首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gamma(delta) T cells have been reported to play an essential effector role during the early immune response against a wide variety of infectious agents. Recent studies have suggested that the gamma(delta) T cell subtype may also be important for the induction of adaptive immune response against certain microbial pathogens. In the present study, an early increase of gamma(delta) T cells during murine infection with Encephalitozoon cuniculi, an intracellular parasite, was observed. The role of gamma(delta) T cells against E. cuniculi infection was further evaluated by using gene-knockout mice. Mice lacking gamma(delta) T cells were susceptible to E. cuniculi infection at high challenge doses. The reduced resistance of delta(-/-) mice was attributed to a down-regulated CD8+ immune response. Compared with parental wild-type animals, suboptimal Ag-specific CD8+ T cell immunity against E. cuniculi infection was noted in delta(-/-) mice. The splenocytes from infected knockout mice exhibited a lower frequency of Ag-specific CD8+ T cells. Moreover, adoptive transfer of immune TCR(alpha)beta+ CD8+ cells from the delta(-/-) mice failed to protect naive CD8(-/-) mice against a lethal E. cuniculi challenge. Our studies suggest that gamma(delta) T cells, due to their ability to produce cytokines, are important for the optimal priming of CD8+ T cell immunity against E. cuniculi infection. This is the first evidence of a parasitic infection in which down-regulation of CD8+ T cell immune response in the absence of gamma(delta) T cells has been demonstrated.  相似文献   

2.
Encephalitozoon cuniculi is a protozoan parasite that has been implicated recently as a cause of opportunistic infection in immunocompromised individuals. Protective immunity in the normal host is T cell-dependent. In the present study, the role of individual T cell subtypes in immunity against this parasite has been studied using gene knockout mice. Whereas CD4-/- animals resolved the infection, mice lacking CD8+ T cells or perforin gene succumbed to parasite challenge. The data obtained in these studies suggest that E. cuniculi infection induces a strong and early CD8+ T response that is important for host protection. The CD8+ T cell-mediated protection depends upon the CTL activity of this cell subset, as the host is rendered susceptible to infection in the absence of this function. This is the first report in which a strong dependence upon the cytolytic activity of host CD8+ T cells has been shown to be important in a parasite infection.  相似文献   

3.
The role of T lymphocyte subpopulations in the protection against intraperitoneal (i.p.) and peroral Encephalitozoon cuniculi infections was compared in adoptive-transfer experiments using severe combined immunodeficient mice. Whereas CD8+ T cell-depleted, but not CD4+ T cell-depleted, BALB/c splenocytes failed to protect the mice against i.p. infection, only SCID mice reconstituted with both CD4+ T lymphocyte- and CD8+ T lymphocyte-depleted splenocytes succumbed to peroral infection. The results indicate that whereas CD8+ T cells are critical for the protection against an i.p. E. cuniculi infection, both CD4+ and CD8+ T lymphocyte subpopulations play a substantive protective role in a peroral infection, i.e., natural route of infection.  相似文献   

4.
Systemic infections caused by fungi after cytoreductive therapies are especially difficult to deal with in spite of currently available antimicrobials. However, little is known about the effects of fungi on the immune system of immunosuppressed hosts. We have addressed this by studying the in vitro T cell responses after systemic infection with Candida albicans in cyclophosphamide-treated mice. After cyclophosphamide treatment, a massive splenic colonization of the spleens, but not lymph nodes, by immature myeloid progenitor (Ly-6G(+)CD11b(+))cells is observed. These cells are able to suppress proliferation of T lymphocytes via a nitric oxide (NO)-dependent mechanism. Systemic infection with a sublethal dose of C. albicans did not cause immunosuppression per se but strongly increased NO-dependent suppression in cyclophosphamide-treated mice, by selective priming of suppressive myeloid progenitors (Ly-6G(+)CD11b(+)CD31(+)CD40(+)WGA(+)CD117(low/-)CD34(low/-)) for iNOS protein expression. The results indicate that systemic C. albicans infection can augment the effects of immunosuppressive therapies by promoting functional changes in immunosuppressive cells.  相似文献   

5.
Gigley JP  Khan IA 《PloS one》2011,6(6):e20838
Age associated impairment of immune function results in inefficient vaccination, tumor surveillance and increased severity of infections. Several alterations in adaptive immunity have been observed and recent studies report age related declines in innate immune responses to opportunistic pathogens including Encephalitozoon cuniculi. We previously demonstrated that conventional dendritic cells (cDC) from 9-month-old animals exhibit sub-optimal response to E. cuniculi infection, suggesting that age associated immune senescence begins earlier than expected. We focused this study on how age affects plasmacytoid DC (pDC) function. More specifically how aged pDC affect cDC function as we observed that the latter are the predominant activators of CD8 T cells during this infection. Our present study demonstrates that pDC from middle-aged mice (12 months) suppress young (8 week old) cDC driven CD8 T cell priming against E. cuniculi infection. The suppressive effect of pDC from older mice decreased maturation of young cDC via cell contact. Aged mouse pDC exhibited higher expression of PD-L1 and blockade of their interaction with cDC via this molecule restored cDC maturation and T cell priming. Furthermore, the PD-L1 dependent suppression of cDC T cell priming was restricted to effector function of antigen-specific CD8 T cells not their expansion. To the best of our knowledge, the data presented here is the first report highlighting a cell contact dependent, PD-L1 regulated, age associated defect in a DC subpopulation that results in a sub-optimal immune response against E. cuniculi infection. These results have broad implications for design of immunotherapeutic approaches to enhance immunity for aging populations.  相似文献   

6.
The consequences of human lymphocytic choriomeningitis virus (LCMV) infection can be severe, including aseptic meningitis in immunocompetent individuals, hydrocephalus or chorioretinitis in fetal infection, or a highly lethal outcome in immunosuppressed individuals. In murine models of LCMV infection, CD8(+) T cells play a primary role in providing protective immunity, and there is evidence that cellular immunity may also be important in related arenavirus infections in humans. For this reason, we sought to identify HLA-A2 supertype-restricted epitopes from the LCMV proteome and evaluate them as vaccine determinants in HLA transgenic mice. We identified four HLA-A*0201-restricted peptides-nucleoprotein NP(69-77), glycoprotein precursor GPC(10-18), GPC(447-455), and zinc-binding protein Z(49-58)-that displayed high-affinity binding (< or =275 nM) to HLA-A*0201, induced CD8(+) T-cell responses of high functional avidity in HLA-A*0201 transgenic mice, and were naturally processed from native LCMV antigens in HLA-restricted human antigen presenting cells. One of the epitopes (GPC(447-455)), after peptide immunization of HLA-A*0201 mice, induced CD8(+) T cells capable of killing peptide-pulsed HLA-A*0201-restricted target cells in vivo and protected mice against lethal intracranial challenge with LCMV.  相似文献   

7.
There is an urgent need to develop novel therapies for controlling chronic virus infections in immunocompromised patients. Disease associated with persistent γ-herpesvirus infection (EBV, human herpesvirus 8) is a significant problem in AIDS patients and transplant recipients, and clinical management of these conditions is difficult. Immune surveillance failure followed by γ-herpesvirus recrudescence can be modeled using murine γ-herpesvirus (MHV)-68 in mice lacking CD4(+) T cells. In contrast with other chronic infections, no obvious defect in the functional capacity of the viral-specific CD8(+) T cell response was detected. We show in this article that adoptive transfer of MHV-68-specific CD8(+) T cells was ineffective at reducing the viral burden. Together, these indicate the potential presence of T cell extrinsic suppressive factors. Indeed, CD4-depleted mice infected with MHV-68 express increased levels of IL-10, a cytokine capable of suppressing the function of both APCs and T cells. CD4-depleted mice developed a population of CD8(+) T cells capable of producing IL-10 that suppressed viral control. Although exhibiting cell surface markers indicative of activation, the IL-10-producing cells expressed increased levels of programmed death-1 but were not enriched in the MHV-68-specific compartment, nor were they uniformly CD44(hi). Therapeutic administration of an IL-10R blocking Ab enhanced control of the recrudescent virus. These data implicate IL-10 as a promising target for the restoration of immune surveillance against chronic γ-herpesvirus infection in immunosuppressed individuals.  相似文献   

8.
During many viral infections, antigen-specific CD8(+) T cells undergo large-scale expansion. After viral clearance, the vast majority of effector CD8(+) T cells undergo apoptosis. Previous studies have implicated reactive oxygen intermediates (ROI) in lymphocyte apoptosis. The purpose of the experiments presented here was to determine the role of ROI in the expansion and contraction of CD8(+) T cells in vivo during a physiological response such as viral infection. Mice were infected with lymphocytic choriomeningitis virus (LCMV) and treated with Mn(III)tetrakis(4-benzoic acid)porphyrin chloride (MnTBAP), a metalloporphyrin-mimetic compound with superoxide dismutase activity, from days 0 to 8 postinfection. At the peak of CD8(+)-T-cell response, on day 8 postinfection, the numbers of antigen-specific cells were 10-fold lower in MnTBAP-treated mice than in control mice. From days 8 to 30, a contraction phase ensued where the numbers of antigen-specific CD8(+) T cells declined 25-fold in vehicle-treated mice compared to a 3.5-fold decrease in MnTBAP-treated mice. Differences in contraction appeared to be due to greater proliferation in drug-treated mice. By day 38, the numbers of antigen-specific CD8(+) memory T cells were equivalent for the two groups. The administration of MnTBAP during secondary viral infection had no effect on the expansion of antigen-specific CD8(+) secondary effector T cells. These data suggest that ROI production is critical for the massive expansion and contraction of antigen-specific CD8(+) T cells during primary, but not secondary, viral infection.  相似文献   

9.
Sitati EM  Diamond MS 《Journal of virology》2006,80(24):12060-12069
Although studies have established that innate and adaptive immune responses are important in controlling West Nile virus (WNV) infection, the function of CD4(+) T lymphocytes in modulating viral pathogenesis is less well characterized. Using a mouse model, we examined the role of CD4(+) T cells in coordinating protection against WNV infection. A genetic or acquired deficiency of CD4(+) T cells resulted in a protracted WNV infection in the central nervous system (CNS) that culminated in uniform lethality by 50 days after infection. Mice surviving past day 10 had high-level persistent WNV infection in the CNS compared to wild-type mice, even 45 days following infection. The absence of CD4(+) T-cell help did not affect the kinetics of WNV infection in the spleen and serum, suggesting a role for CD4-independent clearance mechanisms in peripheral tissues. WNV-specific immunoglobulin M (IgM) levels were similar to those of wild-type mice in CD4-deficient mice early during infection but dropped approximately 20-fold at day 15 postinfection, whereas IgG levels in CD4-deficient mice were approximately 100- to 1,000-fold lower than in wild-type mice throughout the course of infection. WNV-specific CD8(+) T-cell activation and trafficking to the CNS were unaffected by the absence of CD4(+) T cells at day 9 postinfection but were markedly compromised at day 15. Our experiments suggest that the dominant protective role of CD4(+) T cells during primary WNV infection is to provide help for antibody responses and sustain WNV-specific CD8(+) T-cell responses in the CNS that enable viral clearance.  相似文献   

10.
CXCR3 and IFN protein-10 in Pneumocystis pneumonia   总被引:1,自引:0,他引:1  
We have previously shown that Tc1 CD8(+) T cells have in vitro and in vivo effector activity against Pneumocystis (PC) infection in mice. Because these cells have preferential expression of CXCR3, we investigated whether CXCR3 was required for host defense activity against PC. Mice deficient in CXCR3 but CD4(+) T cell intact, showed an initial delay but were able to clear the infectious challenge, indicating that CXCR3 signaling is not essential for clearance of PC. CD4-depleted mice had lower levels of monokine induced by IFN-gamma, IFN protein-10 (IP-10), and IFN-inducible T cell alpha-chemoattractant at day 7 of infection and are permissive to PC infection. Overexpression of IP-10 in the lungs by adenoviral gene transfer did not accelerate clearance of infection in control mice but accelerated clearance by day 28 in mice depleted of CD4(+) T cells. This effect was associated with increased recruitment of CD8(+) T to the lungs with higher CXCR3(+) expression levels and enhanced IFN-gamma secretion upon in vitro activation compared with control mice. These results indicate that the CXCR3 chemokines are part of the host defense response to PC, and that IP-10 can direct Tc1 CD8(+) T cell recruitment to the lungs and contribute to host defense against PC even in the absence of CD4(+) T cells.  相似文献   

11.
Activation of CD4(+) T cells helps establish and sustain CD8(+) T cell responses and is required for the effective clearance of acute infection. CD4-deficient mice are unable to control persistent infection and CD4(+) T cells are usually defective in chronic and persistent infections. We investigated the question of how persistent infection impacted pre-existing lymphocytic choriomeningitis virus (LCMV)-specific CD4(+) T cell responses. We identified class II-restricted epitopes from the entire set of open reading frames from LCMV Armstrong in BALB/c mice (H-2(d)) acutely infected with LCMV Armstrong. Of nine epitopes identified, six were restricted by I-A(d), one by I-E(d) and two were dually restricted by both I-A(d) and I-E(d) molecules. Additional experiments revealed that CD4(+) T cell responses specific for these epitopes were not generated following infection with the immunosuppressive clone 13 strain of LCMV. Most importantly, in peptide-immunized mice, established CD4(+) T cell responses to these LCMV CD4 epitopes as well as nonviral, OVA-specific responses were actively suppressed following infection with LCMV clone 13 and were undetectable within 12 days after infection, suggesting an active inhibition of established helper responses. To address this dysfunction, we performed transfer experiments using both the Smarta and OT-II systems. OT-II cells were not detected after clone 13 infection, indicating physical deletion, while Smarta cells proliferated but were unable to produce IFN-gamma, suggesting impairment of the production of this cytokine. Thus, multiple mechanisms may be involved in the impairment of helper responses in the setting of early persistent infection.  相似文献   

12.
The purpose of these studies is to determine why an immunogenic tumor grows unchecked in the anterior chamber (a.c.) of the eye. The OVA-expressing EL4 tumor, E.G7-OVA, was injected into the a.c. or skin of immunocompetent and immunodeficient mice. Tumor growth and tumor-specific immune responses were monitored. Ocular tumor-infiltrating leukocytes were characterized phenotypically and functionally. Growth of E.G7-OVA was inhibited when limiting numbers of cells were injected in the skin but not in the a.c. of C57BL/6 mice, although both routes primed OVA-specific immune responses, which prevented the growth of a subsequent injection with E.G7-OVA in the skin or opposite eye. Tumor regression was OVA-specific because growth of the parental EL-4 tumor was not inhibited in primed mice. E.G7-OVA growth in the skin was not inhibited in immunodeficient Rag(-/-) or CD8 T cell-deficient mice, suggesting that CD8(+) CTLs mediate tumor elimination. CD8(+) T cell numbers were significantly increased in eyes of mice primed with E.G7-OVA, but few were detected in primary ocular tumors. Nevertheless, growth of E.G7-OVA was retarded in the a.c. of TCR-transgenic OT-I mice, and CD8(+) T cell numbers were increased within eyes, suggesting that tumor-specific CD8(+) CTLs migrated into and controlled primary ocular tumor growth. E.G7-OVA did not lose antigenicity or become immunosuppressive after 13 days of growth in the eye. However, CD11b(+) cells accumulated in primary ocular tumors and contained potent immunosuppressive activity when assayed in vitro. Thus, CD11b(+) cells that accumulate within the eye as tumors develop in the a.c. may contribute to immune evasion by primary ocular tumors by inhibiting CTLs within the eye.  相似文献   

13.
We investigated the impact of immunomodulation on the development of listeriosis within an aged population of guinea pigs after an intragastric challenge with Listeria monocytogenes. Supplementation with vitamin E for 35 days significantly increased the level of cytotoxic T cells (CD8(+)), while treatment with cyclosporin A resulted in a 25% decrease of CD8(+) T cells. In the animals receiving the low dose (10(2) CFU) of L. monocytogenes, 50% of the control-group animals became infected. Only 22% of animals receiving the orthomolecular dose of vitamin E became infected, whereas animals that were immunosuppressed had an infection rate of 89%. In the immunosuppressed group three animals (16%) developed listerial infection with a quantifiable bacterial level of 0.3-3 log CFU g(-1) of organ in the spleen and liver. In the high-dose study, the population of L. monocytogenes was consistently 1 log CFU g(-1) lower in the spleen or liver of the vitamin E-supplemented group, compared with the control and cyclosporin A-treated animals. At day 4, a significant increase in the levels of CD8(+) during listerial infection occurred in vitamin E-supplemented animals, suggesting an increased ability to produce CD8(+) T cells. The results suggest that immunomodulation of the host can influence listerial infection within an aged population of guinea pigs.  相似文献   

14.
Gut-associated lymphoid tissue (GALT) is a significant but understudied lymphoid organ, harboring a majority of the body's total lymphocyte population. GALT is also an important portal of entry for human immunodeficiency virus (HIV), a major site of viral replication and CD4(+) T-cell depletion, and a frequent site of AIDS-related opportunistic infections and neoplasms. However, little is known about HIV-specific cell-mediated immune responses in GALT. Using lymphocytes isolated from rectal biopsies, we have determined the frequency and phenotype of HIV-specific CD8(+) T cells in human GALT. GALT CD8(+) T cells were predominantly CD45RO(+) and expressed CXCR4 and CCR5. In 10 clinically stable, chronically infected individuals, the frequency of HIV Gag (SL9)-specific CD8(+) T cells was increased in GALT relative to peripheral blood mononuclear cells by up to 4.6-fold, while that of cytomegalovirus (CMV)-specific CD8(+) T cells was significantly reduced (P = 0.012). Both HIV- and CMV-specific CD8(+) T cells in GALT expressed CCR5, but only HIV-specific CD8(+) T cells expressed alpha E beta 7 integrin, suggesting that mucosal priming may account for their retention in GALT. Chronically infected individuals exhibited striking depletion of GALT CD4(+) T cells expressing CXCR4, CCR5, and alpha E beta 7 integrin, but CD4(+)/CD8(+) T-cell ratios in blood and GALT were similar. The percentage of GALT CD8(+) T cells expressing alpha E beta 7 was significantly decreased in infected individuals, suggesting that HIV infection may perturb lymphocyte retention in GALT. These studies demonstrate the feasibility of using tetramers to assess HIV-specific T cells in GALT and reveal that GALT is the site of an active CD8(+) T-cell response during chronic infection.  相似文献   

15.
Previous studies of mice have demonstrated that an orchestrated sequence of innate and adaptive immune responses is required to control West Nile virus (WNV) infection in peripheral and central nervous system (CNS) tissues. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL; also known as CD253) has been reported to inhibit infection with dengue virus, a closely related flavivirus, in cell culture. To determine the physiological function of TRAIL in the context of flavivirus infection, we compared the pathogenesis of WNV in wild-type and TRAIL(-/-) mice. Mice lacking TRAIL showed increased vulnerability and death after subcutaneous WNV infection. Although no difference in viral burden was detected in peripheral tissues, greater viral infection was detected in the brain and spinal cord at late times after infection, and this was associated with delayed viral clearance in the few surviving TRAIL(-/-) mice. While priming of adaptive B and T cell responses and trafficking of immune and antigen-specific cells to the brain were undistinguishable from those in normal mice, in TRAIL(-/-) mice, CD8(+) T cells showed qualitative defects in the ability to clear WNV infection. Adoptive transfer of WNV-primed wild-type but not TRAIL(-/-) CD8(+) T cells to recipient CD8(-/-) mice efficiently limited infection in the brain and spinal cord, and analogous results were obtained when wild-type or TRAIL(-/-) CD8(+) T cells were added to WNV-infected primary cortical neuron cultures ex vivo. Collectively, our results suggest that TRAIL produced by CD8(+) T cells contributes to disease resolution by helping to clear WNV infection from neurons in the central nervous system.  相似文献   

16.
We have previously shown that immunization with a synthetic peptide that contains a single CD4(+) T-cell epitope protects mice against immunosuppressive Friend retrovirus infection. Cells producing infectious Friend virus were rapidly eliminated from the spleens of mice that had been immunized with the single-epitope peptide. However, actual effector mechanisms induced through T-helper-cell responses after Friend virus inoculation were unknown. When cytotoxic effector cells detected in the early phase of Friend retrovirus infection were separated based on their expression of cell surface markers, those lacking CD4 and CD8 but expressing natural killer cell markers were found to constitute the majority of effector cells that lysed Friend virus-induced leukemia cells. Depletion of natural killer cells by injecting anti-asialo-ganglio-N-tetraosylceramide antibody did not affect the number of CD4(+) or CD8(+) T cells in the spleen, virus antigen-specific proliferative responses of CD4(+) T cells, or cytotoxic activity against Friend virus-induced leukemia cells exerted by CD8(+) effector cells. However, the same treatment markedly reduced the killing activity of CD4(-) CD8(-) effector cells and completely abolished the effect of peptide immunization. Although the above enhancement of natural killer cell activity in the early stage of Friend virus infection was also observed in mice given no peptide, these results have demonstrated the importance and requirement of natural killer cells in vaccine-induced resistance against the retroviral infection.  相似文献   

17.
Infection with West Nile virus (WNV) causes fatal encephalitis more frequently in immunocompromised humans than in those with a healthy immune system. Although a complete understanding of this increased risk remains unclear, experiments with mice have begun to define how different components of the adaptive and innate immune response function to limit infection. Previously, we demonstrated that components of humoral immunity, particularly immunoglobulin M (IgM) and IgG, have critical roles in preventing dissemination of WNV infection to the central nervous system. In this study, we addressed the function of CD8(+) T cells in controlling WNV infection. Mice that lacked CD8(+) T cells or classical class Ia major histocompatibility complex (MHC) antigens had higher central nervous system viral burdens and increased mortality rates after infection with a low-passage-number WNV isolate. In contrast, an absence of CD8(+) T cells had no effect on the qualitative or quantitative antibody response and did not alter the kinetics or magnitude of viremia. In the subset of CD8(+)-T-cell-deficient mice that survived initial WNV challenge, infectious virus was recovered from central nervous system compartments for several weeks. Primary or memory CD8(+) T cells that were generated in vivo efficiently killed target cells that displayed WNV antigens in a class I MHC-restricted manner. Collectively, our experiments suggest that, while specific antibody is responsible for terminating viremia, CD8(+) T cells have an important function in clearing infection from tissues and preventing viral persistence.  相似文献   

18.
Ag-specific CD8(+) T cells immunized in the absence of CD4(+) T cell help, so-called "unhelped" CD8(+) T cells, are defective in function and survival. We investigated the role of the proapoptotic molecule TRAIL in this defect. We first demonstrate that TRAIL does not contribute to the CD8(+) T cell response to Listeria monocytogenes strain expressing OVA (LmOVA) in the presence of CD4(+) T cells. Secondly, we generated mice doubly deficient in CD4(+) T cells and TRAIL and analyzed their CD8(+) T cell response to LmOVA. Memory CD8(+) T cells in double-deficient mice waned over time and were not protective against rechallenge, similar to their TRAIL-sufficient unhelped counterparts. To avoid the effects of CD4(+) T cell deficiency during memory maintenance, and to address whether TRAIL plays a role in the early programming of the CD8(+) T cell response, we performed experiments using heterologous prime and early boost immunizations. We did not observe activation-induced cell death of unhelped CD8(+) T cells when mice were infected with followed vaccinia virus expressing OVA 9 days later by LmOVA infection. Furthermore, primary immunization of CD4(+) T cell-deficient mice with cell-associated Ag followed by LmOVA infection did not reveal a role for TRAIL-mediated activation-induced cell death. Overall, our results suggest that CD4(+) T cell help for the CD8(+) T cell response is not contingent on the silencing of TRAIL expression and prevention of TRAIL-mediated apoptosis.  相似文献   

19.
The role of CD4(+) vs CD8(+) T cells in contact hypersensitivity (CHS) remains controversial. In this study, we used gene knockout (KO) mice deficient in CD4(+) or CD8(+) T cells to directly address this issue. Mice lacking either CD4(+) or CD8(+) T cells demonstrated depressed CHS responses to dinitrofluorobenzene and oxazolone compared with wild-type C57BL/6 mice. The depression of CHS was more significant in CD8 KO mice than in CD4 KO mice. Furthermore, in vivo depletion of either CD8(+) T cells from CD4 KO mice or CD4(+) T cells from CD8 KO mice virtually abolished CHS responses. Lymph node cells (LNCs) from hapten-sensitized CD4 and CD8 KO mice showed a decreased capacity for transferring CHS. In vitro depletion of either CD4(+) T cells from CD8 KO LNCs or CD8(+) T cells from CD4 KO LNCs resulted in a complete loss of CHS transfer. LNCs from CD4 and CD8 KO mice produced significant amounts of IFN-gamma, indicating that both CD4(+) and CD8(+) T cells are able to secrete IFN-gamma. LNCs from CD8, but not CD4, KO mice were able to produce IL-4 and IL-10, suggesting that IL-4 and IL-10 are mainly derived from CD4(+) T cells. Intracellular cytokine staining of LNCs confirmed that IFN-gamma-positive cells consisted of CD4(+) (Th1) and CD8(+) (type 1 cytotoxic T) T cells, whereas IL-10-positive cells were exclusively CD4(+) (Th2) T cells. Collectively, these results suggest that both CD4(+) Th1 and CD8(+) type 1 cytotoxic T cells are crucial effector cells in CHS responses to dinitrofluorobenzene and oxazolone in C57BL/6 mice.  相似文献   

20.
Classical CD4(+) and CD8(+) T cells recognize Ag presented by MHC class II (MHCII) and MHC class I (MHCI), respectively. However, our results show that CD4(-/-) mice mount a strong, readily detectable CD8(+) T cell response to MHCII-restricted epitopes after a primary bacterial or viral infection. These MHCII-restricted CD8(+)CD4(-) T cells are more similar to classical CD8(+) T cells than to CD4(+) T cells in their expression of effector functions during a primary infection, yet they also differ from MHCI-restricted CD8(+) T cells by their inability to produce high levels of the cytolytic molecule granzyme B. After resolution of a primary infection, epitope-specific MHCII-restricted T cells in CD4(-/-) mice persist for a long period of time as memory T cells. Surprisingly, upon reinfection the secondary MHCII-restricted response in CD4(-/-) mice consists mainly of CD8(-)CD4(-) T cells. In contrast to CD8(+) T cells, MHCII-restricted CD8(-)CD4(-) T cells are capable of producing IL-2 in addition to IFN-gamma and thus appear to have attributes characteristic of CD4(+) T cells rather than CD8(+) T cells. Therefore, MHCII-restricted T cells in CD4(-/-) mice do not share all phenotypic and functional characteristics with MHCI-restricted CD8(+) T cells or with MHCII-restricted CD4(+) T cells, but, rather, adopt attributes from each of these subsets. These results have implications for understanding thymic T cell selection and for elucidating the mechanisms regulating the peripheral immune response and memory differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号