首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A new fluorimetric aptasensor was designed for the determination of adenosine triphosphate (ATP) based on magnetic nanoparticles (MNPs) and carbon dots (CDs). In this analytical strategy, an ATP aptamer was conjugated on MNPs and a complementary strand of the aptamer (CS) was labeled with CDs. The aptamer and its CS were hybridized to form a double helical structure. The hybridized aptamers could be used for the specific recognition of ATP in a biological complex matrix using a strong magnetic field to remove the interfering effect. In the absence of ATP, no CDs–CS could be released into the solution and this resulted in a weak fluorescence signal. In the presence of ATP, the target binds to its aptamer and causes the dissociation of the double helical structure and liberation of the CS, such that a strong fluorescence signal was generated. The increased fluorescence signal was proportional to ATP concentration. The limit of detection was estimated to be 1.0 pmol L–1 with a dynamic range of 3.0 pmol L–1 to 5.0 nmol L–1. The specific aptasensor was applied to detect ATP in human serum samples with satisfactory results. Moreover, molecular dynamic simulation (MDS) studies were used to analyze interactions of the ATP molecule with the aptamer.  相似文献   

2.
An aptamer is an artificial functional oligonucleic acid, which can interact with its target molecule with high affinity and specificity. Enzyme linked aptamer assay (ELAA) is developed to detect cocaine using aptamer fragment/cocaine configuration based on the affinity interaction between aptamer fragments with cocaine. The aptasensor was constructed by cleaving anticocaine aptamer into two fragments: one was assembled on a gold electrode surface, while the other was modified with biotin at 3'-end, which could be further labelled with streptavidin-horseradish peroxidase (SA-HRP). Upon binding with cocaine, the HRP-labelled aptamer fragment/cocaine complex formed on the electrode would increase the reduction current of hydroquinone (HQ) in the presence of H(2)O(2). The sensitivity and the specificity of the proposed electrochemical aptasensor were investigated by differential pulse voltammetry (DPV). The results indicated that the DPV signal change could be used to sensitively detect cocaine with the dynamic range from 0.1 μM to 50 μM and the detection limit down to 20 nM (S/N=3). The proposed aptasensor has the advantages of high sensitivity and low background current. Furthermore, a new configuration for ELAA requiring only a single aptamer sequence is constructed, which can be generalized for detecting different kinds of targets by cleaving the aptamers into two suitable segments.  相似文献   

3.
Here, we describe the fabrication of an electrochemical immunoglobulin E (IgE) aptasensor using enzyme-linked aptamer in the sandwich assay method and thionine as redox probe. In this protocol, 5′-amine-terminated IgE aptamer and thionine were covalently attached on glassy carbon electrode modified with carbon nanotubes/ionic liquid/chitosan nanocomposite. Furthermore, another IgE aptamer was modified with biotin and enzyme horseradish peroxidase (HRP), which attached to the aptamer via biotin–streptavidin interaction. Electrochemical impedance spectroscopy (EIS) and cyclic voltammetry were performed at each stage of the chemical modification process to confirm the resulting surface changes. The presence of IgE induces the formation of a double aptamer sandwich structure on the electrode, and the electrocatalytic reduction current of thionine in the presence of hydrogen peroxide was measured as the sensor response. Under optimized conditions and using differential pulse voltammetry as the measuring technique, the proposed aptasensor showed a low detection limit (6 pM) and high sensitivity (1.88 μA nM−1). This aptasensor also exhibited good stability and high selectivity for IgE detection without an interfering effect of some other proteins such as bovine serum albumin (BSA) and lysozyme. The application of the aptasensor for IgE detection in human serum sample was also investigated. The proposed protocol is quite promising as an alternative sandwich approach for various protein assays.  相似文献   

4.
Herein, an ultrasensitive electrochemical aptasensor for quantitative detection of bisphenol A (BPA) was fabricated based on a novel signal amplification strategy. This aptasensor was developed by electrodeposition of gold-platinum nanoparticles (Au-PtNPs) on glassy carbon (GC) electrode modified with acid-oxidized carbon nanotubes (CNTs-COOH). In this protocol, acriflavine (ACF) was covalently immobilized at the surface of glassy carbon electrode modified with Au-PtNPs/CNTs-COOH nanocomposite. Attachment of BPA-aptamer at the surface of modified electrode was performed through the formation of phosphoramidate bonds between the amino group of ACF and phosphate group of the aptamer at 5′end. By interaction of BPA with the aptamer, the conformational of aptamer was changed which lead to retarding the interfacial electron transfer of ACF as a probe. Sensitive quantitative detection of BPA was carried out by monitoring the decrease of differential pulse voltammetric (DPV) responses of ACF peak current with increasing the BPA concentration. The resultant aptasensor exhibited good specificity, stability and reproducibility, indicating that the present strategy was promising for broad potential application.  相似文献   

5.
A solid-state electrochemiluminescence (ECL) aptasensor based on target-induced aptamer displacement for highly sensitive detection of thrombin was developed successfully using 4-(dimethylamino)butyric acid (DMBA)@PtNPs labeling as enhancer. Such a special aptasensor included three main parts: ECL substrate, ECL intensity amplification and target-induced aptamer displacement. The ECL substrate was made by modifying the complex of Pt nanoparticles (PtNPs) and tris(2,2-bipyridyl) ruthenium (II) (Ru(bpy)(3)(2+)) (Ru-PtNPs) onto nafion@multi-walled carbon nanotubes (nafion@MWCNTs) modified electrode surface. A complementary thrombin aptamer labeled by DMBA@PtNPs (Aptamer II) acted as the ECL intensity amplification. The thrombin aptamer (TBA) was applied to hybridize with the labeled complementary thrombin aptamer, yielding a duplex complex of TBA-Aptamer II on the electrode surface. The introduction of thrombin triggered the displacement of Aptamer II from the self-assembled duplex into the solution and the association of inert protein thrombin on the electrode surface, decreasing the amount of DMBA@PtNPs and increasing the electron transfer resistance of the aptasensor and thus resulting large decrease in ECL signal. With the synergistic amplification of DMBA and PtNPs to Ru(bpy)(3)(2+) ECL, the aptasensor showed an enlarged ECL intensity change before and after the detection of thrombin. As a result, the change of ECL intensity has a direct relationship with the logarithm of thrombin concentration in the range of 0.001-30 nM. The detection limit of the proposed aptasensor is 0.4 pM. Thus, the approach is expected to open new opportunities for protein diagnostics in clinical as well as bioanalysis in general.  相似文献   

6.
A well-designed three-way junction (TWJ) aptasensor for lysozyme detection was developed based on target-binding-induced conformational change of aptamer-complementary DNA (cDNA) as probe. A ferrocene (Fc)-tagged cDNA is partially hybridized with an anti-lysozyme aptamer to form a folded structure where there is a coaxial stacking of two helices and the third one at an acute angle. In addition, the fabrication of the sensor was achieved via the single-step method, which offered a good condition for sensing. In the absence of lysozyme, electron transfer (eT), through the coaxial two helices called "conductive path", is allowed between Fc-labeled moiety and the electrode. The binding of lysozyme to the aptamer blocks eT, leading to diminished redox signal. This aptasensor with an instinct signal attenuation factor shows a high sensitivity to lysozyme, and the response data is fitted by nonlinear least-squares to Hill equation. Detection limit is 0.2nM with a dynamic range extending to 100nM. Compared with existing electrochemical impedance spectroscopy (EIS)-based approaches, TWJ-DNA aptasensor was demonstrated to be more specific for detection and simpler for regeneration procedure.  相似文献   

7.
We herein report a folding-based electrochemical DNA aptasensor for the detection of vascular endothelial growth factor (VEGF) directly in complex biological samples, including blood serum and whole blood. The electrochemical signal generation is coupled to a large, target-induced conformational change in a methylene blue-modified and surface immobilized anti-VEGF aptamer. The sensor is sensitive, selective and essentially reagentless: we can readily detect VEGF down to 5 pM (190 pg/mL) directly in 50% blood serum. Similar to other aptasensors of this class, the VEGF sensor is also regenerable and reusable. In addition, the sensor performs comparably well even when fabricated on a gold-plated screen-printed carbon electrode and can potentially be implemented as a cost-effective, single-use biosensor for diseases diagnosis and therapy monitoring. The exceptional sensitivity, selectivity, and reusability of this electrochemical aptasensor platform suggest it may be a promising strategy for a wide variety of sensing applications.  相似文献   

8.
Electrochemical aptasensor for tetracycline detection   总被引:1,自引:0,他引:1  
An electrochemical aptasensor was developed for the detection of tetracycline using ssDNA aptamer that selectively binds to tetracycline as recognition element. The aptamer was highly selective for tetracycline which distinguishes minor structural changes on other tetracycline derivatives. The biotinylated ssDNA aptamer was immobilized on a streptavidin-modified screen-printed gold electrode, and the binding of tetracycline to aptamer was analyzed by cyclic voltammetry and square wave voltammetry. Our results showed that the minimum detection limit of this sensor was 10 nM to micromolar range. The aptasensor showed high selectivity for tetracycline over the other structurally related tetracycline derivatives (oxytetracycline and doxycycline) in a mixture. The aptasensor developed in this study can potentially be used for detection of tetracycline in pharmaceutical preparations, contaminated food products, and drinking water.  相似文献   

9.
DNA aptamers were developed against murine norovirus (MNV) using SELEX (Systematic Evolution of Ligands by EXponential enrichment). Nine rounds of SELEX led to the discovery of AG3, a promising aptamer with very high affinity for MNV as well as for lab-synthesized capsids of a common human norovirus (HuNoV) outbreak strain (GII.3). Using fluorescence anisotropy, AG3 was found to bind with MNV with affinity in the low picomolar range. The aptamer could cross-react with HuNoV though it was selected against MNV. As compared to a non-specific DNA control sequence, the norovirus-binding affinity of AG3 was about a million-fold higher. In further tests, the aptamer also showed nearly a million-fold higher affinity for the noroviruses than for the feline calicivirus (FCV), a virus similar in size and structure to noroviruses. AG3 was incorporated into a simple electrochemical sensor using a gold nanoparticle-modified screen-printed carbon electrode (GNPs-SPCE). The aptasensor could detect MNV with a limit of detection of approximately 180 virus particles, for possible on-site applications. The lead aptamer candidate and the aptasensor platform show promise for the rapid detection and identification of noroviruses in environmental and clinical samples.  相似文献   

10.
We report a universal fluorescent aptasensor based on the AccuBlue dye, which is impermeant to cell membranes, for the detection of pathogenic bacteria. The sensor consists of AccuBlue, an aptamer strand, and its complementary strand (cDNA) that partially hybridizes to the aptamer strand. We have fabricated two models by changing the sequence of the reaction between the elements in the system. One is the “signal on” model in which the aptamer is first bound to the target, followed by the addition of cDNA and AccuBlue, at which time the cDNA hybridizes with the free unreacted aptamer and forms a double-stranded DNA (dsDNA) duplex. Such hybridization causes AccuBlue to insert into the dsDNA and exhibit significantly increased fluorescence intensity because of the specific intercalation of the AccuBlue into dsDNA rather than single-stranded DNA (ssDNA). The other model, “signal off,” involves hybridization of the aptamer with cDNA first, resulting in high fluorescence intensity on the addition of AccuBlue. When the target is added, the aptamer binds the target, causing the cDNA to detach from the dsDNA duplex and resulting in low fluorescence as a result of the liberation of AccuBlue. Because this design is based purely on DNA hybridization, and AccuBlue is impermeant to cell membranes, it could potentially be adapted to a wide variety of analytes.  相似文献   

11.
Zhao J  He X  Bo B  Liu X  Yin Y  Li G 《Biosensors & bioelectronics》2012,34(1):249-252
In this paper, we report a "signal-on" electrochemical aptasensor for simultaneous determination of two tumor markers MUC1 and VEGF(165), by using a ferrocene-labeled aptamer-complementary DNA (cDNA) as probe. Since the cDNA immobilized on an electrode surface can hybridize with both MUC1 aptamer and VEGF(165) aptamer to form a long double strand with ferrocene far away from the electrode surface, the probe cannot give electrochemical signal. Nevertheless, the presence of the two tumor markers will inhibit the hybridization of cDNA with the aptamers, thus the distance between ferrocene and the electrode is changed, and a "signal-on" electrochemical method to detect two tumor markers is developed. Experimental results show that the electrochemical signal increases with the addition of either tumor markers, but the biggest electrochemical signal can only be obtained when both tumor markers are present. Therefore, the proposed electrochemical aptasensor can not only detect the two markers but also distinguish their co-existence. It may also display high selectivity and sensitivity towards the detection of the tumor markers, so it might have potential clinical application in the future.  相似文献   

12.

Metal-enhanced fluorescence (MEF) phenomenon has shown a promising potential in the field of fluorescence-based biological sensing. In this study, we optimized the electroless metal deposition method to fabricate silver dendritic nanostructures as effective MEF active substrates. Then, an aptasensor was developed for thrombin detection using the established surfaces. For this purpose, thiolated 29-mer thrombin-binding aptamers (TBA29 (12T) SH) as capturing aptamer were immobilized on the surface of silver dendritic nanostructures, then thrombin was sandwiched between the capturing aptamer and Cy5-labeled 15-mer thrombin aptamer (TBA15-Cy5). Quantitative analysis was performed through fluorescence signal measurement. The established aptasensor presented satisfactory sensitivity and selectivity and exhibited a limit of detection (LOD) as low as 32 pM. This aptasensor was also able to detect thrombin in the human serum at picomolar levels. Furthermore, the ease and relatively low-cost of fabrication of this platform introduce it as a tool with great potential for the clinical diagnosis of diseases and also for improving sensitivity of a variety of technologies which exploit fluorescent dyes for analyte detection, at ultra-trace levels, in complex matrices.

  相似文献   

13.
A novel label-free electrogenerated chemiluminescence (ECL) aptasensor for the determination of lysozyme is designed employing lysozyme binding aptamer (LBA) as molecular recognition element for lysozyme as a model analyte and Ru(bpy)(3)(2+) as an ECL signal compound. This ECL aptasensor was fabricated by self-assembling the thiolated LBA onto the surface of a gold electrode. Using this aptasensor, sensitive quantitative detection of lysozyme is realized on basis of the competition of lysozyme with Ru(bpy)(3)(2+) cation for the binding sites of LBA. In the presence of lysozyme, the aptamer sequence prefers to form the LBA-lysozyme complex, the less negative environment allows Ru(bpy)(3)(2+) cations to be less bound electrostatically to the LBAs on the electrode surface, in conjunction with the generation of a decreased ECL signal. The integrated ECL intensity versus the concentration of lysozyme was linear in the range from 6.4×10(-10) M to 6.4×10(-7) M. The detection limit was 1.2×10(-10) M. This work demonstrates that using the competition of target protein with an ECL signal compound Ru(bpy)(3)(2+) for binding sites of special aptamer confined on the electrode is promising approach for the design of label-free ECL aptasensors for the determination of proteins.  相似文献   

14.
A label-free and sensitive faradic impedance spectroscopy (FIS) aptasensor based on target-induced aptamer displacement was developed for the determination of lysozyme as a model system. The aptasensor was fabricated by self-assembling the partial complementary single strand DNA (pcDNA)–lysozyme binding aptamer (LBA) duplex on the surface of a gold electrode. To measure lysozyme, the change in interfacial electron transfer resistance of the aptasensor using a redox couple of [Fe(CN)6]3−/4− as the probe was monitored. The introduction of target lysozyme induced the displacement of the LBA from the pcDNA–LBA duplex on the electrode into the solution, decreasing the electron transfer resistance of the aptasensor. The decrease in the FIS signal is linear with the concentration of lysozyme in the range from 0.2 nM to 4.0 nM, with a detection limit of 0.07 nM. The fabricated aptasensor shows a high sensitivity, good selectivity and satisfactory regeneration. This work demonstrates that a high sensitivity of the fabricated aptasensor can be obtained using a relatively short pcDNA. This work also demonstrates that the target-induced aptamer displacement strategy is promising in the design of an electrochemical aptasensor for the determination of lysozyme with good selectivity and high sensitivity.  相似文献   

15.
Here, an ultrasensitive label-free electrochemical aptasensor was developed for dopamine (DA) detection. Construction of the aptasensor was carried out by electrodeposition of gold–platinum nanoparticles (Au–PtNPs) on glassy carbon (GC) electrode modified with acid-oxidized carbon nanotubes (CNTs–COOH). A designed complementary amine-capped capture probe (ssDNA1) was immobilized at the surface of PtNPs/CNTs–COOH/GC electrode through the covalent amide bonds formed by the carboxyl groups on the nanotubes and the amino groups on the oligonucleotides. DA-specific aptamer was attached onto the electrode surface through hybridization with the ssDNA1. Methylene blue (MB) was used as an electrochemical indicator that was intercalated into the aptamer through the specific interaction with its guanine bases. In the presence of DA, the interaction between aptamer and DA displaced the MB from the electrode surface, rendering a lowered electrochemical signal attributed to a decreased amount of adsorbed MB. This phenomenon can be applied for DA detection. The peak current of probe (MB) linearly decreased over a DA concentration range of 1–30 nM with a detection limit of 0.22 nM.  相似文献   

16.
We present a novel fluorescent aptasensor for simple and accurate detection of adenosine deaminase (ADA) activity and inhibition on the basis of graphene oxide (GO) using adenosine (AD) as the substrate. This aptasensor consists of a dye-labeled single-stranded AD specific aptamer, GO and AD. The fluorescence intensity of the dye-labeled AD specific aptamer is quenched very efficiently by GO as a result of strong π-π stacking interaction and excellent electronic transference of GO. In the presence of AD, the fluorescence of the GO-based probe is recovered since the competitive binding of AD and GO with the dye-labeled aptamer prevents the adsorption of dye-labeled aptamer on GO. When ADA was introduced to this GO-based probe solution, the fluorescence of the probe was quenched owing to ADA can convert AD into inosine which has no affinity to the dye-labeled aptamer, thus allowing quantitative investigation of ADA activity. The as-proposed sensor is highly selective and sensitive for the assay of ADA activity with a detection limit of 0.0129U/mL in clean buffer, which is more than one order of magnitude lower than the previous reports. Meanwhile, a good linear relationship with the correlation coefficient of R=0.9922 was obtained by testing 5% human serum containing a series of concentrations of ADA. Additionally, the inhibition effect of erythro-9-(2-hydroxy-3-nonyl) adenine on ADA activity was investigated in this design. The GO-based fluorescence aptasensor not only provides a simple, cost-effective and sensitive platform for the detection of ADA and its inhibitor but also shows great potential in the diagnosis of ADA-relevant diseases and drug development.  相似文献   

17.
In this work, we have developed a simple and sensitive method for ATP detection using silica nanoparticles (NPs) as the platform and hoechst33258 as the signal reporter. The ATP-binding aptamers hybridize with the probe DNA (DNA(p)) immobilized NPs to form the aptamer/DNA(p) duplex on the NPs surface. The conformational change of the aptamer leads to the decrease of the aptamer/DNA(p) duplex on the NPs due to the ATP-binding aptamer switches its structure from the aptamer/DNA(p) duplex to the aptamer/target complex in the presence of ATP. ATP detection can be easily realized by separating the silica nanoparticles and adding the hoechst33258 of intercalating to aptamer/DNA(p) (dsDNA). Good selectivity between ATP and CTP, GTP or UTP has been demonstrated, which is due to the specific recognition between ATP aptamer and ATP. The K(d) was estimated to be ~1mM from 0 to 4mM and a liner response was observed from 0 to 0.2mM with a detection limit of ~20μM. Compared with other methods, the carboxyl-modified silica nanoparticles (~60nm) prepared by the reverse microemulsion method can serve as a stable and sensitive sensor platform because of their smaller size and facile conjugation with amine-containing molecules. In addition, the high sensitivity and selectivity of hoechst33258 was employed for the ssDNA and dsDNA determination, which takes advantage of the label-free aptamer and lower cost.  相似文献   

18.
A competitive aptamer bioassay was developed for the selective detection of adenosine triphosphate (ATP). The proposed bioassay employed the T-Hg-T induced hairpin-structure as the molecule conformational switch (MCS), aptamer as a specific recognizer, and mercaptoundecanoic acid modified gold nanoclusters (MUA-AuNCs) as a sensitive signal reporter. The T-rich MCS ssDNA with the sequence complementary with that for the aptamer of ATP was bound with Hg(2+) to form the metal-paired hairpin-structure. Addition of the aptamer and its target biomolecule ATP resulted in a competitive aptamer bioassay. The aptamer competed with Hg(2+) to hybridize with T-rich MCS ssDNA, thereby destroyed the hairpin-structure. As a result, the Hg(2+) was released and the signal transduction was achieved. The ATP affected the interaction between aptamer and hairpin-structure, thus mediated the release of Hg(2+), which was sensitively quantified by fluorescent MUA-AuNCs. Under selected conditions, the developed method allowed sensitive and selective detection of ATP with a linear range of 100-2000 nM and a detection limit (3s) of 48 nM. The relative standard deviation for sixty replicate detections of 200 nM ATP was 2.1%, and the recoveries of the spiked ATP in urine samples ranged from 89% to 105%. The developed metal-paired MCS can be easily extended to the sensitive and selective detection of other biomolecules by changing the base sequence of hairpin structure and choosing the corresponding aptamer for the target biomolecule.  相似文献   

19.
In this protocol, the authors report a time-resolved fluorescence biosensor based on home-made europium complexes for highly sensitive detection of small molecules using adenosine as a model analyte. The fluorophore that used is europium complexes. Its signal can be measured in a time-resolved manner that eliminates most of the unspecific fluorescent background. The amino modified aptamer probe, which is designed to specifically recognize adenosine, is combined to the aldehyde-group modified glass slide by covalent bond. Europium complex-labeled a short ssDNA, designed to segment hybridize with aptamer probe is immobilized on the glass slide by hybridization reaction. In the presence of adenosine, the aptamer part is more inclined to bounds with adenosine and triggers structure-switching of the aptamer from aptamer/ssDNA duplex to aptamer/target complex. As a result, europium complexes-labeled ssDNA is forced to dissociate from the sensor interface, resulting in time-resolved fluorescence intensity decrease. The decrement intensity is proportional to the amount of adenosine. Under optimized assay conditions, a linear range (1.0×10(-8)M to 1.0×10(-7)M) is got with low detection limit of 5.61nM. The biosensor exhibits excellent selectivity and can provide a promising potential for aptamer-based adenosine detection.  相似文献   

20.
A novel molecular aptamer beacon (MAB) was designed by integrating a single-labeled hairpin-shaped aptamer and graphene oxide (GO). The hairpin-shaped aptamer was constructed with anti-ATP aptamer and another five nucleotides added to the 5'-end of the aptamer which are complementary to nucleotides at the 3'-end of the aptamer to form a hairpin-shaped probe. This newly designed MAB which acts as a low background signal platform was used for the ATP detection based on long-range resonance energy transfer (LrRET). In the absence of ATP, the adsorption of the dye-labeled hairpin-shaped aptamer on GO makes the dyes close proximity to GO surface resulting in high efficiency quenching of fluorescence of the dyes. Therefore, the fluorescence of the designed MAB is completely quenched by GO, and the system shows very low background. Conversely, and very importantly, upon the adding of ATP, the quenched fluorescence is recovered significantly, and ATP can be detected in a wide range of 5-2500μM with a detection limit of 2μM and good selectivity. Moreover, when the GO-based MAB was used in cellular ATP assays, preeminent fluorescence signals were obtained, thus the platform of GO-based MAB could be used to detect ATP in real-world samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号