首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

The growth of stem cells in in vitro conditions requires optimal balance between signals mediating cell survival, proliferation, and self-renewal. For clinical application of stem cells, the use of completely defined conditions and elimination of all animal-derived materials from the establishment, culture, and differentiation processes is desirable.

Methodology/Principal Findings

Here, we report the development of a fully defined xeno-free medium (RegES), capable of supporting the expansion of human embryonic stem cells (hESC), induced pluripotent stem cells (iPSC) and adipose stem cells (ASC). We describe the use of the xeno-free medium in the derivation and long-term (>80 passages) culture of three pluripotent karyotypically normal hESC lines: Regea 06/015, Regea 07/046, and Regea 08/013. Cardiomyocytes and neural cells differentiated from these cells exhibit features characteristic to these cell types. The same formulation of the xeno-free medium is capable of supporting the undifferentiated growth of iPSCs on human feeder cells. The characteristics of the pluripotent hESC and iPSC lines are comparable to lines derived and cultured in standard undefined culture conditions. In the culture of ASCs, the xeno-free medium provided significantly higher proliferation rates than ASCs cultured in medium containing allogeneic human serum (HS), while maintaining the differentiation potential and characteristic surface marker expression profile of ASCs, although significant differences in the surface marker expression of ASCs cultured in HS and RegES media were revealed.

Conclusion/Significance

Our results demonstrate that human ESCs, iPSCs and ASCs can be maintained in the same defined xeno-free medium formulation for a prolonged period of time while maintaining their characteristics, demonstrating the applicability of the simplified xeno-free medium formulation for the production of clinical-grade stem cells. The basic xeno-free formulation described herein has the potential to be further optimized for specific applications relating to establishment, expansion and differentiation of various stem cell types.  相似文献   

2.

Background

The therapeutic use of multipotent stem cells depends on their differentiation potential, which has been shown to be variable for different populations. These differences are likely to be the result of key changes in their epigenetic profiles.

Methodology/Principal Findings

to address this issue, we have investigated the levels of epigenetic regulation in well characterized populations of pluripotent embryonic stem cells (ESC) and multipotent adult stem cells (ASC) at the trancriptome, methylome, histone modification and microRNA levels. Differences in gene expression profiles allowed classification of stem cells into three separate populations including ESC, multipotent adult progenitor cells (MAPC) and mesenchymal stromal cells (MSC). The analysis of the PcG repressive marks, histone modifications and gene promoter methylation of differentiation and pluripotency genes demonstrated that stem cell populations with a wider differentiation potential (ESC and MAPC) showed stronger representation of epigenetic repressive marks in differentiation genes and that this epigenetic signature was progressively lost with restriction of stem cell potential. Our analysis of microRNA established specific microRNA signatures suggesting specific microRNAs involved in regulation of pluripotent and differentiation genes.

Conclusions/Significance

Our study leads us to propose a model where the level of epigenetic regulation, as a combination of DNA methylation and histone modification marks, at differentiation genes defines degrees of differentiation potential from progenitor and multipotent stem cells to pluripotent stem cells.  相似文献   

3.
4.
Adipose tissue is an abundantly available source of proliferative and multipotent mesenchymal stem cells with promising potential for regenerative therapeutics. We previously demonstrated that both human and mouse adipose-derived stem cells (ASCs) can be reprogrammed into induced pluripotent stem cells (iPSCs) with efficiencies higher than those that have been reported for other cell types. The ASC-derived iPSCs can be generated in a feeder-independent manner, representing a unique model to study reprogramming and an important step toward establishing a safe, clinical grade of cells for therapeutic use. In this study, we provide a detailed protocol for isolation, preparation and transformation of ASCs from fat tissue into mouse iPSCs in feeder-free conditions and human iPSCs using feeder-dependent or feeder/xenobiotic-free processes. This protocol also describes how ASCs can be used as feeder cells for maintenance of other pluripotent stem cells. ASC derivation is rapid and can be completed in <1 week, with mouse and human iPS reprogramming times averaging 1.5 and 2.5 weeks, respectively.  相似文献   

5.
Adipose tissue is composed of lipid‐filled mature adipocytes and a heterogeneous stromal vascular fraction (SVF) population of cells. Similarly, the bone marrow (BM) is composed of multiple cell types including adipocytes, hematopoietic, osteoprogenitor, and stromal cells necessary to support hematopoiesis. Both adipose and BM contain a population of mesenchymal stromal/stem cells with the potential to differentiate into multiple lineages, including adipogenic, chondrogenic, and osteogenic cells, depending on the culture conditions. In this study we have shown that human adipose‐derived stem cells (ASCs) and bone marrow mesenchymal stem cells (BMSCs) populations display a common expression profile for many surface antigens, including CD29, CD49c, CD147, CD166, and HLA‐abc. Nevertheless, significant differences were noted in the expression of CD34 and its related protein, PODXL, CD36, CD 49f, CD106, and CD146. Furthermore, ASCs displayed more pronounced adipogenic differentiation capability relative to BMSC based on Oil Red staining (7‐fold vs. 2.85‐fold induction). In contrast, no difference between the stem cell types was detected for osteogenic differentiation based on Alizarin Red staining. Analysis by RT‐PCR demonstrated that both the ASC and BMSC differentiated adipocytes and osteoblast displayed a significant upregulation of lineage‐specific mRNAs relative to the undifferentiated cell populations; no significant differences in fold mRNA induction was noted between ASCs and BMSCs. In conclusion, these results demonstrate human ASCs and BMSCs display distinct immunophenotypes based on surface positivity and expression intensity as well as differences in adipogenic differentiation. The findings support the use of both human ASCs and BMSCs for clinical regenerative medicine. J. Cell. Physiol. 226: 843–851, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

6.
Adipose tissue is a rich, ubiquitous and easily acces-sible source for multipotent stromal/stem cells and has, therefore, several advantages compared to other sourc-es of mesenchymal stromal/stem cells. Several studies have tried to identify the origin of the stromal/stem cell population within adipose tissue in situ. This is a complicated attempt because no marker has currently been described which unambiguously identifies native adipose-derived stromal/stem cells(ASCs). Isolated and cultured ASCs are a non-uniform preparation consisting of several subsets of stem and precursor cells. Cultured ASCs are characterized by their expression of a panel of markers(and the absence of others), whereas their in vitro phenotype is dynamic. Some markers were ex-pressed de novo during culture, the expression of some markers is lost. For a long time, CD34 expression was solely used to characterize haematopoietic stem and progenitor cells, but now it has become evident that it is also a potential marker to identify an ASC subpopula-tion in situ and after a short culture time. Nevertheless, long-term cultured ASCs do not express CD34, perhaps due to the artificial environment. This review gives an update of the recently published data on the origin and phenotype of ASCs both in vivo and in vitro. In addition, the composition of ASCs(or their subpopula-tions) seems to vary between different laboratories andpreparations. This heterogeneity of ASC preparationsmay result from different reasons. One of the main problems in comparing results from different laborato-ries is the lack of a standardized isolation and culture protocol for ASCs. Since many aspects of ASCs, suchas the differential potential or the current use in clinical trials, are fully described in other recent reviews, this review further updates the more basic research issues concerning ASCs' subpopulations, heterogeneity andculture standardization.  相似文献   

7.
Much effort has been made in searching for multipotent cell types with high therapeutic potentials for repair of damaged tissue. Through enzymatic digestion of fat tissue, it is possible to obtain a large number of stromal cells. Isolated cells show a high proliferate capacity in culture. All this makes adipose stromal cells (ASC) promising candidates for their use in cell therapy. This review is focused on analyzing the surface antigen profile of isolated population of ASC, expression of angiogenic factors by these cells, as well as on their differentiation potential. A high percentage of ASC population initially express the progenitor cell marker CD34, but during culturing, cells exhibit a mesenchymal cell phenotype and express CD29, CD105, CD106, CD166. Culturing ASC in specific differentiation media induces expression of early markers of differentiated mesenchymal cells, such as adipocytes, chondrocytes and osteoblasts, as well as myoblasts, cardiomyocytes and neural cells. It has been also shown that ASC have a strong pro-angiogenic potential, they are able to secret growth factors, such as VEGF, HGF, bFGF and others, which stimulate survival and proliferation of endothelial cells. In addition, systemic or local delivery of ASC to mice with hindlimb ischemia stimulates recovery of injured tissue and blood flow. Potential clinical uses of ASCs are discussed in the review.  相似文献   

8.
9.
10.
Adipose tissue-derived mesenchymal stem cells (ASCs) have been reported to be multipotent and to differentiate into various cell types, including osteocytes, adipocytes, chondrocytes, and neural cells. Recently, many authors have reported that ASCs are also able to differentiate into vascular endothelial cells (VECs) in vitro. However, these reports included the use of medium containing fetal bovine serum for endothelial differentiation. In the present study, we have developed a novel method for differentiating mouse ASCs into VECs under serum-free conditions. After the differentiation culture, over 80% of the cells expressed vascular endothelial-specific marker proteins and could take up low-density lipoprotein in vitro. This protocol should be helpful in clarifying the mechanisms of ASC differentiation into the VSC lineage.  相似文献   

11.

Background

Adipose tissue provides a readily available source of autologous stem cells. Adipose-derived stem cells (ASCs) have been proposed as a source for endothelial cell substitutes for lining the luminal surface of tissue engineered bypass grafts. Endothelial nitric oxide synthase (eNOS) is a key protein in endothelial cell function. Currently, endothelial differentiation from ASCs is limited by poor eNOS expression. The goal of this study was to investigate the role of three molecules, sphingosine-1-phosphate (S1P), bradykinin, and prostaglandin-E1 (PGE1) in ASC endothelial differentiation. Endothelial differentiation markers (CD31, vWF and eNOS) were used to evaluate the level of ASCs differentiation capability.

Results

ASCs demonstrated differentiation capability toward to adipose, osteocyte and endothelial like cell phenotypes. Bradykinin, S1P and PGE were used to promote differentiation of ASCs to an endothelial phenotype. Real-time PCR showed that all three molecules induced significantly greater expression of endothelial differentiation markers CD31, vWF and eNOS than untreated cells. Among the three molecules, S1P showed the highest up-regulation on endothelial differentiation markers. Immunostaining confirmed presence of more eNOS in cells treated with S1P than the other groups. Cell growth measurements by MTT assay, cell counting and EdU DNA incorporation suggest that S1P promotes cell growth during ASCs endothelial differentiation. The S1P1 receptor was expressed in ASC-differentiated endothelial cells and S1P induced up-regulation of PI3K.

Conclusions

S1P up-regulates endothelial cell markers including eNOS in ASCs differentiated to endothelial like cells. This up-regulation appears to be mediated by the up-regulation of PI3K via S1P1 receptor. ASCs treated with S1P offer promising use as endothelial cell substitutes for tissue engineered vascular grafts and vascular networks.  相似文献   

12.
13.
In spite of the advances in the knowledge of adipose‐derived stem cells (ASCs), in situ location of ASCs and the niche component of adipose tissue (AT) remain controversial due to the lack of an appropriate culture system. Here we describe a fibrin matrix‐supported three‐dimensional (3D) organ culture system for AT which sustains the ASC niche and allows for in situ mobilization and expansion of ASCs in vitro. AT fragments were completely encapsulated within the fibrin matrix and cultured under dynamic condition. The use of organ culture of AT resulted in a robust outgrowth and proliferation in the fibrin matrix. The outgrown cells were successfully recovered from fibrin by urokinase treatment. These outgrown cells fulfilled the criteria of mesenchymal stem cells, adherence to plastic, multilineage differentiation, and cell surface molecule expression. In vitro label retaining assay revealed that newly divided cells during the culture resided in interstitium between adipocytes and capillary endothelial cells. These interstitial stromal cells proliferated and outgrew into the fibrin matrix. Both in situ mobilized and outgrown cells expressed CD146 and α‐smooth muscle actin (SMA), but no endothelial cell markers (CD31 and CD34). The structural integrity and spatial approximation of CD31?/CD34?/CD146+/SMA+ interstitial stromal cells, adipocytes, and capillary endothelial cells were well preserved during in vitro culture. Our results suggest that ASCs are natively associated with the capillary wall and more specifically, belong to a subset of pericytes. Furthermore, organ culture of AT within a fibrin matrix‐supported 3D environment can recapitulate the ASC niche in vitro. J. Cell. Physiol. 224: 807–816, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

14.
The intra‐articular injection of adipose‐derived stem cells (ASCs) is a novel potential therapy for patients with osteoarthritis (OA). However, the efficacy of ASCs from different regions of the body remains unknown. This study investigated whether ASCs from subcutaneous or visceral adipose tissue provide the same improvement of OA. Mouse and human subcutaneous and visceral adipose tissue were excised for ASC isolation. Morphology, proliferation, surface markers and adipocyte differentiation of subcutaneous ASCs (S‐ASCs) and visceral ASCs (V‐ASCs) were analysed. A surgically induced rat model of OA was established, and 4 weeks after the operation, S‐ASCs, V‐ASCs or phosphate‐buffered saline (PBS, control) were injected into the articular cavity. Histology, immunohistochemistry and gene expression analyses were performed 6 weeks after ASC injection. The ability of ASCs to differentiate into chondrocytes was assessed by in vitro chondrogenesis, and the immunosuppressive activity of ASCs was evaluated by co‐culturing with macrophages. The proliferation of V‐ASCs was significantly greater than that of S‐ASCs, but S‐ASCs had the greater adipogenic capacity than V‐ASCs. In addition, the infracted cartilage treated with S‐ASCs showed significantly greater improvement than cartilage treated with PBS or V‐ASCs. Moreover, S‐ASCs showed better chondrogenic potential and immunosuppression in vitro. Subcutaneous adipose tissue is an effective cell source for cell therapy of OA as it promotes stem cell differentiation into chondrocytes and inhibits immunological reactions.  相似文献   

15.
BACKGROUNDAdipose-derived stem cells (ASCs) have been increasingly explored for cell-based medicine because of their numerous advantages in terms of easy availability, high proliferation rate, multipotent differentiation ability and low immunogenicity. In this respect, they have been widely investigated in the last two decades to develop therapeutic strategies for a variety of human pathologies including eye disease. In ocular diseases involving the retina, various cell types may be affected, such as Müller cells, astrocytes, photoreceptors and retinal pigment epithelium (RPE), which plays a fundamental role in the homeostasis of retinal tissue, by secreting a variety of growth factors that support retinal cells.AIMTo test ASC neural differentiation using conditioned medium (CM) from an RPE cell line (ARPE-19).METHODSASCs were isolated from adipose tissue, harvested from the subcutaneous region of healthy donors undergoing liposuction procedures. Four ASC culture conditions were investigated: ASCs cultured in basal Dulbecco''s Modified Eagle Medium (DMEM); ASCs cultured in serum-free DMEM; ASCs cultured in serum-free DMEM/F12; and ASCs cultured in a CM from ARPE-19, a spontaneously arising cell line with a normal karyotype derived from a human RPE. Cell proliferation rate and viability were assessed by crystal violet and MTT assays at 1, 4 and 8 d of culture. At the same time points, ASC neural differentiation was evaluated by immunocytochemistry and western blot analysis for typical neuronal and glial markers: Nestin, neuronal specific enolase (NSE), protein gene product (PGP) 9.5, and glial fibrillary acidic protein (GFAP).RESULTSDepending on the culture medium, ASC proliferation rate and viability showed some significant differences. Overall, less dense populations were observed in serum-free cultures, except for ASCs cultured in ARPE-19 serum-free CM. Moreover, a different cell morphology was seen in these cultures after 8 d of treatment, with more elongated cells, often showing cytoplasmic ramifications. Immunofluorescence results and western blot analysis were indicative of ASC neural differentiation. In fact, basal levels of neural markers detected under control conditions significantly increased when cells were cultured in ARPE-19 CM. Specifically, neural marker overexpression was more marked at 8 d. The most evident increase was observed for NSE and GFAP, a modest increase was observed for nestin, and less relevant changes were observed for PGP9.5. CONCLUSIONThe presence of growth factors produced by ARPE-19 cells in tissue culture induces ASCs to express neural differentiation markers typical of the neuronal and glial cells of the retina.  相似文献   

16.
Musculoskeletal tissues regeneration requires rapid expansion of seeding cells both in vitro and in vivo while maintaining their multilineage differentiation ability. Human adipose-derived stem cells (ASCs) are considered to contain multipotent mesenchymal stem cells. Monolayer cultures of human ASCs were isolated from human lipoaspirates and passaged 3 times and then infected with replication-incompetent adenoviral vectors carrying green fluorescent protein (Ad/GFP) genes. Then, Ad/GFP infected human ASCs were transferred to osteogenic, chondrogenic, adipogenic, and myogenic medium. The morphological characterization of induced cells was observed using phase-contrast microscopy and fluorescence microscopy. The expression of marker proteins or genes was measured by immunocytochemical and RT-PCR analysis. Osteopontin (OPN), and osteocalcin (OCN) were positive in osteogenic lineages, aggrecan and SOX9 were positive in chondrogenic ones, peroxisome proliferator-activated receptor (PPAR-γ2) and lipoprotein lipase (LPL) were positive in adipogenic ones, and myogenin and myod1 was positive in myogenic ones. At the same time, the results of fluorescence microscopic imaging proved that the high level of GFP expression during ASCs differentiation maintained stable nearly 2 months. So the exogenous GFP and multilineage potential of human ASCs had no severe influences on each other. Since the human ASCs can be easily obtained and abundant, it is proposed that they may be promising candidate cells for further studies on tissue engineering. Imaging with expression of GFP facilitates the research on ASCs physiological behavior and application in tissue engineering during differentiation both in vitro and in vivo.  相似文献   

17.
18.
Adipose-derived stem cells (ASCs) are a set of multi potent stem cells potentially used in cartilage tissue engineering. We hypothesized that the effect of dynamic compression and co-culture with nucleus pulposus cells (NPCs) promotes ASC proliferation and chondrogenic differentiation. A controlled dynamic compression loading device was utilized to stimulate ASCs obtained from Sprague Dawley (SD) rats and identified by flow cytometry. The proliferation index was measured by carboxyfluorescein succinimidyl ester (CFSE) staining. Dynamic compression, as well as co-culture enhanced chondrogenic differentiation of ASCs as indicated by the expression of SOX-9, type-II collagen and aggrecan, which were measured by real-time PCR and Western blot. In our study, we found dynamic compression promoted the proliferation of ASCs and induced its differentiation into NP-like cells. Combination of dynamic compression and co-culture showed an additive effect on NP-like cell differentiation.  相似文献   

19.
Human adipose-derived stem cells (ASCs) are adult pluripotent stem cells, and their usefulness in plastic surgery has garnered attention in recent years. Although, there have been expectations that ASCs might function in wound repair and regeneration, no studies to date have examined the role of ASCs in the mechanism that promotes wound-healing. Transforming growth factor-beta1 (TGF-β1) is a strong candidate cytokine for the triggering of mesenchymal stem cell migration, construction of extracellular matrices, and differentiation of ASCs into myofibroblasts. Cell proliferation, motility, and differentiation, as well as extracellular matrix production, play an important role in wound-healing. We have evaluated the capacity of ASCs to proliferate and their potential to differentiate into phenotypic myofibroblasts, as well as their cell motility and collagen gel contraction ability, when cultured with TGF-β1. Cell motility was analyzed using a wound-healing assay. ASCs that differentiated into myofibroblasts expressed the gene for alpha-smooth muscle actin, and its protein expression was detected immunohistochemically. The extracellular matrix expression in ASCs was evaluated using real-time RT-PCR. Based on the results, we conclude that human ASCs have the potential for cell motility, extracellular matrix gene expression, gel contraction, and differentiation into myofibroblasts and, therefore, may play an important role in the wound-healing process.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号