ectopically. This suggests that BMP inhibition is necessary but needs to cooperate with additional factors for Six1 induction. We show that FGF8, which is expressed in the anterior neural plate, can strongly induce ectopic Six1 in ventral ectoderm when combined with BMP inhibitors. In contrast, FGF8 knockdown abolishes placodal Six1 expression. This suggests that FGF8 is necessary and together with BMP inhibitors sufficient to induce placodal Six1 expression in cranial ectoderm, implicating FGF8 as a central component in generic placode induction.  相似文献   

17.
Two axial structures, a neural tube and a notochord, are key structures in the chordate body plan and in understanding the origin of chordates. To expand our knowledge on mechanisms of development of the neural tube in lower chordates, we have undertaken isolation and characterization of HrzicN, a new member of the Zic family gene of the ascidian, Halocynthia roretzi. HrzicN expression was detected by whole-mount in situ hybridization in all neural tube precursors, all notochord precursors, anterior mesenchyme precursors and a part of the primary muscle precursors. Expression of HrzicN in a- and b-line neural tube precursors was detected from early gastrula stage to the neural plate stage, while expression in other lineages was observed between the 32-cell and the 110-cell stages. HrzicN function was investigated by disturbing translation using a morpholino antisense oligonucleotide. Embryos injected with HrzicN morpholino ('HrzicN knockdown embryos') exhibited failure of neurulation and tail elongation, and developed into larvae without a neural tube and notochord. Analysis of neural marker gene expression in HrzicN knockdown embryos revealed that HrzicN plays critical roles in distinct steps of neural tube formation in the a-line- and A-line precursors. In particular HrzicN is required for early specification of the neural tube fate in A-line precursors. Involvement of HrzicN in the neural tube development was also suggested by an overexpression experiment. However, analysis of mesodermal marker gene expression in HrzicN knockdown embryos revealed unexpected roles of this gene in the development of mesodermal tissues. HrzicN knockdown led to loss of HrBra (Halocynthia roretzi Brachyury) expression in all of the notochord precursors, which may be the cause for notochord deficiency. Hrsna (Halocynthia roretzi snail) expression was also lost from all the notochord and anterior mesenchyme precurosrs. By contrast, expression of Hrsna and the actin gene was unchanged in the primary muscle precursors. These results suggest that HrzicN is responsible for specification of the notochord and anterior mesenchyme. Finally, regulation of HrzicN expression by FGF-like signaling was investigated, which has been shown to be involved in induction of the a- and b-line neural tube, the notochord and the mesenchyme cells in Halocynthia embryos. Using an inhibitor of FGF-like signaling, we showed that HrzicN expression in the a- and b-line neural tube, but not in the A-line lineage and mesodermal lineage, depends on FGF-like signaling. Based on these data, we discussed roles of HrzicN as a key gene in the development of the neural tube and the notochord.  相似文献   

18.
19.
The tadpole larvae prosencephalon of the ascidian Ciona intestinalis contains a single large ventricle, along the inner walls of which lie two sensory organs: the otolith (a gravity-sensing organ) and the ocellus (a photo-sensing organ composed of a single cup-shaped pigment cell, about 20 photoreceptor cells, and three lens cells). Comparison has been drawn between the morphology and physiology of photoreceptor cells in the ascidian ocellus and the vertebrate eye. The development of vertebrate and invertebrate eyes requires the activity of several conserved genes and it is regulated by precise expression patterns and cell fate decisions common to several species. We have isolated a Ciona homeobox gene (Ci-Rx) that belongs to the paired-like class of homeobox genes. Rx genes have been identified from a variety of organisms and have been demonstrated to have a role in vertebrate eye formation. Ci-Rx is expressed in the anterior neural plate in the middle tailbud stage and subsequently in the larval stage in the sensory vesicle around the ocellus. Loss of Ci-Rx function leads to an ocellus-less phenotype that shows a loss of photosensitive swimming behavior, suggesting the important role played by Ci-Rx in basal chordate photoreceptor cell differentiation and ocellus formation. Furthermore, studies on Ci-Rx regulatory elements electroporated into Ciona embryos using LacZ or GFP as reporter genes indicate the presence of Ci-Rx in pigment cells, photoreceptors, and neurons surrounding the sensory vesicle. In Ci-Rx knocked-down larvae, neither basal swimming activity nor shadow responses develop. Thus, Rx has a role not only in pigment cells and photoreceptor formation but also in the correct development of the neuronal circuit that controls larval photosensitivity and swimming behavior. The results suggest that a Ci-Rx "retinal" territory exists, which consists of pigment cells, photoreceptors, and neurons involved in transducing the photoreceptor signals.  相似文献   

20.
Chordates undergo a characteristic morphogenetic process during neurulation to form a dorsal hollow neural tube. Neurulation begins with the formation of the neural plate and ends when the left epidermis and right epidermis overlying the neural tube fuse to close the neural fold. During these processes, mitosis and the various morphogenetic movements need to be coordinated. In this study, we investigated the epidermal cell cycle in Ciona intestinalis embryos in vivo using a fluorescent ubiquitination-based cell cycle indicator (Fucci). Epidermal cells of Ciona undergo 11 divisions as the embryos progress from fertilization to the tadpole larval stage. We detected a long G2 phase between the tenth and eleventh cell divisions, during which fusion of the left and right epidermis occurred. Characteristic cell shape change and actin filament regulation were observed during the G2 phase. CDC25 is probably a key regulator of the cell cycle progression of epidermal cells. Artificially shortening this G2 phase by overexpressing CDC25 caused precocious cell division before or during neural tube closure, thereby disrupting the characteristic morphogenetic movement. Delaying the precocious cell division by prolonging the S phase with aphidicolin ameliorated the effects of CDC25. These results suggest that the long interphase during the eleventh epidermal cell cycle is required for neurulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号