共查询到20条相似文献,搜索用时 8 毫秒
1.
Hochegger H Klotzbücher A Kirk J Howell M le Guellec K Fletcher K Duncan T Sohail M Hunt T 《Development (Cambridge, England)》2001,128(19):3795-3807
Progression through meiosis requires two waves of maturation promoting factor (MPF) activity corresponding to meiosis I and meiosis II. Frog oocytes contain a pool of inactive "pre-MPF" consisting of cyclin-dependent kinase 1 bound to B-type cyclins, of which we now find three previously unsuspected members, cyclins B3, B4 and B5. Protein synthesis is required to activate pre-MPF, and we show here that this does not require new B-type cyclin synthesis, probably because of a large maternal stockpile of cyclins B2 and B5. This stockpile is degraded after meiosis I and consequently, the activation of MPF for meiosis II requires new cyclin synthesis, principally of cyclins B1 and B4, whose translation is strongly activated after meiosis I. If this wave of new cyclin synthesis is ablated by antisense oligonucleotides, the oocytes degenerate and fail to form a second meiotic spindle. The effects on meiotic progression are even more severe when all new protein synthesis is blocked by cycloheximide added after meiosis I, but can be rescued by injection of indestructible B-type cyclins. B-type cyclins and MPF activity are required to maintain c-mos and MAP kinase activity during meiosis II, and to establish the metaphase arrest at the end of meiotic maturation. We discuss the interdependence of c-mos and MPF, and reveal an important role for translational control of cyclin synthesis between the two meiotic divisions. 相似文献
2.
We have analyzed the expression and function of the cell death and cell cycle regulator Aven in Xenopus. Analysis of Xenopus Aven expression in oocytes and embryos revealed a band close to the predicted molecular weight of the protein (36 kDa) in addition to two bands of higher molecular weight (46 and 49 kDa), one of which was determined to be due to phosphorylation of the protein. The protein is primarily detected in the cytoplasm of oocytes and is tightly regulated during meiotic and mitotic cell cycles. Progesterone stimulation of oocytes resulted in a rapid loss of Aven expression with the protein levels recovering before germinal vesicle breakdown (GVBD). This loss of Aven is required for the G2–M1 cell cycle transition. Aven morpholino knockdown experiments revealed that early depletion of the protein increases progesterone sensitivity and facilitates GVBD, but prolonged depletion of Aven results in caspase-3 activation and oocyte death by apoptosis. Phosphorylated Aven (46 kDa) was found to bind Bcl-xL in oocytes, but this interaction was lost in apoptotic oocytes. Thus, Aven alters progesterone sensitivity in oocytes and is critical for oocyte survival. 相似文献
3.
A Castro M Peter T Lorca E Mandart 《Biology of the cell / under the auspices of the European Cell Biology Organization》2001,93(1-2):15-25
Fully-grown G2 arrested Xenopus oocytes can be induced to enter and progress into meiotic cell cycle by progesterone stimulation. This process is termed oocyte maturation. An early response to progesterone is the synthesis of the onco-protein c-Mos, defined as the candidate initiator of Xenopus oocyte maturation, which triggers the MAPK cascade, MPF activation and promotes CSF activity. Here we review our current knowledge on the synthesis, activation and functions of c-Mos in connection with MPF activation during maturation. We also discuss our recent results concerning the dispensability of cyclin B degradation in meiosis I-meiosis II transition and the stabilization of c-Mos through its direct phosphorylation by cyclin B/cdc2. 相似文献
4.
M phase or maturation promoting factor (MPF), a kinase complex composed of the regulatory cyclin B and the catalytic p34cdc2 kinase, plays important roles in meiosis and mitosis. This study was designed to detect and compare the subcellular localization of cyclin B1, phosphorylated cyclin B1 and p34cdc2 during oocyte meiotic maturation and fertilization in mouse. We found that all these proteins were concentrated in the germinal vesicle of oocytes. Shortly after germinal vesicle breakdown, all these proteins were accumulated around the condensed chromosomes. With spindle formation at metaphase I, cyclin B1 and phosphorylated cyclin B1 were localized around the condensed chromosomes and concentrated at the spindle poles, while p34cdc2 was localized in the spindle region. At the anaphase/telophase transition, phosphorylated cyclin B1 was accumulated in the midbody between the separating chromosomes/chromatids, while p34cdc2 was accumulated in the entire spindle except for the midbody region. At metaphase II, both cyclin B1 and p34cdc2 were horizontally localized in the region with the aligned chromosomes and the two poles of the spindle, while phosphorylated cyclin B1 was localized in the two poles of spindle and the chromosomes. We could not detect a particular distribution of cyclin B1 in fertilized eggs when the pronuclei were initially formed, but in late pronuclei cyclin B1 was accumulated in the pronuclei. p34cdc2 and phosphorylated cyclin B1 were always concentrated in one pronucleus after parthenogenetic activation or in two pronuclei after fertilization. At metaphase of 1-cell embryos, cyclin B1 was accumulated around the condensed chromosomes. Cyclin B1 was accumulated in the nucleus of late 2-cell embryos but not in early 2-cell embryos. Furthermore, we also detected the accumulation of p34cdc2 in the nucleus of 2- and 4-cell embryos. All these results show that cyclin B1, phosphorylated cyclin B1 and p34cdc2 have similar distributions at some stages but different localizations at other stages during oocyte meiotic maturation and fertilization, suggesting that they may play a common role in some events but different roles in other events during oocyte maturation and fertilization. 相似文献
5.
Requirement for phosphorylation of cyclin B1 for Xenopus oocyte maturation. 总被引:3,自引:1,他引:3 下载免费PDF全文
Maturation-promoting factor, consisting of cdc2 protein kinase and a regulatory B-type cyclin, is a universal regulator of meiosis and mitosis in eukaryotes. In Xenopus, there are two subtypes of B-type cyclins, designated B1 and B2, both of which are phosphorylated. In this study, we have investigated the biological significance of this phosphorylation for Xenopus cyclin B1 during meiotic maturation. We have used a combination of site-directed mutagenesis and phosphopeptide-mapping to identify serine residues 2, 94, 96, 101, and 113 as presumptive phosphorylation sites, and together these sites account for all cyclin B1 phosphorylation in oocytes before germinal vesicle breakdown (GVBD). Single Ser-->Ala mutants as well as multiple site mutants have been constructed and characterized. Phosphorylation of cyclin B1 appears to be required for Xenopus oocyte maturation, based on the significantly diminished ability of the quintuple Ala mutant to induce oocyte maturation. Furthermore, partial phosphorylation of these five sites is sufficient to meet this requirement. Phosphorylation of cyclin B1 is not required for cdc2 kinase activity, for binding to cdc2 protein, for stability of cyclin B1 before GVBD, or for destruction of cyclin B1 after GVBD or after egg activation. A quintuple Glu mutant was also constructed, with serine residues 2, 94, 96, 101, and 113 mutated to Glu. In contrast to the quintuple Ala mutant, the quintuple Glu mutant was able to induce oocyte maturation efficiently, and with more rapid kinetics than wild-type cyclin B1. These data confirm that phosphorylation, as mimicked by Ser-->Glu mutations, confers enhanced biological activity to cyclin B1. Possible roles of cyclin B1 phosphorylation are discussed that might account for the increased biological activity of the quintuple Glu mutant. 相似文献
6.
Pascreau G Delcros JG Morin N Prigent C Arlot-Bonnemains Y 《Developmental biology》2008,317(2):523-530
Xenopus laevis Aurora-A is phosphorylated in vivo onto three amino acids: Ser53, Thr295 and Ser349. The activation of the kinase depends on its autophosphorylation on Thr295 within the T-loop. The phosphorylation of Ser53 by still unknown kinase(s) prevents its degradation. The present work focused on the regulation of Aurora-A function via Ser349 phosphorylation. Mutagenesis of Ser349 to alanine (S349A) had few impact in vitro on the capability of the kinase to autophosphorylate as well as on its activity. These data in addition to in gel kinase assays and site-specific proteolytic digestion experiments prove that Ser349 is clearly neither a primary autophosphorylation site, nor an autophosphorylation site depending on the priming phosphorylation of Thr295. Using specific antibodies, we also show that the phosphorylation of Aurora-A Ser349 is a physiological event during Xenopus oocyte maturation triggered by progesterone. A peak of phosphorylation paralleled the decrease of Aurora activity observed between meiosis I and II. In response to progesterone, X. laevis stage VI oocytes microinjected with the Aurora-A S349A mutant proceeded normally to germinal vesicle breakdown (GVBD), but degenerated rapidly soon after. Since phosphorylation of Ser349 is responsible for a decrease in kinase activity, our results suggest that a down-regulation of Aurora-A activity involving Ser349 phosphorylation is required in the process of maturation. 相似文献
7.
The chromosome passenger complex (CPC) consists of Aurora-B kinase and several other subunits. One of these, incenp, binds Aurora-B and regulates its kinase activity. During Xenopus oocyte maturation, incenp accumulates through translation, contributing to aurora-b activation. A previous study has demonstrated that inhibition of incenp translation during oocyte maturation diminishes aurora-b activation but does not interfere with oocyte maturation, characterized by normal maturation-specific cyclin-b phosphorylation, degradation, and resynthesis. Here we have extended these findings, showing that inhibition of incenp translation during oocyte maturation did not interfere with meiosis I or II, as indicated by the normal emission of the first polar body and metaphase II arrest, followed by the successful emission of the second polar body upon parthenogenetic egg activation. Most importantly, however, when transferred to host frogs and subsequently ovulated, the incenp-deficient eggs were fertilized but failed to undergo mitotic cleavage. Thus, translation of incenp during oocyte maturation appears to be part of oocyte cytoplasmic maturation, preparing the egg for the rapid mitosis following fertilization. 相似文献
8.
In many vertebrates, cyclin B has several subtypes, but the functional differences among them are largely unclear. Previously, we have shown that Xenopus cyclin B2, not cyclin B1, is involved in bipolar spindle formation through its cytoplasmic retention signal (CRS) region. However, identification of a nuclear export signal (NES) in the CRS region of cyclin B1 raised the possibility that an NES-like sequence (NELS) present in the CRS region of cyclin B2 might be involved in bipolar spindle formation. We show here that cyclin B2 is actually exported from the nucleus via its NELS, but that overexpression of the cyclin B2 CRS region, having a mutated NELS, still inhibits bipolar spindle formation in oocytes. In contrast, overexpression of the cyclin B2 CRS region lacking its C-terminal seven amino acids no longer inhibits bipolar spindle formation in oocytes or embryos. These results suggest strongly that the CRS region, especially its C-terminal seven acidic residues, of cyclin B2 is required for bipolar spindle formation in both the meiotic and mitotic cell divisions. 相似文献
9.
Nakahata S Kotani T Mita K Kawasaki T Katsu Y Nagahama Y Yamashita M 《Mechanisms of development》2003,120(8):865-880
Protein synthesis of cyclin B by translational activation of the dormant mRNA stored in oocytes is required for normal progression of maturation. In this study, we investigated the involvement of Xenopus Pumilio (XPum), a cyclin B1 mRNA-binding protein, in the mRNA-specific translational activation. XPum exhibits high homology to mammalian counterparts, with amino acid identity close to 90%, even if the conserved RNA-binding domain is excluded. XPum is bound to cytoplasmic polyadenylation element (CPE)-binding protein (CPEB) through the RNA-binding domain but not to its phosphorylated form in mature oocytes. In addition to the CPE, the XPum-binding sequence of cyclin B1 mRNA acts as a cis-element for translational repression. Injection of anti-XPum antibody accelerated oocyte maturation and synthesis of cyclin B1, and, conversely, over-expression of XPum retarded oocyte maturation and translation of cyclin B1 mRNA, which was accompanied by inhibition of poly(A) tail elongation. The injection of antibody and the over-expression of XPum, however, had no effect on translation of Mos mRNA, which also contains the CPE. These findings provide the first evidence that XPum is a translational repressor specific to cyclin B1 in vertebrates. We propose that in cooperation with the CPEB-maskin complex, the master regulator common to the CPE-containing mRNAs, XPum acts as a specific regulator that determines the timing of translational activation of cyclin B1 mRNA by its release from phosphorylated CPEB during oocyte maturation. 相似文献
10.
《Biology of the cell / under the auspices of the European Cell Biology Organization》1998,90(6-7):509-518
Cyclin B, a regulatory subunit of maturation/M-phase promoting factor (MPF), has several subtypes in many vertebrate species. However, it is not known whether the different B-type cyclins have any different functions in vertebrate cells, although their subcellular localizations seem to differ largely from each other. To examine the roles of two major B-type cyclins, B1 and B2, in spindle formation in M phase, we overexpressed their N-termini in Xenopus oocytes; the N-termini of cyclins B1 and B2 contained a cytoplasmic retention signal (CRS), and hence their overexpressions were expected to competitively inhibit the subcellular localizations of the endogenous cyclins B1 and B2, respectively. Upon entry into meiosis I, oocytes overexpressing the cyclin B1 N-terminus formed an apparently normal bipolar spindle, but those oocytes overexpressing the cyclin B1 N-terminus formed a monopolar (or monoastral) spindle. This defect in bipolar spindle formation was observed only when the cyclin B2 N-terminus contained its own CRS sequence, and was able to be rescued by overexpression of full-length cyclin B2. These results suggest, for the first time, that the correct subcellular localization of cyclin B2, but not of cyclin B1, is essential for (the initiation of) bipolar spindle formation in Xenopus oocytes. 相似文献
11.
Teng Zhang Yang Zhou Shu-Tao Qi Zhen-Bo Wang Wei-Ping Qian Ying-Chun Ouyang Wei Shen Heide Schatten Qing-Yuan Sun 《Cell cycle (Georgetown, Tex.)》2015,14(16):2701-2710
Nuf2 plays an important role in kinetochore-microtubule attachment and thus is involved in regulation of the spindle assembly checkpoint in mitosis. In this study, we examined the localization and function of Nuf2 during mouse oocyte meiotic maturation. Myc6-Nuf2 mRNA injection and immunofluorescent staining showed that Nuf2 localized to kinetochores from germinal vesicle breakdown to metaphase I stages, while it disappeared from the kinetochores at the anaphase I stage, but relocated to kinetochores at the MII stage. Overexpression of Nuf2 caused defective spindles, misaligned chromosomes, and activated spindle assembly checkpoint, and thus inhibited chromosome segregation and metaphase-anaphase transition in oocyte meiosis. Conversely, precocious polar body extrusion was observed in the presence of misaligned chromosomes and abnormal spindle formation in Nuf2 knock-down oocytes, causing aneuploidy. Our data suggest that Nuf2 is a critical regulator of meiotic cell cycle progression in mammalian oocytes. 相似文献
12.
Cyclin B synthesis is required for sea urchin oocyte maturation 总被引:5,自引:0,他引:5
Sea urchins are members of a limited group of animals in which meiotic maturation of oocytes is completed prior to fertilization. This is different from oocytes of most animals such as mammals and amphibians in which fertilization reactivates an arrested meiotic cycle. Using a recently developed technique for in vitro maturation of sea urchin oocytes, we analyzed the role of cyclin B, the regulatory component of maturation-promoting factor, in the control of sea urchin oocyte meiotic induction and progression. Oocytes of the sea urchin Lytechinus variegatus accumulate significant amounts of cyclin B mRNA and protein during oogenesis. We analyzed cyclin B synthetic requirements in oocytes and early embryos by inhibiting cyclin B synthesis with DNA and morpholino antisense oligonucleotides. Cyclin B synthesis is not necessary for the entry of G2-arrested oocytes into meiosis; however, it is required for the proper progression through meiotic divisions. Surprisingly, mature sea urchin eggs contain significant cyclin B protein following meiosis that serves as a maternal store for early cleavage divisions. We also find that cyclin A can functionally substitute for cyclin B in early embryos but not in oocytes. These studies provide a foundation for understanding the mechanism of meiotic maturation independent of the zygotic cell cycle. 相似文献
13.
Casas E Betancourt M Bonilla E Duculomb Y Zayas H Trejo R 《Zygote (Cambridge, England)》1999,7(1):21-26
The localisation of cyclin B throughout in vitro maturation of pig oocytes was determined by indirect immunofluorescence using a monoclonal antibody specific for an epitope of the human cyclin B. Maturation of pig oocytes was induced by addition of Pergonal (2 UI/ml of FSH/LH) and beta-oestradiol to the medium where isolated ovarian follicles were cultured for up to 72 h. Immature gametes with an intact germinal vesicle were observed during the first 30 h of culture. Only 10% were competent to reinitiate meiosis and showed germinal vesicle breakdown (GVBD) after 36 h. However, after 48-72 h, 60% of the oocytes accomplished their maturation and showed metaphase chromosomes. Immature oocytes showed cyclin B immunofluorescent staining in the cytoplasm, whereas mature oocytes showed the immunofluorescent label concentrated in the nucleus. Metaphase chromosomes showed an intense immunofluorescence. The migration of cyclin B to the nucleus and its association with metaphase chromosomes in pig oocytes able to progress through meiosis resembled the subcellular localisation of cyclin B and the distribution of maturation promoting factor (MPF) in mitotic dividing cells. 相似文献
14.
Requirement of cyclin B2, but not cyclin B1, for bipolar spindle formation in frog (Rana japonica) oocytes 总被引:1,自引:0,他引:1
Cyclin B, the regulatory subunit of maturation-promoting factor (MPF), comprises several subtypes that are presumed to confer different functions on MPF although no direct evidence has been provided to date. To clarify the difference in the roles of cyclins B1 and B2, we used frog (Rana japonica) oocytes in which MPF is formed only after progesterone stimulation because it is possible to produce oocytes containing either cyclin B1-MPF or cyclin B2-MPF by antisense RNA-mediated translational inhibition of each mRNA. Using this advantage, we investigated the functions of cyclins B1 and B2 and obtained the following results: (a) oocytes synthesizing cyclin B2-MPF underwent meiosis I and II with formation of a bipolar spindle at each metaphase; (b) oocytes synthesizing cyclin B1-MPF formed a monopolar spindle at metaphase I and extruded an abnormal polar body; and (c) both oocytes underwent germinal vesicle breakdown (GVBD) and chromosome condensation. Immunocytochemical observations also revealed continuous localization of cyclin B2 on the spindle during meiosis. These results provide evidence of the requirement of cyclin B2, but not cyclin B1, for organizing the bipolar spindle, though either cyclin B1 or B2 is redundant for inducing GVBD and chromosome condensation. 相似文献
15.
The RRASK motif in Xenopus cyclin B2 is required for the substrate recognition of Cdc25C by the cyclin B-Cdc2 complex 总被引:1,自引:0,他引:1
Goda T Ishii T Nakajo N Sagata N Kobayashi H 《The Journal of biological chemistry》2003,278(21):19032-19037
The FLRRXSK sequence is conserved in the second cyclin box fold of B-type cyclins. We show that this conserved sequence in Xenopus cyclin B2, termed the RRASK motif, is required for the substrate recognition by the cyclin B-Cdc2 complex of Cdc25C. Mutations to charged residues of the RRASK motif of cyclin B2 abolished its ability to activate Cdc2 kinase without affecting its capacity to bind to Cdc2. Cdc2 bound to the cyclin B2 RRASK mutant was not dephosphorylated by Cdc25C, and as a result, the complex was inactive. The cyclin B2 RRASK mutants can form a complex with the constitutively active Cdc2, but a resulting active complex did not phosphorylate a preferred substrate Cdc25C in vitro, although it can phosphorylate the non-specific substrate histone H1. The RRASK mutations prevented the interaction of Cdc25C with the cyclin B2-Cdc2 complex. Consistently, the RRASK mutants neither induced germinal vesicle breakdown in Xenopus oocyte maturation nor activated in vivo Cdc2 kinase during the cell cycle in mitotic extracts. These results suggest that the RRASK motif in Xenopus cyclin B2 plays an important role in defining the substrate specificity of the cyclin B-Cdc2 complex. 相似文献
16.
Oocyte maturation is an important process required to achieve optimal oocyte quality, and later affects fertilization potential and subsequent embryo development. The maturation process includes synchronized nuclear and cytoplasmic remodeling, in which cytoskeletal and centrosome dynamics play an important role and significantly participate in cellular signaling. Centrosome remodeling within the maturing oocyte is essential for accurate meioisis I and II spindle formation, specifically to separate chromosomes accurately during the two successive, highly asymmetric meiotic cell divisions. Centrosomal abnormalities result in inaccurate microtubule organization and inaccurate chromosome alignment, with failures in chromosome segregation leading to aneuploidy and chromosomal abnormalities. The present review is focused on cytoskeletal and centrosome remodeling during oocyte maturation, with specific attention to γ-tubulin, pericentrin, the Nuclear Mitotic Apparatus (NuMA) protein, and microtubule organization. Species-specific differences will be discussed for rodent (mouse) and non-rodent (bovine, porcine) species, and for human oocytes. 相似文献
17.
Yamamoto TM Blake-Hodek K Williams BC Lewellyn AL Goldberg ML Maller JL 《Molecular biology of the cell》2011,22(13):2157-2164
Greatwall kinase has been identified as a key element in M phase initiation and maintenance in Drosophila, Xenopus oocytes/eggs, and mammalian cells. In M phase, Greatwall phosphorylates endosulfine and related proteins that bind to and inhibit protein phosphatase 2A/B55, the principal phosphatase for Cdk-phosphorylated substrates. We show that Greatwall binds active PP2A/B55 in G2 phase oocytes but dissociates from it when progesterone-treated oocytes reach M phase. This dissociation does not require Greatwall kinase activity or phosphorylation at T748 in the presumptive T loop of the kinase. A mutant K71M Greatwall, also known as Scant in Drosophila, induces M phase in the absence of progesterone when expressed in oocytes, despite its reduced stability and elevated degradation by the proteasome. M phase induction by Scant Greatwall requires protein synthesis but is not associated with altered binding or release of PP2A/B55 as compared to wild-type Greatwall. However, in vitro studies with Greatwall proteins purified from interphase cells indicate that Scant, but not wild-type Greatwall, has low but detectable activity against endosulfine. These results demonstrate progesterone-dependent regulation of the PP2A/B55-Greatwall interaction during oocyte maturation and suggest that the cognate Scant Greatwall mutation has sufficient constitutive kinase activity to promote M phase in Xenopus oocytes. 相似文献
18.
Lefebvre T Baert F Bodart JF Flament S Michalski JC Vilain JP 《Journal of cellular biochemistry》2004,93(5):999-1010
O-linked N-acetylglucosamine (O-GlcNAc) glycosylation is a post-translational modification, which is believed antagonises phosphorylation. We have studied the O-GlcNAc level during Xenopus oocyte meiotic resumption, taking advantage of the high synchrony of this model which is dependent upon a burst of phosphorylation. Stimulation of immature stage VI oocytes using progesterone was followed by a 4.51 +/- 0.32 fold increase in the GlcNAc content, concomitantly to an increase in phosphorylation, notably on two cytoplasmic proteins of 66 and 97 kDa. The increase of O-GlcNAc for the 97 kDa protein, which we identified as beta-catenin was partly related to its accumulation during maturation, as was demonstrated by the use of the protein synthesis inhibitor--cycloheximide. Microinjection of free GlcNAc, which inhibits O-glycosylated proteins-lectins interactions, delayed the progesterone-induced maturation without affecting the O-GlcNAc content. Our results suggest that O-GlcNAc glycosylation could regulate protein-protein interactions required for the cell cycle kinetic. 相似文献
19.
Jin Ihara Noriyuki Yoshida Toyomi Tanaka Koichi Mita Masakane Yamashita 《Molecular reproduction and development》1998,50(4):499-509
Oocyte maturation is finally triggered by the maturation-promoting factor (MPF), which consists of Cdc2 and cyclin B. We have cloned cDNAs encoding frog (Rana japonica) cyclins B1 and B2 and produced antibodies against their products. Using the antibodies, we investigated changes in protein states and levels of Cdc2 and cyclins B1 and B2 during oocyte maturation. In immature oocytes, all Cdc2 was a monomeric unphosphorylated inactive 35 kDa form and neither cyclin B1 nor cyclin B2 was present. Mature oocytes contained the MPF complex consisting of an active 34 kDa Cdc2 phosphorylated on threonine161 and a 49 kDa cyclin B1 or a 51 kDa cyclin B2. After progesterone stimulation, both cyclins B1 and B2 were synthesized from their stored mRNAs and bound to the preexisting 35 kDa Cdc2. The binding of Cdc2 with cyclin B and its activation probably through the phosphorylation on threonine161 occurred at almost the same time, in accordance with an electrophoretic mobility shift of Cdc2 from 35 to 34 kDa. Microinjection into immature oocytes of cyclin B1 or B2 mRNA alone, or a mixture of them, induced germinal vesicle breakdown (GVBD) with similar dose-dependence. When the translation of endogenous mRNAs of both cyclins B1 and B2 was inhibited with antisense RNAs, progesterone failed to induce GVBD in the oocytes, but the inhibition of only one of the two was unable to inhibit the progesterone-induced GVBD. These results indicate that either cyclin B1 or B2 is necessary and sufficient for inducing GVBD during Rana oocyte maturation. Mol. Reprod. Dev. 50:499–509, 1998. © 1998 Wiley-Liss, Inc. 相似文献
20.
In the early development of the frog, Xenopus laevis, blastomeres undergo synchronous divisions at about the 12th cell cycle, followed by asynchronous divisions, which is referred to as mid-blastula transition (MBT). We investigated the distribution of several regulating factors for cell cycles around MBT using immunocytochemistry and confocal fluorescence microscopy. At the 8th cell cycle, most of the cdc2/cyclin B was localized in the cortical cytoplasm throughout the cell cycle, in the centrosomes and the nucleus at interphase and prometaphase, and in the spindles at metaphase and anaphase. Cdc2 was also localized in the chromatins at metaphase and anaphase. Cyclin B1 mRNA was localized in the periphery of the nucleus, but not in the cell cortex. At the 13th cell cycle, the amount of cdc2/cyclin B in the cortical cytoplasm decreased, and the inactive form of cdc2, phosphorylated at tyrosine 15, appeared in the nucleus and the centrosomes at interphase, indicating that the regulation of cdc2 by phosphorylation occurs around MBT. When the blastomeres were treated with nocodazole or latrunculin A at the 8th cell cycle, the amount of cortical cdc2 decreased, but that of cyclin B did not change. The cortical localization of cdc2 is dependent upon both microtubules and microfilaments. Most of the cdc27 was localized in the centrosomes, and in the spindle poles, but no significant difference was observed between the 8th and the 13th cell cycles. It is possible that the cortical MPF activity is regulated by the differential localization between cdc2 and cyclin B. 相似文献