首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We studied the hexose transporter protein of the frontal and temporal neocortex, hippocampus, putamen, cerebellum, and cerebral microvessels (which constitute the blood-brain barrier) in Alzheimer disease and control subjects by reversible and covalent binding with [3H]cytochalasin B and by immunological reactivity. In Alzheimer disease subjects, we found a marked decrease in the hexose transporter in brain microvessels and in the cerebral neocortex and hippocampus, regions that are most affected in Alzheimer disease, but there were no abnormalities in the putamen or cerebellum. Hexose transporter reduction in cerebral microvessels of Alzheimer subjects is relatively specific because other enzyme markers of brain endothelium were not significantly altered. The low density of the hexose transporter at the blood-brain barrier and in the cerebral cortex in Alzheimer disease may be related to decreased in vivo measurements of cerebral oxidative metabolism.  相似文献   

2.
D-1 and D-2 receptor densities, evaluated respectively by [3H]SCH 23390 and [3H]spiperone binding, and DARPP-32 (dopamine and adenosine 3':5'-monophosphate-regulated phosphoprotein-32K) concentrations, were studied in the brains of control and parkinsonian subjects postmortem. D-2 receptor density was unchanged in the putamen of parkinsonian patients. D-1 receptor density was unchanged in the putamen and substantia nigra pars reticulata (SNR) of parkinsonian patients, but decreased by 28% in the substantia nigra pars compacta (SNC). DARPP-32, which is localized in the same structures as D-1 receptors of which it is thought to represent the intracellular messenger, decreased by 45% in the putamen, 66% in the SNR, and 79% in the SNC. The decrease in D-1 receptors in the SNC may be due to degeneration of pallidonigral GABAergic neurons, but some of the D-1 receptors may be on the nigrostriatal dopaminergic neurons themselves. The dissociation between the alteration of D-1 receptor densities and DARPP-32 concentrations in both the striatum and substantia nigra, which are of the same order in the two structures, may be an index of functional hypoactivity of D-1 neurotransmission.  相似文献   

3.
Specific binding of [3H]-imipramine in the rat suprachiasmatic nuclei, occipital cortex and caudate putamen underwent significant and replicable changes throughout 24 hr under a light-dark cycle or under constant conditions. Daily variations were also found in the medial and dorsal raphe nuclei and the lateral hypothalamus. Methamphetamine, a psychoactive drug with marked effect on circadian rhythms in physiological and hormonal parameters and adrenergic receptors, did not have any significant effect on imipramine binding rhythms in eight discrete brain regions. Thus a drug known to reduce serotoninergic neurotransmission did not change characteristics of the modulatory binding site related to serotonin uptake.  相似文献   

4.
The effect of chronic hyperglycemia on the glucose transporter moiety of the blood-brain barrier and cerebral cortex was studied in rats 3 weeks after the administration of a single intravenous dose of streptozotocin (60 mg/kg), using specific [3H]cytochalasin B binding methods. Streptozotocin-treated rats developed hyperglycemia, as well as polydipsia and polyuria, and failed to gain weight. The density of D-glucose-displaceable cytochalasin B binding sites in the brain microvessels of streptozotocin-treated hyperglycemic rats was increased by about 30% compared with those of control rats, without change in the affinity of binding. Chronic hyperglycemia had no effect on the density or affinity of specific binding of cytochalasin B to cerebral cortical membranes. These findings do not support the hypothesis that glucose transporters in brain microvessels comprising the blood-brain barrier are "down-regulated" in chronic hyperglycemia.  相似文献   

5.
Abstract: Muscarinic and nicotinic cholinergic receptors and choline acetyltransferase activity were studied in postmortem brain tissue from patients with histopathologically confirmed Parkinson's disease and matched control subjects. Using washed membrane homogenates from the frontal cortex, hippocampus, caudate nucleus, and putamen, saturation analysis of specific receptor binding was performed for the total number of muscarinic receptors with [3H]quinuclidinyl benzilate, for muscarinic M1 receptors with [3H]pirenzepine, for muscarinic M2 receptors with [3H]oxotremorine-M, and for nicotinic receptors with (–)-[3H]nicotine. In comparison with control tissues, choline acetyltransferase activity was reduced in the frontal cortex and hippocampus and unchanged in the caudate nucleus and putamen of parkinsonian patients. In Parkinson's disease the maximal binding site density for [3H]quinuclidinyl benzilate was increased in the frontal cortex and unaltered in the hippocampus, caudate nucleus, and putamen. Specific [3H]pirenzepine binding was increased in the frontal cortex, unaltered in the hippocampus, and decreased in the caudate nucleus and putamen. In parkinsonian patients Bmax values for specific [3H]oxotremorine-M binding were reduced in the cortex and unchanged in the hippocampus and striatum compared with controls. Maximal (–)-[3H]nicotine binding was reduced in both the cortex and hippocampus and unaltered in both the caudate nucleus and putamen. Alterations of the equilibrium dissociation constant were not observed for any ligand in any of the brain areas examined. The present results suggest that both the innominatocortical and the septohippocampal cholinergic systems degenerate in Parkinson's disease. The reduction of cortical [3H]oxotremorine-M and (–)-[3H]nicotine binding is compatible with the concept that significant numbers of the binding sites labelled by these ligands are located on presynaptic cholinergic nerve terminals, whereas the increased [3H]pirenzepine binding in the cortex may reflect postsynaptic denervation supersensitivity.  相似文献   

6.
Abstract: The density of dopamine D2-like receptors was determined using [3H]emonapride binding in putamen tissue taken postmortem from schizophrenic subjects and matched controls. A 72% increase in number of these receptors was identified in the schizophrenics, although three patients not receiving antipsychotic drug treatment before death exhibited receptor densities in the control range. Displacement of 1 n M [3H]emonapride binding by raclopride was used to define the contribution of the D4 subtype of dopamine receptors to total [3H]emonapride binding. No evidence was obtained for the presence of D4 receptors in putamen tissue from either control or schizophrenic subjects, indicating that the increase in D2-like receptor density in schizophrenia is due not to an increase in number of D4 sites in the disease, but to an up-regulation of D2 or D3 receptors probably induced by chronic treatment with antipsychotic drugs.  相似文献   

7.
Neurotransmitter receptor alterations in Parkinson's disease.   总被引:17,自引:0,他引:17  
Neurotransmitter receptor binding for GABA, serotonin, cholinergic muscarinic and dopamine receptors and choline acetyltransferase (ChAc) activity were measured in the frontal cortex, caudate nucleus, putamen and globus pallidus from postmortem brains of 10 Parkinsonian patients and 10 controls. No changes in any of these systems were observed in the frontal cortex. In the caudaye nucleus, only the apparent dopamine receptor binding was altered with a significant 30% decrease in the Parkinsonian brain. Both cholinergic muscarinic and serotonin receptor binding were significantly altered in the putamen, the former increasing and the latter decreasing with respect to controls. In addition, ChAc activity was decreased in the putamen. In the globus pallidus, only ChAc activity was significantly changed, decreasing about 60%, with no change in neurotransmitter receptor binding. The results suggest that a progressive loss of dopaminergic receptors in the caudate nucleus may contribute to the decreased response of Parkinsonian patients to L-dopa and dopamine agonist therapy.  相似文献   

8.
The neuronal dopamine transporter/uptake site can be covalently labeled with the photoaffinity probe 1-(2-[bis-(4-fluorophenyl) methoxy]ethyl)-4-[2-(4-azido-3-[125I]iodophenyl)ethyl]piperazine [( 125I]FAPP) and visualized following sodium dodecyl sulfate polyacrylamide gel electrophoresis and autoradiography. Upon photolysis, [125I]FAPP specifically incorporated into a polypeptide of apparent Mr = 62,000 in membranes from both the putamen and the caudate nucleus of control, Alzheimer's, schizophrenia, and Huntington's diseased brain, and following complete deglycosylation, migrated as an Mr approximately 48,000 polypeptide. In parkinsonian postmortem putamen, however, there was no detectable photoincorporation of [125I]FAPP into the ligand binding subunit of the dopamine transporter. [125I]FAPP did specifically label the Mr 62,000 polypeptide of parkinsonian caudate, although with efficiencies of 20-50% of control. The asymmetrical loss of the dopamine transporter in Parkinson's diseased striatum was confirmed in reversible receptor binding experiments using [3H]GBR-12935 (3H-labeled 1-[2-(diphenylmethoxy) ethyl]-4-(3-phenylpropyl)piperazine). In parkinsonian putamen, mazindol competitively inhibited the binding of [3H]GBR-12935 with an estimated affinity (Ki approximately 2,000 nM) 10 times lower than in controls (Ki approximately 30 nM), while the affinity of maxindol for [3H]GBR-12935 binding in the caudate was equal to that seen with controls (Ki approximately 50 nM). The proportion of [3H]GBR-12935 binding sites recognized by mazindol with high affinity in Parkinson's diseased caudate was, however, reduced by 50-80%.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Adenosine A(2A) receptors (A2ARs) are thought to interact negatively with the dopamine D(2) receptor (D2R), so selective A2AR antagonists have attracted attention as novel treatments for Parkinson's disease (PD). However, no information about the receptor in living patients with PD is available. The purpose of this study was to investigate the relationship between A2ARs and the dopaminergic system in the striata of drug-na?ve PD patients and PD patients with dyskinesia, and alteration of these receptors after antiparkinsonian therapy. We measured binding ability of striatal A2ARs using positron emission tomography (PET) with [7-methyl-(11)C]-(E)-8-(3,4,5-trimethoxystyryl)-1,3,7-trimethylxanthine ([(11)C]TMSX) in nine drug-na?ve patients with PD, seven PD patients with mild dyskinesia and six elderly control subjects using PET. The patients and eight normal control subjects were also examined for binding ability of dopamine transporters and D2Rs. Seven of the drug-na?ve patients underwent a second series of PET scans following therapy. We found that the distribution volume ratio of A2ARs in the putamen were larger in the dyskinesic patients than in the control subjects (p<0.05, Tukey-Kramer post hoc test). In the drug-na?ve patients, the binding ability of the A2ARs in the putamen, but not in the head of caudate nucleus, was significantly lower on the more affected side than on the less affected side (p<0.05, paired t-test). In addition, the A2ARs were significantly increased after antiparkinsonian therapy in the bilateral putamen of the drug-na?ve patients (p<0.05, paired t-test) but not in the bilateral head of caudate nucleus. Our study demonstrated that the A2ARs in the putamen were increased in the PD patients with dyskinesia, and also suggest that the A2ARs in the putamen compensate for the asymmetrical decrease of dopamine in drug-na?ve PD patients and that antiparkinsonian therapy increases the A2ARs in the putamen. The A2ARs may play an important role in regulation of parkinsonism in PD.  相似文献   

10.
Effect of Age on Human Brain Serotonin (S-1) Binding Sites   总被引:2,自引:1,他引:1  
The effect of age on the binding of [3H]5-hydroxytryptamine [( 3H]5-HT, serotonin) to postmortem human frontal cortex, hippocampus, and putamen from individuals between the ages of 19 and 100 years was studied. One high-affinity binding site was observed in adult brains, with a mean KD of 3.7 nM and 3.2 nM for frontal cortex and hippocampus, respectively, and 9.2 nM for putamen. Decreased binding capacities (Bmax) with age were detected in frontal cortex and hippocampus. In putamen a decrease in affinity was noted. Postmortem storage did not significantly contribute to the age-related changes. No significant sex differences were detected. [3H]5-HT binding was also studied in brains from human neonates. The specific binding was 1.5-3 times lower than in adult frontal cortex and putamen, and Scatchard analysis suggested more than one binding site. In infant hippocampus a single binding site was observed and except for a premature individual, the binding capacity approximated adult values.  相似文献   

11.
The aim of the present investigation was to study and compare the in vitro binding properties of the two radioligands N-[3H]methylspiperone ([3H]NMSP) and [3H]raclopride. These compounds, labeled with 11C, have been extensively used in positron emission tomography studies on central dopamine D2 receptors in schizophrenic patients, although with diverging results. One study (using [11C]NMSP) showed an increased dopamine receptor density in drug-naive schizophrenic patients, whereas in another study (using [11C]raclopride) the density in schizophrenic patients was no different from that in healthy controls. In the present study, using in vitro binding techniques, the density of the binding sites was found to be similar irrespective of which of the two radioligands was used (20 fmol/mg wet weight in rat striatum and 10 fmol/mg in human putamen; the 5-hydroxytryptamine 2 receptors were blocked with 40 nM ketanserin). [3H]NMSP had a 10-fold higher affinity (KD, 0.3 nM in rat striatum and 0.2 nM in human putamen) than [3H]raclopride (KD, 2.1 nM in rat striatum and 3.9 nM in human putamen), which was consistent with the longer dissociation half-life of [3H]NMSP compared with [3H]raclopride (14.8 and 1.19 min, respectively). There was an approximate overall similarity between the inhibition constants for five dopamine antagonists, chlorpromazine, haloperidol, raclopride, remoxipride, and NMSP, when using either radioligand. The Ki values were, however, two- to four-fold higher when using [3H]NMSP as the radioligand, irrespective of inhibiting compound, except for chlorpromazine (and haloperidol in human putamen). NMSP was found to inhibit the binding of [3H]raclopride competitively, whereas raclopride inhibited the binding of [3H]NMSP both competitively and noncompetitively. This difference suggests that part of the binding site is exclusively used by NMSP and can only be allosterically interfered with by raclopride. It is proposed that [3H]NMSP binds to an additional set of accessory binding sites, presumably located more distantly from the agonist binding active site than the sites to which [3H]raclopride binds.  相似文献   

12.
Basing on double reciprocal innervation and regulation with its cholinergic (parasympathetic part) and adrenergic components, mechanisms of vasoconstriction and vasodilation of microvessels are considered. The latter are presented as a multicontour system, including the central adrenergic contour, two terminal contours, in the form of terminal arcs of cholinergic and adrenergic type, two neurohormonal contours also of cholinergic and adrenergic type, passing through the hypothalamo-hypophyseal complex.  相似文献   

13.
Adenosine A2A receptors (A2ARs) are thought to interact negatively with the dopamine D2 receptor (D2R), so selective A2AR antagonists have attracted attention as novel treatments for Parkinson''s disease (PD). However, no information about the receptor in living patients with PD is available. The purpose of this study was to investigate the relationship between A2ARs and the dopaminergic system in the striata of drug-naïve PD patients and PD patients with dyskinesia, and alteration of these receptors after antiparkinsonian therapy. We measured binding ability of striatal A2ARs using positron emission tomography (PET) with [7-methyl-11C]-(E)-8-(3,4,5-trimethoxystyryl)-1,3,7-trimethylxanthine ([11C]TMSX) in nine drug-naïve patients with PD, seven PD patients with mild dyskinesia and six elderly control subjects using PET. The patients and eight normal control subjects were also examined for binding ability of dopamine transporters and D2Rs. Seven of the drug-naïve patients underwent a second series of PET scans following therapy. We found that the distribution volume ratio of A2ARs in the putamen were larger in the dyskinesic patients than in the control subjects (p<0.05, Tukey-Kramer post hoc test). In the drug-naïve patients, the binding ability of the A2ARs in the putamen, but not in the head of caudate nucleus, was significantly lower on the more affected side than on the less affected side (p<0.05, paired t-test). In addition, the A2ARs were significantly increased after antiparkinsonian therapy in the bilateral putamen of the drug-naïve patients (p<0.05, paired t-test) but not in the bilateral head of caudate nucleus. Our study demonstrated that the A2ARs in the putamen were increased in the PD patients with dyskinesia, and also suggest that the A2ARs in the putamen compensate for the asymmetrical decrease of dopamine in drug-naïve PD patients and that antiparkinsonian therapy increases the A2ARs in the putamen. The A2ARs may play an important role in regulation of parkinsonism in PD.  相似文献   

14.
The density of 3H-kainic acid (KA) binding was determined in several regions of Huntington's Diseased (HD) and control human brains. 3H-Kainic acid binding was significantly reduced by 55% in the caudate nucleus and by 53% in the putamen of HD brains. In addition, 3H-KA binding was determined in rat striatum at various intervals following lesion with KA, a procedure which produces an animal model of HD. After KA lesion, 3H-KA binding in the rat striatum underwent a slow reduction, reaching 25% of control after 6 weeks. Several properties of 3H-KA binding to rat brain membranes were also investigated, including inhibition by ions, regional distribution and displacement by various compounds. The findings confirm the validity of the KA-lesioned model for HD and suggest a post-synaptic location for kainic acid receptors in the striatum.  相似文献   

15.
We have previously shown that glucose utilization and glucose transport were impaired in the brain of rats made deficient in n-3 polyunsaturated fatty acids (PUFA). The present study examines whether n-3 PUFA affect the expression of glucose transporter GLUT1 and glucose transport activity in the endothelial cells of the blood-brain barrier. GLUT1 expression in the cerebral cortex microvessels of rats fed different amounts of n-3 PUFA (low vs. adequate vs. high) was studied. In parallel, the glucose uptake was measured in primary cultures of rat brain endothelial cells (RBEC) exposed to supplemental long chain n-3 PUFA, docosahexaenoic (DHA) and eicosapentaenoic (EPA) acids, or to arachidonic acid (AA). Western immunoblotting analysis showed that endothelial GLUT1 significantly decreased (-23%) in the n-3 PUFA-deficient microvessels compared to control ones, whereas it increased (+35%) in the microvessels of rats fed the high n-3 PUFA diet. In addition, binding of cytochalasin B indicated that the maximum binding to GLUT1 (Bmax) was reduced in deficient rats. Incubation of RBEC with 15 microM DHA induced the membrane DHA to increase at a level approaching that of cerebral microvessels isolated from rats fed the high n-3 diet. Supplementation of RBEC with DHA or EPA increased the [(3)H]-3-O-methylglucose uptake (reflecting the basal glucose transport) by 35% and 50%, respectively, while AA had no effect. In conclusion, we suggest that n-3 PUFA can modulate the brain glucose transport in endothelial cells of the blood-brain barrier, possibly via changes in GLUT1 protein expression and activity.  相似文献   

16.
The effect of age on beta-() adrenergic receptor number (Bmax) and adenylate cyclase (AC) activity was determined in microvessels isolated from male F-344 rats at 3, 18, and 24 months of age. Scatchard analysis of [125I]iodocyanopindolol (ICYP) binding indicated reduced Bmax (fmol/mg) of microvessels isolated from 24 month old rats (27.2±4.9) compared with 3 month old (50.4±5.2) and 18 month old rats (p<0.01) (61.4±7.6). The basal AC activity (pmol cAMP/mg) in 24 month old rats (32.0 ±6.7) and in 18 month old rats (30.4±2.1) were significantly reduced compared to the basal activity in the young (50.1±4.2). The net isoproterenol or NaF stimulated AC activity in 24 month old rats (zero and 15.6±8.5 respectively) was also reduced compared to young rats (10.1±3.9 and 166.0±21.2 respectively). It is concluded that aging is associated with reduced isoproterenol stimulated AC activity of cerebral microvessels. This reduction is the product of reduced -adrenergic receptor number and reduced activity of AC in aged rat cerebral microvessels.  相似文献   

17.
We have previously shown that glucose utilization and glucose transport were impaired in the brain of rats made deficient in n-3 polyunsaturated fatty acids (PUFA). The present study examines whether n-3 PUFA affect the expression of glucose transporter GLUT1 and glucose transport activity in the endothelial cells of the blood–brain barrier. GLUT1 expression in the cerebral cortex microvessels of rats fed different amounts of n-3 PUFA (low vs. adequate vs. high) was studied. In parallel, the glucose uptake was measured in primary cultures of rat brain endothelial cells (RBEC) exposed to supplemental long chain n-3 PUFA, docosahexaenoic (DHA) and eicosapentaenoic (EPA) acids, or to arachidonic acid (AA). Western immunoblotting analysis showed that endothelial GLUT1 significantly decreased (−23%) in the n-3 PUFA-deficient microvessels compared to control ones, whereas it increased (+35%) in the microvessels of rats fed the high n-3 PUFA diet. In addition, binding of cytochalasin B indicated that the maximum binding to GLUT1 (Bmax) was reduced in deficient rats. Incubation of RBEC with 15 μM DHA induced the membrane DHA to increase at a level approaching that of cerebral microvessels isolated from rats fed the high n-3 diet. Supplementation of RBEC with DHA or EPA increased the [3H]-3-O-methylglucose uptake (reflecting the basal glucose transport) by 35% and 50%, respectively, while AA had no effect. In conclusion, we suggest that n-3 PUFA can modulate the brain glucose transport in endothelial cells of the blood–brain barrier, possibly via changes in GLUT1 protein expression and activity.  相似文献   

18.
Specific [3H]inositol 1,4,5-trisphosphate [( 3H]InsP3) binding was studied in regions of postmortem brain from 15 patients with Huntington's disease (HD) and 13 nonneurological controls. Single-point binding analyses, using 5.0 nM InsP3, showed statistically significant reductions in specific [3H]InsP3 binding in the caudate (-71%) and putamen (-75%) of HD patients compared with controls. Frontal and occipital cortical [3H]InsP3 binding was not significantly different between HD and controls, a finding suggesting that the reduced [3H]InsP3 binding parallels the brain regional specificity of the neuropathological changes in HD. Scatchard analyses of data from [3H]InsP3 competition binding assays performed on caudate nucleus revealed that the reductions found using single-point binding assays were due to a decrease in both binding density (-57%) and affinity (-50%) in HD brain compared with controls. The concomitant changes in InsP3 receptor density and affinity in HD brain suggest that these alterations may be produced by processes in addition to cell loss. These results suggest the possibility that disturbances in InsP3 receptor function, possibly resulting in altered intracellular calcium flux and homeostasis, occur in HD and may participate in the pathogenesis of this neurodegenerative disorder.  相似文献   

19.
Microvessels isolated from rat cerebral cortex consist mainly of capillaries (greater than 85%). Fresh, intact microvessel preparations have been analyzed by radioligand binding techniques for muscarinic receptors. Scatchard analysis of specific quinuclidinyl benzilate (QNB) binding indicates that microvessels possess a large number of muscarinic sites (914 fmol/mg protein) of high affinity (KD = 0.034 nM). The association and dissociation rate constants (0.37 min-1 nM-1 and 0.0067 min-1, respectively) yield an equilibrium KD of 0.018 nM. Displacement of [3H]QNB by muscarinic ligands and control substances is typical of muscarinic receptors. The results indicate that cerebral microvessels possess a large population of muscarinic receptors.  相似文献   

20.
Alterations in 3H-GABA binding in Huntington's chorea.   总被引:1,自引:0,他引:1  
3H-GABA binding was measured in the caudate nucleus, putamen, parietal cortex and cerebellar cortex of control patients and patients with Huntington's chorea. The density of 3H-GABA binding in the parietal cortex was similar in both patient groups. In the striatal regions there was a significant large (70–80 percent) decrease in the density of GABA binding which is consistent with the severe atrophy and cell loss observed in these regions. In contrast the membranes prepared from the cerebellar cortex exhibited both an increased binding capacity (at 25 nM 3H-GABA) and an apparently increased affinity (decreased KD) for 3H-GABA. The decreased capacity of the striatum to bind 3H-GABA may partially explain the reported lack of clinical efficacy of GABAmimetic compounds in Huntington's chorea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号