首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Present study highlights the importance of RF sputtered NiO thin film deposited on platinum coated glass substrate (NiO/Pt/Ti/glass) as a potential matrix for the realization of highly sensitive and selective uric acid biosensor. Uricase has been immobilized successfully onto the surface of NiO matrix by physical adsorption technique. The prepared bioelectrode (uricase/NiO/Pt/Ti/glass) is utilized for sensing uric acid using the cyclic voltammetry and UV visible spectroscopy techniques. The bioelectrode is found to exhibit highly efficient sensing response characteristics with high sensitivity of 1278.48 μA/mM; good linearity of 0.05-1.0 mM, and very low Michaelis-Menten constant (k(m)) of 0.17 mM indicating high affinity of uricase towards the analyte. The enhanced response is due to the development of NiO matrix with good electron transport property and nanoporous morphology for effective loading of enzyme with preferred orientation.  相似文献   

2.
The level of uric acid (UA) has a high relationship with gout, hyperuricemia and Lesch-Nyan syndrome. The determination of UA is an important indicator for clinics and diagnoses of kidney failure. An amperometric UA biosensor based on an Ir-modified carbon (Ir-C) working electrode with immobilizing uricase (EC 1.7.3.3) was developed by thick film screen printing technique. This is the first time to report the utilization of an uricase/Ir-C electrode for the determination of UA by using chronoamperometric (CA) method. The high selectivity of UA biosensor was achieved due to the reduction of H(2)O(2) oxidation potential based on Ir-C electrode. Using uricase/Ir-C as the sensing electrode, the interference from the electroactive biological species, such as ascorbic acid (AA) and UA (might be directly oxidized on the sensing electrode) was slight at the sensing potential of 0.25 V (versus Ag/AgCl). UA was detected amperometrically based on uricase/Ir-C electrode with a sensitivity of 16.60 microAmM(-1) over the concentration range of 0.1-0.8 mMUA, which was within the normal range in blood. The detection limit of UA biosensor was 0.01 mM (S/N=6.18) in pH 7 phosphate buffer solution (PBS) at 37 degrees C. The effects of pH, temperature, and enzymatic loading on the sensing characteristics of the UA biosensor were also investigated in this study.  相似文献   

3.
An amperometric uric acid biosensor was fabricated by immobilizing uricase (EC 1.7.3.3) onto gold nanoparticle (AuNP)/multiwalled carbon nanotube (MWCNT) layer deposited on Au electrode via carbodiimide linkage. Determination of uric acid was performed by oxidation of enzymically generated H2O2 at 0.4 V. The sensor showed optimal response within 7 s at 40 °C in 50 mM Tris–HCl buffer (pH 7.5). The linear working range of the biosensor was 0.01–0.8 mM. The limit of detection (LOD) was 0.01 mM. The sensor measured uric acid levels in serum of healthy individuals and persons suffering from gout. The analytical recoveries of the added uric acid, 10 and 20 mg L–1, were 98.0% and 96.5%, respectively. Within- and between-batch coefficients of variation were less than 5.6% and less than 4.7%, respectively. A good correlation (r = 0.998) was obtained between serum uric acid values by the standard enzymic colorimetric method and the current method. A number of serum substances had practically no interference. The sensor was used in more than 200 assays and had a storage life of 120 days at 4 °C.  相似文献   

4.
Yu J  Wang S  Ge L  Ge S 《Biosensors & bioelectronics》2011,26(7):3284-3289
In this work, chemiluminescence (CL) method was combined with microfluidic paper-based analytical device (μPAD) to establish a novel CL μPAD biosensor for the first time. This novel CL μPAD biosensor was based on enzyme reaction which produced H(2)O(2) while decomposing the substrate and the CL reaction between rhodanine derivative and generated H(2)O(2) in acid medium. Microchannels in μPAD were fabricated by cutting method. And the possible CL assay principle of this CL μPAD biosensor was explained. Rhodanine derivative system was used to reach the purpose of high sensitivity and well-defined signal for this CL μPAD biosensor. And the optimum reaction conditions were investigated. The quantitative determination of uric acid could be achieved by this CL μPAD biosensor with accurate and satisfactory result. And this biosensor could provide good reproducible results upon storage at 4°C for at least 10 weeks. The successful integration of μPAD and CL reaction made the final biosensor inexpensive, easy-to-use, low-volume, and portable for uric acid determination, which also greatly reduces the cost and increases the efficiency required for an analysis. We believe this simple, practical CL μPAD biosensor will be of interest for use in areas such as disease diagnosis.  相似文献   

5.
Amperometric glucose biosensor based on lipid film   总被引:2,自引:0,他引:2  
A novel glucose biosensor based on cast lipid film was developed. This model of biological membrane was used to supply a biological environment on the surface of the electrode, moreover it could greatly reduce the interference and effectively exclude hydrophilic electroactive material from reaching the detecting surface. TTF was selected as a mediator because of its high electron-transfer efficiency, and it was incorporated in the lipid film firmly. Glucose oxidase was immobilized in hydrogel covered on the lipid film. The effects of pH, operating potential were explored for the optimum analytical performance by using amperometric method. The response time of the biosensor was less than 20 s, and the linear range is up to 10 mmol l(-1) (corr. coeff. 0.9932) with the detection limit of 2 x 10(-5) mol l(-1). The biosensor also exihibited good stability and reproducibility.  相似文献   

6.
This work reports a technique for the stabilization after storage in air of a lipid film based biosensor for atenolol. Microporous filters composed of glass fibers (nominal pore sizes 0.7 and 1.0 microm) were used as supports for the formation and stabilization of these devices. The lipid film is formed on the filter by polymerization prior to its use. Methacrylic acid was the functional monomer, ethylene glycol dimethacrylate was the crosslinker and 2,2'-azobis-(2-methylpropionitrile) was the initiator. The method for preparation of stabilized lipid film biosensor is studied throughout this work. The response towards atenolol of these stabilized lipid membrane biosensor, for repetitive use, composed of phosphatidylcholine was compared with planar freely suspended bilayer lipid membranes (BLMs). The stabilized lipid membranes provided similar artificial ion gating events as BLMs in the form of transient signals and can function for repetitive uses after storage in air. This will allow the practical use of the techniques for chemical sensing based on lipid films and commercialization of these devices.  相似文献   

7.
DNA biosensor based on chitosan film doped with carbon nanotubes   总被引:5,自引:0,他引:5  
Li J  Liu Q  Liu Y  Liu S  Yao S 《Analytical biochemistry》2005,346(1):107-114
A biosensor based on chitosan doped with carbon nanotube (CNT) was fabricated to detect salmon sperm DNA. Methylene blue (MB) was employed as a DNA indicator. It was found that CNTs can enhance the electroactive surface area threefold (0.28 +/- 0.03 and 0.093 +/- 0.06 cm(2) for chitosan-CNT- and chitosan-modified electrodes, respectively) and can accelerate the rate of electron transfer between the redox-active MB and the electrode. A low detection limit of 0.252 nM fish sperm DNA was achieved, and no interference was found in the presence of 5 microg/ml human serum albumin. The differential pulse voltammetry signal of MB was linear over the fish sperm DNA concentration range of 0.5-20 nM.  相似文献   

8.
In wavelength surface plasmon resonance (SPR) biosensor, the manipulation of SPR dispersion relation by Ag/Au bi-metallic film was first time implemented. Due to the enhanced resonant wavelength shift and the sharper SPR slope of using Ag/Au bi-metallic film, the illuminated color of reflection shows one order of magnitude greater contrast than conventional SPR biosensors. Such an Ag/Au bi-metallic film based color SPR biosensor (CSPRB) allows the detail bio-interactions, for example 100 nM streptavidin, to be distinguished by directly observing the color change of reflection through naked eyes rather than the analysis of spectrometer. In addition to the enhanced sensitivity and color contrast, this CSPRB also possesses a great linear detection range up to 0.0254 RIU, which leading to the application of point-of-care tests.  相似文献   

9.
The simultaneous encapsulation of a coupled uricase-peroxidase system and amplex red in a sol-gel matrix allows one to obtain a reagent-less and ready-to-use fluorescent biosensor for the accurate detection of uric acid in highly diluted biological fluids. The detection limit of the prepared biosensor was found to be 20 nM and was linear up to 1 microM. The high sensitivity found for the biosensor permitted a reliable determination of uric acid concentrations in the presence of interfering species (e.g., ascorbic acid) just by sample dilution (up to 50000 for urine and 10000 for serum and blood). The sol-gel encapsulation preserved the hierarchy of the enzyme activity as demonstrated by the performance of the fluorescent biosensor.  相似文献   

10.
We report an analytical method using a thin film electro-acoustic resonator for the detection of organophosphorus pesticides. The acetylcholinesterase (AChE) enzyme was immobilized on the surface of the resonator. In the presence of organophosphorus compounds, the degree of inhibitory effect of organophosphorus compounds on the AChE activity and the concentration of pesticides were detected in real time by measuring the frequency shift of the resonator. The proposed device has a remarkably low detection limit of 1.8×10(-11)M and obvious advantages such as small size, simple operation, and integrated circuit compatibility, providing a promising tool for pesticide analysis.  相似文献   

11.
A three-dimensional (3D) continuous and interconnected network graphene foam (GF) was synthesized by chemical vapor deposition using nickel foam as a template. The morphologies of the GF were observed by scanning electron microscopy. X-ray diffraction and Raman spectroscopy were used to investigate the structure of GF. The graphene with few layers and defect free was closely coated on the backbone of the 3D nickel foam. After etching nickel, the GF was transferred onto indium tin oxide (ITO) glass, which acted as an electrode to detect uric acid using cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The GF/ITO electrode showed a high sensitivity for the detection of uric acid: approximately 9.44 mA mM−1 in the range of 25 nM–0.1 μM and 1.85 mA mM−1 in the range of 0.1–60 μM. The limit of detection of GF/ITO electrode for uric acid is 3 nM. The GF/ITO electrode also showed a high selectivity for the detection of uric acid in the presence of ascorbic acid. This electrode will have a wide range of potential application prospects in electrochemical detection.  相似文献   

12.
A chitosan-glutaraldehyde crosslinked uricase was immobilized onto Prussian blue nanoparticles (PBNPs) absorbed onto carboxylated multiwalled carbon nanotube (c-MWCNT) and polyaniline (PANI) layer, electrochemically deposited on the surface of Au electrode. The nanohybrid-uricase electrode was characterized by scanning electron microscopic (SEM), Fourier transform infrared spectroscopy (FTIR) and cyclic voltammetry. An amperometric uric acid biosensor was fabricated using uricase/c-MWCNT/PBNPs/Au electrode as working electrode, Ag/AgCl as standard and Pt wire as auxiliary electrode connected through a potentiostat. The biosensor showed optimum response within 4 s at pH 7.5 and 40 °C, when operated at 0.4 V vs. Ag/AgCl. The linear working range for uric acid was 0.005-0.8 mM, with a detection limit of 5 μM. The sensor was evaluated with 96% recovery of added uric acid in sera and 4.6 and 5.4% within and between batch of coefficient of variation respectively and a good correlation (r = 0.99) with standard enzymic colorimetric method. This sensor measured uric acid in real serum samples. The sensor lost only 37% of its initial activity after its 400 uses over a period of 7 months, when stored at 4 °C.  相似文献   

13.
We report on an amperometric biosensor that is based on a nanocomposite of carbon nanotubes (CNT), a nano-thin plasma-polymerized film (PPF), and glucose oxidase (GOx) as an enzyme model. A mixture of the GOx and a CNT film is sandwiched with 10-nm-thick acetonitrile PPFs. Under PPF layer was deposited onto a sputtered gold electrode. To facilitate the electrochemical communication between the CNT layer and GOx, CNT was treated with nitrogen or oxygen plasma. The resulting device showed that the oxidizing current response due to enzymatic reaction was 4-16-fold larger than that with only CNT or PPF, showing that the PPF and/or plasma process is an enzyme-friendly platform for designing electrochemical communication from the reaction center of GOx to the electrode via CNTs. The optimized glucose biosensor showed high sensitivity (sensitivity of 42 microA mM(-1)cm(-2), correlation coefficient of 0.992, linear response range of 0.025-2.2 mM, and a detection limit of 6 microM at signal/noise ratio of 3, +0.8 V versus Ag/AgCl), high selectivity (almost no interference by 0.5 mM ascorbic acid) for glucose quantification, and rapid response (<4 s to reach 95% of maximum response). Additionally, the devices showed a small and stable background current (0.35+/-0.013 microA) compared with the glucose response (ca. 10 microA at 10mM glucose) and suitable reproducibility from sample-to-sample (<3%, n=4).  相似文献   

14.
A screen-printed carbon electrode (SPCE) incorporating the electrocatalyst cobalt phthalocyanine (CoPC), fabricated using a water-based ink formulation, has been investigated as the base transducer for a uric acid biosensor. A sandwich biosensor was fabricated by first depositing cellulose acetate (CA) onto this transducer (CoPC-SPCE), followed by uricase (UOX) and finally a polycarbonate (PC) membrane; this device is designated PC-UOX-CA-CoPC-SPCE. This biosensor was used in conjunction with chronoamperometry to optimize the conditions for the analysis of urine: temperature, 35°C; buffer, pH 9.2; ionic strength, 50 mM; uricase, 0.6 U; incubation time, 180 s. The proposed biosensor was applied to urine from a healthy subject. The precision determined on unspiked urine (n=6) was 5.82%. Urine was fortified with 0.225 mM UA, and the resulting precision and recovery were 4.21 and 97.3%, respectively. The linear working range of the biosensor was found to be 0.015 to 0.25 mM (the former represents the detection limit), and the sensitivity was calculated to be 2.10 μA/mM.  相似文献   

15.
An uric acid biosensor fabricated from a uricase-immobilized eggshell membrane and an oxygen electrode was presented. The detection schemes involve the enzymatic reactions of the uricase leading to the depletion of dissolved oxygen level upon exposure to uric acid solution. The decrease in oxygen level was monitored and related to the uric acid concentration. The scanning electron micrographs show the microstructure of the eggshell membrane within which the uricase is successfully immobilized. The effects of enzyme loading, pH, temperature, and phosphate buffer concentration on the response of the biosensor were investigated in detail. The uric acid biosensor has a linear response range of 4.0-640 microM with a detection limit of 2.0 microM (S/N=3). The response time was less than 100 s. The biosensor exhibited good repeatable response to a 0.10mM uric acid solution with a relative standard deviation of 3.1% (n=7). The reproducibility of fabrication of the biosensors using four different membranes was good with a R.S.D. of 3.2%. The biosensor showed extremely good stability with a shelf-life of at least 3 months. Some common potential interferents in samples such as glucose, urea, ascorbic acid, lactic acid, glycine, DL-alpha-alanine, DL-cysteine, KCl, NaCl, CaCl2, MgSO4, and NH4Cl showed no interferences on the response of the uric acid biosensor. The biosensor was successfully applied to determine the uric acid level in some human serum and urine samples, and the results agreed well with those obtained by a commercial colorimetric assay kit.  相似文献   

16.
Here we report on a novel platform based on buckypaper for the design of high-performance electrochemical biosensors. Using glucose oxidase as a model enzyme, we constructed a biocompatible mediator-free biosensor and studied the potential effect of the buckypaper on the stability of the biosensor with both amperometry and FTIR spectroscopy. The results showed that the biosensor responses sensitively and selectively to glucose with a considerable functional lifetime of over 80 days. The fabricated enzymatic sensor detects glucose with a dynamic linear range of over 9 mM and a detection limit of 0.01 mM. To examine the efficiency of enzyme immobilization, the Michaelis–Menten constant was calculated to be 4.67 mM. In addition, the fabricated electrochemical biosensor shows high selectivity; no amperometric response to the common interference species such as ascorbic acid, uric acid and acetamidophenol was observed. The facile and robust buckypaper-based platform proposed in this study opens the door for the design of high-performance electrochemical biosensors for medical diagnostics and environmental monitoring.  相似文献   

17.
Activated human neutrophils supernatant enhances prostanoids production by bull seminal cyclooxygenase (455% of control). Superoxide anion and hydrogen peroxide are not involved in this stimulation, in these experimental conditions. Myeloperoxidase (by this hemic nature) and HPETEs (by their -OOH function) could trigger cyclooxygenase. In the presence of uric acid (10−3 M), a potent hydroxyl radical scavenger, the cyclooxygenase stimulation by supernatant is increased until 709% of the control.  相似文献   

18.
Activated human neutrophils supernatant enhances prostanoids production by bull seminal cyclooxygenase (455% of control). Superoxide anion and hydrogen peroxide are not involved in this stimulation, in these experimental conditions. Myeloperoxidase (by its hemic nature) and HPETEs (by their -OOH function) could trigger cyclooxygenase. In the presence of uric acid (10(-3) M), a potent hydroxyl radical scavenger, the cyclooxygenase stimulation by supernatant is increased until 709% of the control.  相似文献   

19.
The preparations and performances of the novel amperometric biosensors for glucose based on immobilized glucose oxidase (GOD) on modified Pt electrodes are described. Two types of modified electrodes for the enzyme immobilization were used in this study, polyvinylferrocene (PVF) coated Pt electrode and gold deposited PVF coated Pt electrode. A simple method for the immobilization of GOD enzyme on the modified electrodes was described. The enzyme electrodes developed in this study were called as PVF-GOD enzyme electrode and PVF-Au-GOD enzyme electrode, respectively. The amperometric responses of the enzyme electrodes were measured at constant potential, which was due to the electrooxidation of enzymatically produced H2O2. The electrocatalytic effects of the polymer, PVF, and the gold particles towards the electrooxidation of the enzymatically generated H2O2 offers sensitive and selective monitoring of glucose. The biosensor based on PVF-Au-GOD electrode has 6.6 times larger maximum current, 3.8 times higher sensitivity and 1.6 times larger linear working portion than those of the biosensor based on PVF-GOD electrode. The effects of the applied potential, the thickness of the polymeric film, the amount of the immobilized enzyme, pH, the amount of the deposited Au, temperature and substrate concentration on the responses of the biosensors were investigated. The optimum pH was found to be pH 7.4 at 25 degrees C. Finally the effects of interferents, stability of the biosensors and applicability to serum analysis of the biosensor were also investigated.  相似文献   

20.
Yue R  Lu Q  Zhou Y 《Biosensors & bioelectronics》2011,26(11):4436-4441
A novel nitrite biosensor was developed through a sensing platform consisted of single-layer graphene nanoplatelet (SLGnP)-protein composite film. SLGnP with the virtues of excellent biocompatibility, conductivity and high sensitivity to the local perturbations can provide a biocompatible microenvironment for protein immobilization and a suitable electron transfer distance between electroactive centers of heme protein and electrode surface. A pair of well-defined and quasi-reversible cyclic voltammetric peaks that reflected the direct electrochemistry for ferric/ferrous couple of myoglobin (Mb) was achieved at the composite film modified electrode. Field emission scanning electron microscopy (FESEM) and ultraviolet visible spectra (UV-vis) were utilized to characterize the composite film. The results demonstrated that the morphology of the composite film was unique and the protein in the composite film retained its secondary structure similar to the native state. The composite film also displayed excellent electrocatalytic ability for the reduction of nitric oxide, which was applied to determine nitrite indirectly. It exhibited good electrochemical response to nitrite with a linear range from 0.05 to 2.5 mM and a detection limit of 0.01 mM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号