首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 480 毫秒
1.
HOCKING  P. J. 《Annals of botany》1984,53(4):489-501
The seasonal dynamics of uptake, partitioning and redistributionof dry matter, N, P, K, S, Ca, Mg, Na, Cl, Fe, Zn, Mn and Cuby the cormaceous plant Ixia flexuosa were studied in pot cultureat Perth, Western Australia. Dry matter and P, N, K, Zn andCu were redistributed from the mother corm with about 90 percent net efficiency: there was no net redistribution of Ca,Na, Fe or Mn. The efficiency of redistribution from the leafyshoot to fruits and the new season's corm was 80 per cent forN and P, 24–49 per cent for K, Cu and Zn, and 0–15per cent for Na, Fe, Ca, Mn, Cl, Mg, S and dry matter. Redistributionfrom the mother corm and vegetative organs could have suppliedthe replacement corm, cormlets and fruits with 32–53 percent of their S, K, P, N, Cu and Zn, and 11–25 per centof their Ca, Cl, Mn, Mg and dry matter. The mature replacementcorm had over 60 per cent of the plant's N and P, 25–50per cent of its dry matter, Zn, Cu, Mg, K and Cl, but less than20 per cent of its Ca, Na, Fe and Mn. Each plant produced anaverage of 12 cormlets; these had 35 per cent of the dry matterand 23–47 per cent of the amount of a particular nutrientin the new season's corms. Fruits had less than 16 per centof the dry matter and each mineral in the mature plant. Ratesof mineral intake by Ixia were much lower than reported forcrop plants, and may be related to the long growing season ofthe species. Ixia polystachya L., corm, nutrition, mineral nutrients, nutrient redistribution  相似文献   

2.
Hocking  Peter J. 《Annals of botany》1993,71(6):495-509
The seasonal dynamics of the accumulation, distribution andredistribution of dry matter and 12 mineral nutrients by a weedyspecies of gladiolus (Gladiolus caryophyllaceus) were studiedat Perth, Western Australia, where it has colonized the nutrient-poorsandy soils. Parent corms sprouted in autumn, and the plantshad completed their growth cycle by early summer. The maturereplacement corm had 15-25% of the plant's P, Ca, Na, Zn andCu, 5-15% of its K, N, Cl, Mg, S and dry matter, and < 5%of its Fe and Mn. Seeds had 26% of the plant's dry matter, 60%of its N and P, 21-33% of its S, Mg, Cu and K, 5-20% of itsFe, Mn and Zn, and < 5% of its Ca and Na. The mature vegetativeshoot had 47% of the plant's dry matter and over 40% of eachnutrient, except for N, P and Cu. Phosphorus, K and N were redistributedfrom the parent corm with over 85% efficiency, S, Mg, Zn andCu with 60-70% efficiency, but there was < 10% redistributionof Ca, Na, Cl, Fe and Mn. The efficiency of redistribution fromthe leafy shoot was over 70% for N and P, 29-52% for K, Mg andCu, 16-20% for S, Zn and Cl, but negligible for Ca, Na, Fe andMn. Redistribution from the shoot could have provided the replacementcorm and seeds with 53-98% of their Cu, Mg, N, P and K, and29-38% of their S, Zn and dry matter. Seeds contained over 60%of each nutrient in a capsule, except for Ca, Na and Fe. Redistributionfrom the capsule walls could have provided 13-19% of the P,Cu and Zn, and 3-7% of the N, K, Mg and dry matter accumulatedby seeds. Each plant produced an average of 520 seeds. Removalof flowers and buds at first anthesis resulted in a larger replacementcorm containing a greater quantity of most nutrients, indicatingcompetition between the replacement corm and seeds for nutrients.Redistribution from parent to replacement cormlets in the absenceof shoot and root development was high, with over 50% of thedry matter and each nutrient, except for Ca, being transferred.Concentration of nutrients were low in all organs of G. caryophyllaceus,especially the replacement corm. It was concluded that the effectiveredistribution of key nutrients, such as N and P, to reproductivestructures and tolerance of low internal concentrations of nutrientscontribute to the capacity of G. caryophyllaceus to colonizeand persist on infertile soils.Copyright 1993, 1999 AcademicPress Gladiolus caryophyllaceus, corm, distribution, dry matter, gladiolus, mineral nutrients, nutrient accumulation, nutrient redistribution, seasonal growth, weed  相似文献   

3.
HOCKING  P. J. 《Annals of botany》1982,49(1):51-62
The nutrition of developing fruits of Ricinus communis was studiednear Perth, Western Australia, where the species grows as aweed on poor sandy soil. Fruits required 60 days to mature anddehydration of the capsule began 20 days before the seeds ripened.Mature seeds accumulated 49 per cent of the fruit dry matterand over 80 per cent of its P, Zn and Cu, 50–80 per centof its Mg, N, Fe and Mn, 41–46 per cent of its S and Caand 11–21 per cent of its K and Na. Losses of nutrientsfrom capsules during fruit ripening were: Zn, 73 per cent, P,42 per cent, Cu, 23 per cent and Mn, 8 per cent. Dry matter,N, K, S, Ca, Mg, Na and Fe were not withdrawn from capsules.Apparent retranslocation from capsules could have provided from6–28 per cent of the Zn, Mn, P and Cu in mature seeds.Seeds from plants on poor sandy soil were small but had adequatelevels of nutrients when compared with those from plants growingon a fertile loam. Concentrations of all nutrients except P were higher in youngcapsules than in young seeds, but levels of N, P, Mg, Fe, Znand Cu were higher in mature seeds than in mature capsules.The intake of most nutrients by fruits was out of phase withdry matter accumulation, especially in capsules, and the elementsappeared to accumulate in fruit parts independently of eachother. Glutamine accounted for over 85 per cent of the amino-Nin phloem sap destined for fruits. Potassium made up over 90per cent of the inorganic cations in phloem exudate. Of theminor elements in the exudate, Fe was present at highest concentrationand Cu at the lowest. The results showed that retranslocation from the capsule madea very small contribution to the nutrition of seeds. It is suggestedthat R. communis would require a sustained supply of soil nutrientsto ensure maximum seed yield, partly due to the restricted retranslocationof most nutrients from capsules. Ricinus communis L., castor bean, mineral nutrition, translocation, retranslocation  相似文献   

4.
The economy of carbon, nitrogen, water and mineral elementsin fruits of Lupinus albus L. was studied by measuring accumulationof these quantities in the developing fruit and estimating itstranspirational losses and CO2 exchanges. Combining this informationwith data on levels of mineral elements in the xylem sap andphloem sap supplying the fruit, it was possible to test whethertransport based on mass inflow through xylem and phloem wouldaccount for the observed intake of elements. A model of transportbased on water and carbon intake suggested that vascular intakeduring the fruit's life matched the recorded increment for mineralsto within ± 15 per cent for N, Na, Zn, Fe and Cu, andto within ± 23 per cent for P, K and S. However, estimatedvascular intake of Ca, Mg and Mn accounted for less than one–thirdof the recorded intake by the fruit, inadequacy of vascularintake being especially great early in growth. Transport inphloem accounted for more than 80 per cent of the fruit's vascularintake of C, N and S, and 70–80 per cent of its P, K,Mg and Zn. Xylem contributed 68 per cent of the vascular inputof Ca, 59 per cent of the Na, and 34–38 per cent of theFe, Mn and Cu. Enclosure and darkening of fruits reduced levelsof Ca and Fe but increased levels of N, P, K and Zn in fruitdry matter relative to unenclosed, illuminated fruits. Resultswere related to previous observations on fruit functioning. Lupinus albus, legume fruit, mineral supply, phloem, xylem  相似文献   

5.
川东红池坝地区红三叶(Trifoliumpratense)和鸭茅(Dactylisglomerata)人工草地土壤和植物营养元素的含量特征如下:(1)土壤中的元素含量以铁、钾和镁较高,钠、钙、氮、锰和磷较低,硫、锌、硼、铜和钼微少;(2)从元素的富集特征来看,该区土壤中的钙、硫为重度淋溶元素,钾、磷、镁、锌、钠为中度淋溶元素,铁、铜属轻度淋溶元素,锰属富集元素;(3)根据元素的生物吸收系列,红三叶属氮-钙型植物,鸭茅属氮-钾-磷型植物。(4)两种牧草的生物吸收系数,均以钙、硫、磷较高,钠、铁较低,其余7种元素介于二者之间。  相似文献   

6.
Carbon is the most abundant element in the organs of the edificator-31 years old Platy- cladus orientalis. High content of Ca occurred in the edificator, there are plenty of N. K. Mg as well with relatively low content of P and high content of Fe. The concentration of elements is greater in leaves than int woody tissues of tree and shrub. The element accumulation in the aboveground part was higher than those in the under ground part of the tree layer, 51 percent of C was accumulated in trunks. The largest percentage of other elements was accumulated by leaves. On the contrary, in tile tree layer the element accumulation in the under ground part was larger than those in the aboveground part of the shrub layer except N accumulation. The element accumulation in the plantation reached 17,000 kg/ha for C, 400 kg/ha for Ca, 104 kg/ha for N, 87 kg/ha for K, 30 kg/ha for Mg, 11–16 kg/ha for Al, P and Fe, 2.5 kg/ha for Na, 1 kg/ha for Mn, Cu and Zn. The retention of C in the plantation was the highest among the elements. The retention in the Tree layer decreased from Ca to N. K. The retention of N in shrub layer is greater than that of Ca. The element retentions in the plantation were 2700 kg/ha, a for C, 70 kg/ ha.a for Ca. 15–20 kg/ha.a for N, K, 2-5 kg/ha, for P, Fe, Al, and Mg, 1 kg/ha.a for the others. The nutrient pool in soil showed C>Ca>N>Fe>Mg>K>P>Na >Al, Mn>Cu>Zn in order. In the same soil condition, the element enrichment factors by various plants were quite different. Usually the enrichment factors of the shrub were greater than those of the tree. The following sequence of the requirment of nutrients by plantation was shown: C> Ca>N >K>Mg >Fe>P>AI>Na>Mn >Cu> Zn.  相似文献   

7.
毛果苔草湿地植物营养元素分布及其相关性   总被引:12,自引:3,他引:12  
研究生物与环境中化学因子之间的相互作用过程 ,主要是指化学物质在生态系统中的运移、转化及归趋与效应。化学物质包括营养物质、污染物质和在生物与环境之间、生物与生物之间起媒介作用的次生代谢物质[1] 。对植物不同组织营养成分的季节性变化研究多集中于叶子 ,但对其他部分的研究则较少[10 ] ,分解过程并不是完全始于凋落物到达地面 ,在凋落前就受到渗滤、裂解和真菌的作用[12 ] ;对枯落物中的有机物质和营养物质浓度的了解可以预测枯落物的分解速率[11] 。目前 ,湿地的研究偏重于资源的开发与利用 ,而对湿地生态系统的生态过程的定位…  相似文献   

8.
北京人工刺槐林化学元素含量特征   总被引:14,自引:0,他引:14       下载免费PDF全文
 31年生人工刺槐(Robinia pseudoacacia)林内各种植物的化学元素含量以C素最高,尤以刺槐树干中C含量多。N和Ca在刺槐叶片中含量大。丛生隐子草(Cleistogenes caespitosa)地上部分含K量高于林内其他植物。Fe在荆条(Vitex negundo var.heterophylla)叶片中含量较多。Al和Na在植物细根中含量为大。酸枣(Zizyphus jujuba var.spinosa) 叶中含有较高的Mg和Mn。 刺槐林的乔木、灌木、草本层化学元素积累量以C>Ca>N> K>Mg>P>Fe>Al>Na>Mn>Cu>Zn为序。灌木层化学元素积累量除C和Ca以外,均高于乔木层。对比地表枯枝落叶层化学元素总量与人工林元素的积累量,以Na的比值最高,Ca、Mn、Fe、Zn比值次之,元素归还量都较大。P比值较低,归还量较少。刺槐林土壤化学元素贮存量是以Ca>N>Mg>Fe>K>P>Na>Mn>Al>Zn>Cu为序。植物对土壤中化学元素的富集系数以K、Al和P较高。人工林元素积累量与土壤元素贮存量之比,亦以K、P、Al比值较高。可见土壤中的K、P和Al相对是不足的。  相似文献   

9.
On the way from the roots to the seeds during reproductive developmentin soybean (Glycine max), a large proportion of the mineralspass through the leaves rather than travelling directly viathe xylem. This direct and indirect movement of mineral nutrientshas important implications for mineral redistribution, seeddevelopment and leaf senescence. Therefore, we have studiedthe role of cytokinin and mineral flux from the roots in regulatingmineral redistribution from the leaves to the seeds using explants,i.e. a leaf, a pod and a subtending stem segment, with theirbases immersed in treatment solutions. Thus, defined solutionscontaining cytokinin and/or minerals can be substituted forthe roots. When explants (excised at early-mid podfill) aresupplied H2O only, leaf N, P, K, Mo, Mg, Zn, Fe, B, Cu, Ca,and Mn decline, ranging from 93% for Mo to 38% for Fe. In explantson H2O, N, P, K, Mo, Mg, Zn, and Fe appear to be redistributedfrom the leaves to the seeds, while the B, Cu, Ca, and Mn lostfrom the leaves do not seem to move to the seeds. Although amixture of minerals resembling xylem sap can delay net lossof these elements from the leaves, it does not prevent the decreases.The cytokinin zeatin (4.6 µM) inhibits the loss of N,IC, Mo, Mg, Zn, Fe, B, Cu, Ca, and Mn from the leaves, but notthat of P. When combined with minerals, zeatin not only preventsthe loss of the minerals from the leaves but may even greatlyincrease them with the possible exception of Zn, Fe, and Cu.Supplying the mineral nutrient mixture increases the quantitiesof N, P, K, Mg, Cu, and B in the seeds but not Zn, Fe, Mn, Ca,and Mo. For those minerals, especially N, where zeatin inhibitsefflux from the leaves, it may reduce the amounts in the seeds,but it does not change P, K, Mg, and Ca. The accumulation andredistribution patterns of the different mineral nutrients showmany dissimilarities thereby suggesting differences in the controlof their distribution. Key words: Cytokinin, mineral transport, seed development, senescence  相似文献   

10.
西藏色季拉山暗针叶林凋落物层化学性质研究   总被引:9,自引:1,他引:9  
The storage and chemical properties of the forest litter in dark coniferous forest of Sejila Mountain were studied. The results showed that the existing storage was 5. 863t·hm^-2 and the annual litter fall was 0. 3205 t·hm^-2 It implied that the forest litter decomposed slowly and accumulated quickly, and the turnover of nutrient circles was slow. The contents of N, Ca, Na, and Mn nutrient elements in litter layer were in the order of un-decomposed layer (U layer) > semi-decomposed layer (S layer) > decomposed layer (D layer), those of K, Fe, and Mg were in the order of D layer > S layer > U layer, and P element content was in the order of U layer > D layer> S layer. The pool of elements was 78. 483 kg·hm^-2 N, 3. 843 kg·hm^-2P, 48. 205 kg·hm^-2 K, 23.115 kg·hm^-2 Ca, 13. 157 kg·hm^-2 Na, 30.554 kg·hm^-2 Fe, 2. 113 kg·hm^-2 Mn and 27. 513 kg·hm^-2 Mg. The turnover of forest litter was the total of nutrient release accumulation. K, Fe, and Mg were enriched, and N,Ca, Na, Mn, and P were released with the turnover rate in the order of N > Ca > Na > Mn >P.  相似文献   

11.
HOCKING  P. J. 《Annals of botany》1980,45(4):383-396
The distribution of dry matter and various mineral nutrientsbetween testa and embryo of seeds of Lupinus albus and L. angustifoliusis described It was found that lupin seeds at either end ofa pod contained less dry matter and minerals than seeds in themiddle of the fruit. The transport of dry matter, N, P, K, S,Ca, Mg, Na, Fe, Zn, Mn and Cu from cotyledons of parent seedsof both species to the seedling axis was measured from germinationto the time of cotyledon death. N, P, K and S were retrievedfrom cotyledons with over 90 per cent efficiency, dry matter,Mg, Na, Fe, Zn, Mn and with 59–90 per cent efficiency,and Ca with 26–31 per cent efficiency. There was littlechange in the efficiency of nutrient retrieval from cotyledonswhen seedlings were grown in different culture media. Both speciesshowed a linear relationship between the loss of each elementand dry matter throughout the experiment, and a similar proportioningbetween root and shoot of the amount of a specific nutrientmobilized from cotyledons of parent seeds. Lupinus albus L., Lupinus angustifolius L., lupin, transport, of dry matter and mineral nutrients  相似文献   

12.

Background and Aims

Elucidating the stoichiometry and resorption patterns of multiple nutrients is an essential requirement for a holistic understanding of plant nutrition and biogeochemical cycling. However, most studies have focused on nitrogen (N) and phosphorus (P), and largely ignored other nutrients. The current study aimed to determine relationships between resorption patterns and leaf nutrient status for 13 nutrient elements in a karst vegetation region.

Methods

Plant and soil samples were collected from four vegetation types in the karst region of south-western China and divided into eight plant functional types. Samples of newly expanded and recently senesced leaves were analysed to determine concentrations of boron (B), calcium (Ca), copper (Cu), iron (Fe), potassium (K), magnesium (Mg), manganese (Mn), molybdenum (Mo), N, sodium (Na), P, sulphur (S) and zinc (Zn).

Key Results

Nutrient concentrations of the karst plants were lower than those normally found in other regions of China and the rest of the world, and plant growth was mainly limited by P. Overall, four nutrients revealed resorption [N (resorption efficiency 34·6 %), P (48·4 %), K (63·2 %) and Mg (13·2 %)], seven nutrients [B (–16·1 %), Ca (–44·0 %), Cu (–14·5 %), Fe (–205·5 %), Mn (–72·5 %), Mo (–35·6 %) and Zn (–184·3 %)] showed accumulation in senesced leaves and two nutrients (Na and S) showed no resorption or accumulation. Resorption efficiencies of K and Mg and accumulation of B, Ca, Fe and Mn differed among plant functional types, and this strongly affected litter quality. Resorption efficiencies of N, P and K and accumulation of Ca and Zn increased with decreasing concentrations of these nutrients in green leaves. The N:P, N:K and N:Mg ratios in green leaves predicted resorption proficiency for N, K and Mg, respectively.

Conclusions

The results emphasize the fact that nutrient resorption patterns strongly depend on element and plant functional type, which provides new insights into plant nutrient use strategies and nutrient cycling in karst ecosystems.  相似文献   

13.
Agren GI  Weih M 《The New phytologist》2012,194(4):944-952
All plant species require at least 16 elements for their growth and survival but the relative requirements and the variability at different organizational scales is not well understood. We use a fertiliser experiment with six willow (Salix spp.) genotypes to evaluate a methodology based on Euclidian distances for stoichiometric analysis of the variability in leaf nutrient relations of twelve of those (C, N, P, K, Ca, Mg, Mn, S, Fe, Zn, B, Cu) plus Na and Al. Differences in availability of the elements in the environment was the major driver of variation. Variability between leaves within a plant or between individuals of the same genotype growing in close proximity was as large as variability between genotypes. Elements could be grouped by influence on growth: N, P, S and Mn concentrations follow each other and increase with growth rate; K, Ca and Mg uptake follow the increase in biomass; but uptake of Fe, B, Zn and Al seems to be limited. The position of Cu lies between the first two groups. Only for Na is there a difference in element concentrations between genotypes. The three groups of elements can be associated with different biochemical functions.  相似文献   

14.
Mobilization of Minerals to Developing Seeds of Legumes   总被引:4,自引:0,他引:4  
HOCKING  P. J.; PATE  J. S. 《Annals of botany》1977,41(6):1259-1278
The mineral nutrition of fruiting plants of Pisum sativum L.,Lupinus albus L. and Lupinus angustifolius L. is examined insand cultures supplying adequate and balanced amounts of essentialnutrients. Changes in content of specific minerals in leaves,pods, seed coat, and embryo are described. P, N and Zn tendto increase precociously in an organ relative to dry matteraccumulation, other elements more or less parallel with (K,Mn, Cu, Mg and Fe) or significantly behind (Ca and Na) dry weightincrease. Some 60–90 per cent of the N, P and K is lostfrom the leaf, pod and seed coat during senescence, versus 20–60per cent of the Mg, Zn, Mn, Fe and Cu and less than 20 per centof the Na and Ca. Mobilization returns from pods are estimatedto provide 4–39 per cent of the seeds' accumulations ofspecific minerals, compared with 4–27 per cent for testatransfer to the embryo. Endosperm minerals are of only minorsignificance in embryo nutrition. Comparisons of the mineral balance of plant parts of Lupinusspp. with that of stem xylem sap and fruit tip phloem sap supportthe view that leaves and pod are principal recipients of xylem-borneminerals and that export from these organs via phloem is themajor source of minerals to the seeds. Endosperm and embryodiffer substantially in mineral compostition from phloem sap,suggesting that selective uptake occurs from the translocationstream during seed development. Considerable differences are observed between species in mineralcomposition of plant organs and in the effectiveness of transferof specific minerals to the seeds Differences between speciesrelate principally to Ca, Na and certain trace elements.  相似文献   

15.

Background

Most studies focus on macronutrient of C, N and P and ignore other elements, which restrict our understanding on the strategy of plant nutrient adaption and nutrient cycling.

Methods

We investigated 14 element (C, N, P, S, K, Ca, Mg, Fe, Mn, Zn, Cu, Na, Al, and Ba) concentrations of green and senesced leaves in Quercus variabilis along the altitude in the Baotianman Mountains, China, and assessed their relationships with climate, soil, and plant functional traits.

Results

Leaf N,S and K increased with, C, Ca, Na, Fe, Mn, Cu and Ba decreased with, and P, Mg, Al, Zn and N:P did not change significantly with altitude. NRE and SRE increased with, and CRE decreased with altitude (p < 0.05). Among the 14 elements, nucleic acid-protein elements (N, K, S and P) were resorbed preferentially, compare to structural (Ca, Mn, and B) and enzymatic (C, Cu, Mg and Zn) that were discriminated against, and toxic (Al and Fe) elements that were totally excluded.

Conclusions

Q. variabilis can synergetically regulate green leaf multielement stoichiometry and nutrient resorption in responses to environment change. Deciduous plants may have a trade-off mechanism at the end of growing season to rebalance somatic nutrients.
  相似文献   

16.
为了探讨上杭种源马尾松Pinus massoniana叶营养与生长对不同镁肥水平的响应,以其优良种源1年生苗为材料,设置4个镁肥梯度(42 g·m-2、85 g·m-2、170 g·m-2、339 g·m-2),测定移栽1年后苗木生长指标及叶内营养含量。结果表明,施镁能够促进元素P、K、Ca、Fe、Cu、Zn积累,抑制N、Mg、Mn积累;镁施肥量为85 g·m-2时,对N、Mg、Mn积累的抑制作用不显著,对P、K、Ca、Fe、Cu、Zn积累的促进作用最大,苗木生长最好,为最佳施肥量。施镁并不能促进苗木对镁的吸收,而是改变了营养供应的土壤环境,从而改变植物对其他营养的吸收比例,进而影响植物的生长。苗木的生长与Fe、P、K的关系最为密切,其次是Mg、Mn、Ca、N、Cu、Zn。  相似文献   

17.
湘西地区木通果实微量元素的测定   总被引:7,自引:1,他引:7  
采用马弗炉干法灰化消化样品,火馅原子吸收法连续测定白木通Akebia trifoliata var.australis (Cieli._Kehd、三叶木通A.trifoliata(Thumb.)Koidz、木通A.quinata Decne.果实中微量金属元素,检测出K,Ca,Na,Mg,Fe,Zn,Mn,Cu等8种元素含量。3种植物果实中K,Ca,Mg含量较高(>0.1000mg/g),其中K元素远高于其他元素,Na,Cu含量较低(<0.0100mg/g)。Fe,Zn,Mn的含量处于中等水平。白木通果实中K,Me,Zn,Mn 4种矿质元素高于三叶木通和木通。木通果实中Ca,Fe两种元素稍高于白木通、三叶木通。Na,Cu两种微量元素在3种果实中含量基本相拟。  相似文献   

18.
庄伟伟  王明明 《植物研究》2022,42(5):896-909
为深入了解荒漠植物营养元素计量特征,认识元素间的交互作用,揭示不同生长期、不同沙丘部位植物元素含量差异。以古尔班通古特沙漠8种优势草本植物(4种1年生植物,4种短命植物)为研究对象,采集不同生长期(旺盛期、枯萎期)、不同沙丘部位(坡上、腹地)的植株,测定全株植物的10种营养元素(C、N、P、K、Na、Mg、Al、Mn、Cu、Zn)。结果表明:(1)8种植物元素含量存在显著差异,体现了植物因遗传特性不同而对元素选择吸收的特点,含量为:C(230.19~401.82 mg·g-1)、N(11.31~18.85 mg·g-1)、P(0.95~2.08 mg·g-1)、K(16.12~29.79mg·g-1)、Na(0.88~3.31 mg·g-1)、Mg(3.38~5.31 mg·g-1)、Al(0.33~1.99 mg·g-1)、Mn(51.35~105.32 mg·kg-1)、Cu(4.14~6.38 mg·kg<...  相似文献   

19.
加拿大一枝黄花对土壤营养元素吸收与转运特征   总被引:3,自引:0,他引:3  
选择临海沿江镇加拿大一枝黄花重度入侵区域,分别收集植物与土壤样品,研究加拿大一枝黄花对土壤中7种营养元素的吸收、转运特征。研究结果表明:7种营养元素在植物组织中的平均含量排序为:Zn〉K〉Ca〉N〉Mg〉P〉Mn。而且不同器官对同一种元素的积累存在显著差异,总体规律表现为叶和花蕾积累元素最多,其次是枝条和根状茎,根和茎则积累最少。地上器官对各元素的转移能力表现出明显差异,但各器官均对氮素有较强的转运能力,转运因子均明显高于1。地下器官(根和根状茎)对氮素有较高的富集能力,富集因子同样明显高于1。7种元素在加拿大一枝黄花不同器官的吸收转运存在着一定的促进或者拮抗作用。在花蕾、枝条和根中,磷吸收分别与Mg、Mn和Zn吸收呈现显著负相关;在花蕾中,氮的吸收和Mn的吸收呈现显著正相关;在不同器官里,K、Ca、Mg、Zn和Mn吸收之间多呈现正相关。  相似文献   

20.
Under-storey Nutrient Content in an Age Sequence of Douglas-fir Stands   总被引:1,自引:0,他引:1  
TURNER  J.; LONG  J. N.; BACKIEL  A. 《Annals of botany》1978,42(5):1045-1055
The nutrient concentrations and contents of the under-storeyspecies were estimated for a series of Pacific North-west Douglas-fir[Pseudotsuga menxiessii (Mirb.) Franco] stands ranging in agefrom 9 to 95 years. Analyses were carried out for ash, N, P,K, Ca, Mg, Mn, Fe, Zn and Na and significant differences innutrient concentrations were found to exist between species;species rejecting certain nutrients and accumulating others.General trends for mean concentrations of some nutrients areassociated with stand maturity in that ash, K and Mg decline,P and Mn increase and N and Ca reaches a peak at 20–30years and then declines. The nutrient contents (kg ha–1)of the under-storey component of the stands are presented andtrends discussed. Mineral nutrient content, under-storey vegetation, Pseudotsuga menziessii stands, Douglas-fir  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号