首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 226 毫秒
1.
Paracoccus denitrificans strains with mutations in the genes encoding the cytochrome c(550), c(552), or c(1) and in combinations of these genes were constructed, and their growth characteristics were determined. Each mutant was able to grow heterotrophically with succinate as the carbon and free-energy source, although their specific growth rates and maximum cell numbers fell variably behind those of the wild type. Maximum cell numbers and rates of growth were also reduced when these strains were grown with methylamine as the sole free-energy source, with the triple cytochrome c mutant failing to grow on this substrate. Under anaerobic conditions in the presence of nitrate, none of the mutant strains lacking the cytochrome bc(1) complex reduced nitrite, which is cytotoxic and accumulated in the medium. The cytochrome c(550)-deficient mutant did denitrify provided copper was present. The cytochrome c(552) mutation had no apparent effect on the denitrifying potential of the mutant cells. The studies show that the cytochromes c have multiple tasks in electron transfer. The cytochrome bc(1) complex is the electron acceptor of the Q-pool and of amicyanin. It is also the electron donor to cytochromes c(550) and c(552) and to the cbb(3)-type oxidase. Cytochrome c(552) is an electron acceptor both of the cytochrome bc(1) complex and of amicyanin, as well as a dedicated electron donor to the aa(3)-type oxidase. Cytochrome c(550) can accept electrons from the cytochrome bc(1) complex and from amicyanin, whereas it is also the electron donor to both cytochrome c oxidases and to at least the nitrite reductase during denitrification. Deletion of the c-type cytochromes also affected the concentrations of remaining cytochromes c, suggesting that the organism is plastic in that it adjusts its infrastructure in response to signals derived from changed electron transfer routes.  相似文献   

2.
The respiratory chain enzymes of microaerophilic bacteria should play a major role in their adaptation to growth at low oxygen tensions. The genes encoding the putative NADH:quinone reductases (NDH-1), the ubiquinol:cytochrome c oxidoreductases (bc1 complex) and the terminal oxidases of the microaerophiles Campylobacter jejuni and Helicobacter pylori were analysed to identify structural elements that may be required for their unique energy metabolism. The gene clusters encoding NDH-1 in both C. jejuni and H. pylori lacked nuoE and nuoF, and in their place were genes encoding two unknown proteins. The NuoG subunit in these microaerophilic bacteria appeared to have an additional Fe-S cluster that is not present in NDH-1 from other organisms; but C. jejuni and H. pylori differed from each other in a cysteine-rich segment in this subunit, which is present in some but not all NDH-1. Both organisms lacked genes orthologous to those encoding NDH-2. The subunits of the bc1 complex of both bacteria were similar, and the Rieske Fe-S and cytochrome b subunits had significant similarity to those of Paracoccus denitrificans and Rhodobacter capsulatus, well-studied bacterial bc1 complexes. The composition of the terminal oxidases of C. jejuni and H. pylori was different; both bacteria had cytochrome cbb3 oxidases, but C. jejuni also contained a bd-type quinol oxidase. The primary structures of the major subunits of the cbb3-type (terminal) oxidase of C. jejuni and H. pylori indicated that they form a separate group within the cbb3 protein family. The implications of the results for the function of the enzymes and their adaptation to microaerophilic growth are discussed.  相似文献   

3.
4.
Growth using Fe(III) as a terminal electron acceptor is a critical physiological process in Geobacter sulfurreducens. However, the mechanisms of electron transfer during Fe(III) reduction are only now being understood. It has been demonstrated that the pili in G. sulfurreducens function as microbial nanowires conducting electrons onto Fe(III) oxides. A number of c-type cytochromes have also been shown to play important roles in Fe(III) reduction. However, the regulatory networks controlling the expression of the genes involved in such processes are not well known. Here we report that the expression of pilA, which encodes the pilistructural protein, is directly regulated by a two-component regulatory system in which PilR functions as an RpoN-dependent enhancer binding protein. Surprisingly, a deletion of the pilR gene affected not only insoluble Fe(III) reduction, which requires pili, but also soluble Fe(III) reduction, which, in contrast, does not require pili. Gene expression profiling using whole-genome DNA microarray and quantitative RT-PCR analyses obtained with a PilR-deficient mutant revealed that the expression of pilA and other pilin-related genes are downregulated, while many c-type cytochromes involved in Fe(III) reduction were differentially regulated. This is the first instance of an enhancer binding protein implicated in regulating genes involved in Fe(III) respiratory functions.  相似文献   

5.
Redox signaling: globalization of gene expression   总被引:10,自引:0,他引:10       下载免费PDF全文
Oh JI  Kaplan S 《The EMBO journal》2000,19(16):4237-4247
  相似文献   

6.
We have recently established that the facultative phototrophic bacterium Rhodobacter sphaeroides, like the closely related Rhodobacter capsulatus species, contains both the previously characterized mobile electron carrier cytochrome c2 (cyt c2) and the more recently discovered membrane-anchored cyt cy. However, R. sphaeroides cyt cy, unlike that of R. capsulatus, is unable to function as an efficient electron carrier between the photochemical reaction center and the cyt bc1 complex during photosynthetic growth. Nonetheless, R. sphaeroides cyt cy can act at least in R. capsulatus as an electron carrier between the cyt bc1 complex and the cbb3-type cyt c oxidase (cbb3-Cox) to support respiratory growth. Since R. sphaeroides harbors both a cbb3-Cox and an aa3-type cyt c oxidase (aa3-Cox), we examined whether R. sphaeroides cyt cy can act as an electron carrier to either or both of these respiratory terminal oxidases. R. sphaeroides mutants which lacked either cyt c2 or cyt cy and either the aa3-Cox or the cbb3-Cox were obtained. These double mutants contained linear respiratory electron transport pathways between the cyt bc1 complex and the cyt c oxidases. They were characterized with respect to growth phenotypes, contents of a-, b-, and c-type cytochromes, cyt c oxidase activities, and kinetics of electron transfer mediated by cyt c2 or cyt cy. The findings demonstrated that both cyt c2 and cyt cy are able to carry electrons efficiently from the cyt bc1 complex to either the cbb3-Cox or the aa3-Cox. Thus, no dedicated electron carrier for either of the cyt c oxidases is present in R. sphaeroides. However, under semiaerobic growth conditions, a larger portion of the electron flow out of the cyt bc1 complex appears to be mediated via the cyt c2-to-cbb3-Cox and cyt cy-to-cbb3-Cox subbranches. The presence of multiple electron carriers and cyt c oxidases with different properties that can operate concurrently reveals that the respiratory electron transport pathways of R. sphaeroides are more complex than those of R. capsulatus.  相似文献   

7.
Members of the genus Shewanella translocate deca- or undeca-heme cytochromes to the external cell surface thus enabling respiration using extracellular minerals and polynuclear Fe(III) chelates. The high resolution structure of the first undeca-heme outer membrane cytochrome, UndA, reveals a crossed heme chain with four potential electron ingress/egress sites arranged within four domains. Sequence and structural alignment of UndA and the deca-heme MtrF reveals the extra heme of UndA is inserted between MtrF hemes 6 and 7. The remaining UndA hemes can be superposed over the heme chain of the decaheme MtrF, suggesting that a ten heme core is conserved between outer membrane cytochromes. The UndA structure has also been crystallographically resolved in complex with substrates, an?Fe(III)-nitrilotriacetate dimer or an Fe(III)-citrate trimer. The structural resolution of these UndA-Fe(III)-chelate complexes provides a rationale for previous kinetic measurements on UndA and other outer membrane cytochromes.  相似文献   

8.
In this study, a neutrophilic, heterotrophic bacterium (strain Paddy-2) that is capable of ferrous iron [Fe(II)] oxidation coupled with nitrate (NO3?) reduction (NRFO) under anoxic conditions was isolated from paddy soil. The molecular identification by 16S rRNA gene sequencing identified the strain as Cupriavidus metallidurans. Strain Paddy-2 reduced 97.7% of NO3?and oxidized 89.7% of Fe(II) over 6?days with initial NaNO3 and FeCl2 concentrations of 9.37?mM and 4.72?mM, respectively. Acetate (5?mM) was also supplied as a carbon source and an alternative electron donor. A poorly crystalline Fe(III) mineral was the main component observed after 15?days of growth in culture, whereas lepidocrocite was detected in the X-ray diffraction spectrum after 3?months of culture. The homologous genes in electron transfer during Fe(II) oxidation (cyc1, cymA, FoxY, FoxZ, and mtoD) were also identified in the genomes of strain Paddy-2 and other reported NRFO bacteria. These genes encoding c-Cyts may play a role in electron transfer during the process of NRFO. These results provide evidence for the potential of NO3? to affect Fe(II) oxidation and biomineralization in bacterium from anoxic paddy soil.  相似文献   

9.
10.
11.
Recently, we demonstrated that the RegB/RegA two-component regulatory system from Rhodobacter capsulatus functions as a global regulator of metabolic processes that either generate or consume reducing equivalents. For example, the RegB/RegA system controls expression of such energy generating processes as photosynthesis and hydrogen utilization. In addition, RegB/RegA also control nitrogen and carbon fixation pathways that utilize reducing equivalents. Here, we use a combination of DNase I protection and plasmid-based reporter expression studies to demonstrate that RegA directly controls synthesis of cytochrome cbb3 and ubiquinol oxidases that function as terminal electron acceptors in a branched respiratory chain. We also demonstrate that RegA controls expression of cytochromes c2, c(y) and the cytochrome bc1 complex that are involved in both photosynthetic and respiratory electron transfer events. These data provide evidence that the RegB/RegA two-component system has a major role in controlling the synthesis of numerous processes that affect reducing equivalents in Rhodobacter capsulatus.  相似文献   

12.
13.
Sequence alignment of cytochrome b of the cytochrome bc1 complex from various sources reveals that bacterial cytochrome b contain an extra fragment at the C terminus. To study the role of this fragment in bacterial cytochrome bc1 complex, Rhodobacter sphaeroides mutants expressing His-tagged cytochrome bc1 complexes with progressive deletion from this fragment (residues 421-445) were generated and characterized. The cytbDelta-(433-445) bc1 complex, in which 13 residues from the C-terminal end of this fragment are deleted, has electron transfer activity, subunit composition, and physical properties similar to those of the complement complex, indicating that this region of the extra fragment is not essential. In contrast, the electron transfer activity, binding of cytochrome b, ISP, and subunit IV to cytochrome c1, redox potentials of cytochromes b and c1 in the cytbDelta-(427-445), cytbDelta-(425-445), and cytbDelta-(421-445) mutant complexes, in which 19, 21, or all residues of this fragment are deleted, decrease progressively. EPR spectra of the [2Fe-2S] cluster and the cytochromes b in these three deletion mutant bc1 complexes are also altered; the extent of spectral alteration increases as this extra fragment is shortened. These results indicate that the first 12 residues (residues 421-432) from the N-terminal end of the C-terminal extra fragment of cytochrome b are essential for maintaining structural integrity of the bc1 complex.  相似文献   

14.
15.
Anode properties are critical for the performance of microbial electrolysis cells (MECs). In the present study, Fe nanoparticle-modified graphite disks were used as anodes to investigate the effects of nanoparticles on the performance of Shewanella oneidensis MR-1 in MECs. Results demonstrated that the average current densities produced with Fe nanoparticle-decorated anodes up to 5.89-fold higher than plain graphite anodes. Whole genome microarray analysis of the gene expression showed that genes encoding biofilm formation were significantly up-regulated as a response to nanoparticle-decorated anodes. Increased expression of genes related to nanowires, flavins, and c-type cytochromes indicates that enhanced mechanisms of electron transfer to the anode may also have contributed to the observed increases in current density. The majority of the remaining differentially expressed genes associated with electron transport and anaerobic metabolism demonstrate a systemic response to increased power loads.  相似文献   

16.
Drainage waters at the metal mining areas often have low pH and high content of dissolved metals due to oxidation of sulfide minerals. Extreme conditions limit microbial diversity in such habitats. A microbial community of cold acid mine drainage (6.5°C, pH 2.65) at the Sherlovaya Gora polymetallic open-cast mine (Transbaikal region, Eastern Siberia, Russia) was studied using metagenomic techniques. Most of microorganisms belonged to a single uncultured lineage representing a new species of the Betaproteobacteria genus Gallionella. Bacteria of the genera Thiobacillus, Acidobacterium, Acidisphaera, and Acidithiobacillus were the minor components of the community. Almost complete (3.4 Mb) composite genome of the new bacterial lineage designated Candidatus Gallionella acididurans ShG14-8 was reconstructed using metagenomic data. Genome analysis revealed that Fe(II) oxidation probably involved the cytochromes localized on the outer cell membrane. The electron transport chain included NADH dehydrogenase, a cytochrome bc1 complex, an alternative complex III, and bd-, cbb3-, and bo3-types cytochrome oxidases. Oxidation of reduced sulfur compounds probably involved the Sox system, sulfide–quinone oxidoreductase, adenyl sulfate reductase, and sulfate adenyltransferase. The genes involved in autotrophic carbon assimilation via the Calvin cycle were present, while no pathway for nitrogen fixation was revealed. High numbers of RND metal transporters and P type ATPases were probably responsible for resistance to heavy metals. The new microorganism was an aerobic chemolithoautotroph that belonged to the group of psychrotolerant iron- and sulfur-oxidizing acidophiles of the family Gallionellaceae, which are widely distributed in acid mine drainage.  相似文献   

17.
DFT calculations were done for the (hydroperoxo)metal complexes with eta1-coordination mode, where metal ions are Fe(III), Al(III), Cu(II) and Zn(II). Results shows that 1) the electron density at the two oxygen atoms of the hydroperoxide ion is highly dependent on the angle O-O-H in M-OOH species and the difference in electron density between the two oxygen atoms reaches a maximum at the angle O-O-H = 180 degrees, 2) total electron density at the two oxygen atoms of the peroxide ion increases by approach of methane to the (hydroperoxo)metal species in the cases of Fe(III) and Cu(II); on the other hand, significant decrease of the electron density on peroxide oxygen atoms was observed for the cases of Al(III) and Zn(II) compounds. These findings suggest that the (hydroperoxo)metal species acts as an electrophile in the former cases (M = Fe(III), Cu(II)) and as a nucleophile for the latter two compounds (M = Zn(II), Al(III)). The electrophilicity observed for the Fe(III) and Cu(II) complexes is attributed to the presence of unoccupied- or half-filled d-orbitals interacting with the hydroperoxide ion. 3) Two oxygen atoms of the (hydroperoxo)-compounds of Fe(III) and Cu(II) complexes exhibit quite different reactivity toward the substrate, such as methane. When methane approaches the oxygen atom which is coordinated to a metal ion, a strong decrease of electron density at the methane carbon atom occurs with concomitant increase of electron density at the peroxide oxygen atoms inducing its heterolytic O-O cleavage. When methane approaches the terminal oxygen atom, an oxidative coupling reaction occurs between peroxide ion and methane; at first a nucleophilic attack by the terminal electron-rich oxygen atom occurs at the carbon atom to induce C-O bond formation, and a subsequent oxidative electron transfer proceeds from substrate to the metal-peroxide species yielding CH3-OOH, CH3OH, or other oxidized products. These results clearly demonstrate that the (hydroperoxo)-metal compound itself is a rather stable compound, and activation of the peroxide ion is induced by interaction with the substrate, and the products obtained by the oxygenation reaction are dependent on the chemical property of the substrate, redox property of a metal ion, and stability of the compounds formed in the intermediate process.  相似文献   

18.
In Rhodobacter sphaeroides, the two cbb operons encoding duplicated Calvin-Benson Bassham (CBB) CO2 fixation reductive pentose phosphate cycle structural genes are differentially controlled. In attempts to define the molecular basis for the differential regulation, the effects of mutations in genes encoding a subunit of Cbb3 cytochrome oxidase, ccoP, and a global response regulator, prrA (regA), were characterized with respect to CO2 fixation (cbb) gene expression by using translational lac fusions to the R. sphaeroides cbb(I) and cbb(II) promoters. Inactivation of the ccoP gene resulted in derepression of both promoters during chemoheterotophic growth, where cbb expression is normally repressed; expression was also enhanced over normal levels during phototrophic growth. The prrA mutation effected reduced expression of cbb(I) and cbb(II) promoters during chemoheterotrophic growth, whereas intermediate levels of expression were observed in a double ccoP prrA mutant. PrrA and ccoP1 prrA strains cannot grow phototrophically, so it is impossible to examine cbb expression in these backgrounds under this growth mode. In this study, however, we found that PrrA mutants of R. sphaeroides were capable of chemoautotrophic growth, allowing, for the first time, an opportunity to directly examine the requirement of PrrA for cbb gene expression in vivo under growth conditions where the CBB cycle and CO2 fixation are required. Expression from the cbb(II) promoter was severely reduced in the PrrA mutants during chemoautotrophic growth, whereas cbb(I) expression was either unaffected or enhanced. Mutations in ccoQ had no effect on expression from either promoter. These observations suggest that the Prr signal transduction pathway is not always directly linked to Cbb3 cytochrome oxidase activity, at least with respect to cbb gene expression. In addition, lac fusions containing various lengths of the cbb(I) promoter demonstrated distinct sequences involved in positive regulation during photoautotrophic versus chemoautotrophic growth, suggesting that different regulatory proteins may be involved. In Rhodobacter capsulatus, ribulose 1,5-bisphosphate carboxylase-oxygenase (RubisCO) expression was not affected by cco mutations during photoheterotrophic growth, suggesting that differences exist in signal transduction pathways regulating cbb genes in the related organisms.  相似文献   

19.
A species of Dechlorospirillum was isolated from an Fe(II)-oxidizing, opposing-gradient-culture enrichment using an inoculum from a circumneutral, freshwater creek that showed copious amounts of Fe(III) (hydr)oxide precipitation. In gradient cultures amended with a redox indicator to visualize the depth of oxygen penetration, Dechlorospirillum sp. strain M1 showed Fe(II)-dependent growth at the oxic-anoxic interface and was unable to utilize sulfide as an alternate electron donor. The bacterium also grew with acetate as an electron donor under both microaerophilic and nitrate-reducing conditions, but was incapable of organotrophic Fe(III) reduction or nitrate-dependent Fe(II) oxidation. Although members of the genus Dechlorospirillum are primarily known as perchlorate and nitrate reducers, our results suggest that some species are members of the microbial communities involved in iron redox cycling at the oxic-anoxic transition zones in freshwater sediments.  相似文献   

20.
Structural analysis of the dimeric mitochondrial cytochrome bc1 complex suggests that electron transfer between inter-monomer hemes bL-bL may occur during bc1 catalysis. Such electron transfer may be facilitated by the aromatic pairs present between the two bL hemes in the two symmetry-related monomers. To test this hypothesis, R. sphaeroides mutants expressing His6-tagged bc1 complexes with mutations at three aromatic residues (Phe-195, Tyr-199, and Phe-203), located between two bL hemes, were generated and characterized. All three mutants grew photosynthetically at a rate comparable to that of wild-type cells. The bc1 complexes prepared from mutants F195A, Y199A, and F203A have, respectively, 78%, 100%, and 100% of ubiquinol-cytochrome c reductase activity found in the wild-type complex. Replacing the Phe-195 of cytochrome b with Tyr, His, or Trp results in mutant complexes (F195Y, F195H, or F195W) having the same ubiquinol-cytochrome c reductase activity as the wild-type. These results indicate that the aromatic group at position195 of cytochrome b is involved in electron transfer reactions of the bc1 complex. The rate of superoxide anion (O2*) generation, measured by the chemiluminescence of 2-methyl-6-(p-methoxyphenyl)-3,7-dihydroimidazo[1,2-alpha]pyrazin-3-one hydrochloride-O2* adduct during oxidation of ubiquinol, is 3 times higher in the F195A complex than in the wild-type or mutant complexes Y199A or F203A. This supports the idea that the interruption of electron transfer between the two bL hemes enhances electron leakage to oxygen and thus decreases the ubiquinol-cytochrome c reductase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号