首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The Mce systems are complex ABC transporters that are encoded by different numbers of homologous operons in Actinobacteria. While the four Mce systems of Mycobacterium tuberculosis are all energized by a single ATPase, MceG, each system appears to import different fatty acids or sterols. To explore if this behaviour can be extended to saprophytic mycobacteria, whose more complex genomes encode more Mce systems, we have identified and characterized the MceG orthologue of Mycobacterium smegmatis. This bacterium relies on MceG to energize its six Mce systems that contribute to a variety of cellular functions including sterol uptake and cell envelope maintenance. In the absence of MceG, M. smegmatis was not able to utilize cholesterol or phytosterols as carbon sources implying that this ATPase is necessary to energize the Mce4‐sterol transport system. Other phenotypic alterations observed in the ΔMceG mutant, such as cell envelope modifications, suggest a pleiotropic functionality of the Mce systems that are particularly important for stress responses. Several ΔMceG phenotypes were recapitulated in a strain lacking only the unique C‐terminal region of MceG, suggesting an important functional or regulatory function for this domain.  相似文献   

2.
The aerobic saprophyte Mycobacterium smegmatis, like its pathogenic counterpart M. tuberculosis, has the ability to adapt to anaerobiosis by shifting down to a dormant state. Here, we report the identification and molecular genetic characterisation of the first dormancy-induced protein in M. smegmatis. Comparative SDS-polyacrylamide gel electrophoresis of protein extracts of aerobically growing and dormant anaerobic M. smegmatis cultures revealed the upregulation of a 27-kDa protein in the dormant state. Peptide sequencing showed that the induced protein is a homologue of the histone-like protein Hlp, predicted by the M. tuberculosis genome project. The corresponding hlp gene was cloned from M. smegmatis and sequenced. Disruption of the hlp gene eliminated the histone-like protein but did not affect the viability of the dormant culture. Received: 3 June 1998 / Accepted: 22 September 1998  相似文献   

3.
Protein production using recombinant DNA technology has a fundamental impact on our understanding of biology through providing proteins for structural and functional studies. Escherichia coli (E. coli) has been traditionally used as the default expression host to over‐express and purify proteins from many different organisms. E. coli does, however, have known shortcomings for obtaining soluble, properly folded proteins suitable for downstream studies. These shortcomings are even more pronounced for the mycobacterial pathogen Mycobacterium tuberculosis, the bacterium that causes tuberculosis, with typically only one third of proteins expressed in E. coli produced as soluble proteins. Mycobacterium smegmatis (M. smegmatis) is a closely related and non‐pathogenic species that has been successfully used as an expression host for production of proteins from various mycobacterial species. In this review, we describe the early attempts to produce mycobacterial proteins in alternative expression hosts and then focus on available expression systems in M. smegmatis. The advantages of using M. smegmatis as an expression host, its application in structural biology and some practical aspects of protein production are also discussed. M. smegmatis provides an effective expression platform for enhanced understanding of mycobacterial biology and pathogenesis and for developing novel and better therapeutics and diagnostics.  相似文献   

4.
Mammalian heterotrimeric GTP-binding proteins (G proteins) are involved in transmembrane signalling that couples a number of receptors to effectors mediating various physiological processes in mammalian cells. We demonstrate that bacterial proteins such as a Ras-like protein from Pseudomonas aeruginosa or a 65 kDa protein from Mycobacterium smegmatis can form complexes with human or yeast nucleoside diphosphate kinase (Ndk) to modulate their nucleoside triphosphate synthesizing specificity to GTP or UTP. In addition, we demonstrate that bacteria such as M. smegmatis or Mycobacterium tuberculosis harbour proteins that cross react with antibodies against the α-, β- or the γ-subunits of heterotrimeric G proteins. Such antibodies also alter the GTP synthesizing ability of specific membrane fractions isolated from glycerol gradients of such cells, suggesting that a membrane-associated Ndk–G-protein homologue complex is responsible for part of GTP synthesis in these bacteria. Indeed, purified Ndk from human erythrocytes and M. tuberculosis showed extensive complex formation with the purified mammalian α and β G-protein subunits and allowed specific GTP synthesis, suggesting that such complexes may participate in transmembrane signalling in the eukaryotic host. We have purified the α-, β- and γ-subunit homologues from M. tuberculosis and we present their internal amino acid sequences as well as their putative homologies with mammalian subunits and the localization of their genes on the M. tuberculosis genome. Using oligonucleotide probes from the conserved regions of the α- and γ-subunit of M. tuberculosis G-protein homologue, we demonstrate hybridization of these probes with the genomic digest of M. tuberculosis H37Rv but not with that of M. smegmatis, suggesting that M. smegmatis might lack the genes present in M. tuberculosis H37Rv. Interestingly, the avirulent strain H37Ra showed weak hybridization with these two probes, suggesting that these genes might have been deleted in the avirulent strain or are present in limited copy numbers as opposed to those in the virulent strain H37Rv.  相似文献   

5.
Copper resistance mechanisms are crucial for many pathogenic bacteria, including Mycobacterium tuberculosis, during infection because the innate immune system utilizes copper ions to kill bacterial intruders. Despite several studies detailing responses of mycobacteria to copper, the pathways by which copper ions cross the mycobacterial cell envelope are unknown. Deletion of porin genes in Mycobacterium smegmatis leads to a severe growth defect on trace copper medium but simultaneously increases tolerance for copper at elevated concentrations, indicating that porins mediate copper uptake across the outer membrane. Heterologous expression of the mycobacterial porin gene mspA reduced growth of M. tuberculosis in the presence of 2.5 μM copper by 40% and completely suppressed growth at 15 μM copper, while wild-type M. tuberculosis reached its normal cell density at that copper concentration. Moreover, the polyamine spermine, a known inhibitor of porin activity in Gram-negative bacteria, enhanced tolerance of M. tuberculosis for copper, suggesting that copper ions utilize endogenous outer membrane channel proteins of M. tuberculosis to gain access to interior cellular compartments. In summary, these findings highlight the outer membrane as the first barrier against copper ions and the role of porins in mediating copper uptake in M. smegmatis and M. tuberculosis.  相似文献   

6.
Mycobacterium tuberculosis H37Ra,M. smegmatisATCC 607,M. smegmatis MC2155,M. aurum A +,M. aurum A11, and one representative strain ofM. flavescens were transformed by electroporation with plasmid pMY10 and cosmid pDC100. Plasmid pMY 10 contained the origin of replication of pAL5000, the origin of replication of pBR322, a kanamycin resistance gene, and the origin of transfer of the Inc plasmid RK2; the cosmid pDC100 contained the pHC79 SS cosmid, the origin of replication of pAL5000, and a kanamycin resistance gene. The efficiency of transformation varied with the recipient cells used and was in decreasing order: 7×105 forM. smegmatis MC2155, 6×103 forM. tuberculosis H37Ra, 103 forM. aurum, 50 forM. smegmatis ATCC 607, and 5 forM. flavescens. A rapid protocol for plasmid extraction from mycobacteria was developed.The satisfactory transformation of the nonvirulentM. tuberculosis strain H37Ra was of interest for future studies on cloning of virulence genes, while the satisfactory transformation ofM. aurum was of interest for future studies on the genetics of drug resistance because these bacteria are sensitive to drugs specifically used in the treatment of tuberculosis and leprosy. However, neither vector was stably maintained inM. smegmatis, indicating that further investigations are still necessary to resolve this difficulty.  相似文献   

7.
8.
Hua Li  Gerwald Jogl 《Proteins》2013,81(3):538-543
Decaprenylphosphoryl‐β‐D ‐ribose 2'‐epimerase (DprE1) is an essential enzyme in the biosynthesis of cell wall components and a target for development of anti‐tuberculosis drugs. We determined the crystal structure of a truncated form of DprE1 from Mycobacterium smegmatis in two crystal forms to up to 2.35 Å resolution. The structure extends from residue 75 to the C‐terminus and shares homology with FAD‐dependent oxidoreductases of the vanillyl‐alcohol oxidase family including the DprE1 homologue from M. tuberculosis. The M. smegmatis DprE1 structure reported here provides further insights into the active site geometry of this tuberculosis drug target. Proteins 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

9.
The genus Mycobacterium is composed of species with widely differing growth rates ranging from approximately three hours in Mycobacterium smegmatis to two weeks in Mycobacterium leprae. As DNA replication is coupled to cell duplication, it may be regulated by common mechanisms. The chromosomal regions surrounding the origins of DNA replication from M. smegmatis, M. tuberculosis, and M. leprae have been sequenced, and show very few differences. The gene order, rnpA-rpmH-dnaA-dnaN-recF-orf-gyrB-gyrA, is the same as in other Gram-positive organisms. Although the general organization in M. smegmatis is very similar to that of Streptomyces spp., a closely related genus, M. tuberculosis and M. leprae differ as they lack an open reading frame, between dnaN and recF, which is similar to the gnd gene of Escherichia coli. Within the three mycobacterial species, there is extensive sequence conservation in the intergenic regions flanking dnaA, but more variation from the consensus DnaA box sequence was seen than in other bacteria. By means of subcloning experiments, the putative chromosomal origin of replication of M. smegmatis, containing the dnaA-dnaN region, was shown to promote autonomous replication in M. smegmatis, unlike the corresponding regions from M. tuberculosis or M. leprae.  相似文献   

10.
Shi T  Fu T  Xie J 《Current microbiology》2011,63(5):470-476
Inorganic polyphosphate (polyP) is a ubiquitous linear polymer of hundreds of orthophosphate (Pi) residues linked by ATP-like, high-energy, phosphoanhydride bonds. The gene Rv1026 in Mycobacterium tuberculosis encodes a putative exopolyphosphatase which progressively hydrolyzes the terminal residues of polyP to liberate Pi. Rv1026 was cloned into the expressive plasmid pMV261. The resulting plasmid pRv1026 and the plasmid pMV261 were transformed into M. smegmatis strain mc2155 by electroporation. The recombinant M. smegmatis (pRv1026) showed relatively decreased polyP concentration and a phenotype different from the M. smegmatis (pMV261) in sliding motility and biofilm formation. The surfactant Tween 80 can enhance this effect on the sliding motility and biofilm formation of M. smegmatis. There are four different peaks between the gas chromatography of cellular wall fatty acid of the M. smegmatis (pRv1026) and the M. smegmatis (pMV261). These results indicate that polyP deficiency can affect the fatty acid composition of cellular wall and these alteration of cell wall might elucidate the reductive ability of strains to slide and form biofilm. This investigation provides novel recognition about the role of Rv1026, which provides novel clues for further study on the physiological role of Rv1026 in M. tuberculosis.  相似文献   

11.
Drug resistance in Mycobacterium tuberculosis is a global problem, with major consequences for treatment and public health systems. As the emergence and spread of drug‐resistant tuberculosis epidemics is largely influenced by the impact of the resistance mechanism on bacterial fitness, we wished to investigate whether compensatory evolution occurs in drug‐resistant clinical isolates of M. tuberculosis. By combining information from molecular epidemiology studies of drug‐resistant clinical M. tuberculosis isolates with genetic reconstructions and measurements of aminoglycoside susceptibility and fitness in Mycobacterium smegmatis, we have reconstructed a plausible pathway for how aminoglycoside resistance develops in clinical isolates of M. tuberculosis. Thus, we show by reconstruction experiments that base changes in the highly conserved A‐site of 16S rRNA that: (i) cause aminoglycoside resistance, (ii) confer a high fitness cost and (iii) destabilize a stem‐loop structure, are associated with a particular compensatory point mutation that restores rRNA secondary structure and bacterial fitness, while maintaining to a large extent the drug‐resistant phenotype. The same types of resistance and associated mutations can be found in M. tuberculosis in clinical isolates, suggesting that compensatory evolution contributes to the spread of drug‐resistant tuberculosis disease.  相似文献   

12.
Active segregation of bacterial chromosomes usually involves the action of ParB proteins, which bind in proximity of chromosomal origin (oriC) regions forming nucleoprotein complexes – segrosomes. Newly duplicated segrosomes are moved either uni‐ or bidirectionally by the action of ATPases – ParA proteins. In Mycobacterium smegmatis the oriC region is located in an off‐centred position and newly replicated segrosomes are segregated towards cell poles. The elimination of M. smegmatis ParA and/or ParB leads to chromosome segregation defects. Here, we took advantage of microfluidic time‐lapse fluorescent microscopy to address the question of ParA and ParB dynamics in M. smegmatis and M. tuberculosis cells. Our results reveal that ParB complexes are segregated in an asymmetrical manner. The rapid movement of segrosomes is dependent on ParA that is transiently associated with the new pole. Remarkably in M. tuberculosis, the movement of the ParB complex is much slower than in M. smegmatis, but segregation as in M. smegmatis lasts approximately 10% of the cell cycle, which suggests a correlation between segregation dynamics and the growth rate. On the basis of our results, we propose a model for the asymmetric action of segregation machinery that reflects unequal division and growth of mycobacterial cells.  相似文献   

13.
DNA glycosylases play important roles in DNA repair in a variety of organisms, including humans. However, the function and regulation of these enzymes in the pathogenic bacterium Mycobacterium tuberculosis and related species are poorly understood. In the present study, the physical and functional interactions between 3-methyladenine DNA glycosylase (MAG) and topoisomerase I (TopA) in M. tuberculosis and M. smegmatis were characterized. MAG was found to inhibit the function of TopA in relaxing supercoiled DNA. In contrast, TopA stimulated the cleavage function of MAG on a damaged DNA substrate that contains hypoxanthine. The interaction between the two proteins was conserved between the two mycobacterial species. Several mutations in MAG that led to the loss of its interaction with and activity regulation of TopA were also characterized. The results of this study further elucidate glycosylase regulation in both M. smegmatis and M. tuberculosis.  相似文献   

14.
The DNA increment method, designed for measuring the increment in the amount of DNA after inhibition of initiation of fresh rounds of replication initiation was employed to measure the rate of deoxyribonucleic acid (DNA) chain growth in Mycobacterium tuberculosis H37Rv growing in Youman and Karlson's medium at 37°C with a generation time of 24 h and also in relatively fast growing species like Mycobacterium smegmatis and Escherichia coli. From the results obtained, the time required for a DNA replication fork to traverse the chromosome from origin to terminus (C period) was calculated. The chain elongation rates of DNA of the three organisms was determined from the C period and the known genome sizes assuming that all these genomes have a single replication origin and bidirectional replication fork. The rate for M. tuberculosis was 3,200 nucleotides per min about 11 times slower than that of M. smegmatis and about 13–18 times slower than that of E. coli.Abbreviations DNA deoxyribonucleic acid - td delay in initiation - OD optical density - CAM chloramphenicol - RIF rifampicin  相似文献   

15.
Mycobacterium tuberculosis Rv0228, a membrane protein, is predicted as a drug target through computational methods. MSMEG_0319 (MS0319) in Mycobacterium smegmatis mc2155 is the ortholog of Rv0228. To study the effect of MS0319 protein on M. smegmatis, an MS0319 gene knockout strain (ΔMS0319) was generated via a homologous recombination technique in this study. The results showed that the lack of MS0319 protein in mc2155 cells led to the loss of viability at nonpermissive temperature. Scanning electron microscopy and transmission electron microscopy observations showed drastic changes in cellular shape especially cell wall disruption in ΔMS0319 cells. Proteomic analysis of ΔMS0319 cells through LC‐MS/MS revealed that 462 proteins had changes in their expressions by lacking MS0319 protein. The M. tuberculosis orthologs of these 462 proteins were found through BLASTp search and functional clustering and metabolic pathway enrichment were performed on the orthologs. The results revealed that most of them were enzymes involved in metabolism of carbohydrates and amino acids, indicating that Rv0228 played an important role in cellular metabolism. All these results suggested Rv0228 as a potential target for development of antituberculosis drugs.  相似文献   

16.
Arylamine N-acetyltransferases (NATs) are found in many eukaryotic organisms, including humans, and have previously been identified in the prokaryote Salmonella typhimurium. NATs from many sources acetylate the antitubercular drug isoniazid and so inactivate it. nat genes were cloned from Mycobacterium smegmatis and Mycobacterium tuberculosis, and expressed in Escherichia coli and M. smegmatis. The induced M. smegmatis NAT catalyzes the acetylation of isoniazid. A monospecific antiserum raised against pure NAT from S. typhimurium recognizes NAT from M. smegmatis and cross-reacts with recombinant NAT from M. tuberculosis. Overexpression of mycobacterial nat genes in E. coli results in predominantly insoluble recombinant protein; however, with M. smegmatis as the host using the vector pACE-1, NAT proteins from M. tuberculosis and M. smegmatis are soluble. M. smegmatis transformants induced to express the M. tuberculosis nat gene in culture demonstrated a threefold higher resistance to isoniazid. We propose that NAT in mycobacteria could have a role in acetylating, and hence inactivating, isoniazid.  相似文献   

17.
Ung KS  Av-Gay Y 《FEBS letters》2006,580(11):2712-2716
The effect of exogenous oxidative stress on mycothiol (MSH) levels and redox balance was investigated in mycobacteria. Both the thiol-specific oxidant diamide and hydrogen peroxide induced up to 75% depletion of MSH to form the disulfide form, mycothione (MSSM), in Mycobacterium bovis BCG. In comparison, Mycobacterium smegmatis, a saprophytic mycobacterium, displays a greater tolerance towards these oxidants, reflected by the lack of fluxes in MSH levels and redox ratios upon oxidative stress treatments. The basal ratio of MSH to MSSM was established to be 50:1 in M. bovis BCG and 200:1 in M. smegmatis.  相似文献   

18.
Guanosine monophosphate synthetase (GMPS), encoded by guaA gene, is a key enzyme for guanine nucleotide biosynthesis in Mycobacterium tuberculosis. The guaA gene from several bacterial pathogens has been shown to be involved in virulence; however, no information about the physiological effect of direct guaA deletion in M. tuberculosis has been described so far. Here, we demonstrated that the guaA gene is essential for M. tuberculosis H37Rv growth. The lethal phenotype of guaA gene disruption was avoided by insertion of a copy of the ortholog gene from Mycobacterium smegmatis, indicating that this GMPS protein is functional in M. tuberculosis. Protein validation of the guaA essentiality observed by PCR was approached by shotgun proteomic analysis. A quantitative method was performed to evaluate protein expression levels, and to check the origin of common and unique peptides from M. tuberculosis and M. smegmatis GMPS proteins. These results validate GMPS as a molecular target for drug design against M. tuberculosis, and GMPS inhibitors might prove to be useful for future development of new drugs to treat human tuberculosis.  相似文献   

19.
20.
Aims: The anti‐tubercular drugs are less effective because of the emergence of multi‐drug resistant (MDR) and extensively drug resistant (XDR) strains of M. tuberculosis, so plants being an alternative source of anti‐microbial compounds. The aim of this study was to investigate anti‐tuberculosis potential of the plants using Mycobacterium smegmatis as a rapid screening model for detection of anti‐mycobacterial activity and further to evaluate the active plants for anti‐tuberculosis activity against M. tuberculosis using radiometric BACTEC assay. Methods and Results: The 15 plants were screened for anti‐mycobacterial activity against M. smegmatis by the disk diffusion assay. The ethanolic extracts of Mallotus philippensis, Vitex negundo, Colebrookea oppositifolia, Rumex hastatus, Mimosa pudica, Kalanchoe integra and Flacourtia ramontchii were active against M. smegmatis in primary screening. The anti‐tuberculosis potential was identified in the leaves extracts of Mallotus philippensis by radiometric BACTEC assay. The ethanolic extract of M. philippensis showed anti‐tuberculosis activity against virulent and avirulent strains of M. tuberculosis H37Rv and M. tuberculosis H37Ra with minimum inhibitory concentration 0·25 and 0·125 mg ml?1, respectively. The inhibition in growth index values of M. tuberculosis was observed in the presence of ethyl acetate fraction at a minimum concentration of 0·05 mg ml?1. Conclusion: We found that BACTEC radiometric assay is a valuable method for detection of anti‐tuberculosis activity of the plant extracts. The results indicate that ethanolic extract and ethyl acetate fraction of M. philippensis exhibited significant anti‐mycobacterial activity against M. tuberculosis. Significance and Impact of the Study: These findings provide scientific evidence to support the traditional medicinal uses of M. philippensis and indicate a promising potential of this plant for the development of anti‐tuberculosis agent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号