首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Monocyte recruitment and accumulation in the synovial tissue is pivotal in the evolution of rheumatoid arthritis (RA). In the present study we examined the chemotactic potential of monocytes obtained from synovial fluid (SF) of patients with RA. Functionally, SF monocytes exhibited greatly diminished chemotactic activity to C5a compared with monocytes from the peripheral blood. In contrast, their chemotactic responsiveness to the synthetic peptide, FMLP, was nearly normal. To define a mechanism for this differential chemotactic dysfunction, cell-surface receptors for C5a (C5aR) and FMLP (FMLP-R) were evaluated. Whereas FMLP-R expression was similar on both blood and inflammatory monocytes, C5aR expression was markedly reduced on SF cells. Because decreased C5a binding in certain RA SF samples could not be attributed to free C5a, known or suspected components of inflammatory SF were evaluated for their ability to modulate chemotactic ligand receptors. Bacterial products including LPS and streptococcal cell walls, which are potent monocyte activators, down-regulated C5aR without affecting FMLP-R. Moreover, the cytokines IFN-gamma and granulocyte-macrophage-CSF selectively decreased C5aR in parallel with decreased in vitro chemotactic activity to C5a. Thus, these data indicate that 1) synovial effusions may contain C5a and/or inflammatory mediators that modulate phenotypic and functional changes in monocytes, 2) chemotactic ligand receptors are independently regulated in inflammatory lesions, and 3) decreased C5aR expression and chemotactic potential likely provide a mechanism whereby monocyte-macrophages persist within the inflamed synovium.  相似文献   

2.
The growth of synovial fibroblast-like cells from patients with rheumatoid arthritis and rats with streptococcal cell wall (SCW)-induced arthritis in vitro under anchorage-independent conditions is inhibited by transforming growth factor-beta (TGF-beta). Because this growth factor is present in rheumatoid synovial fluids, we studied whether this cytokine might be secreted by cells in rheumatoid synovial tissue. We show that synovial tissues from patients with rheumatoid arthritis and osteoarthritis, and rats with SCW-induced arthritis, contain TGF-beta-1 mRNA. TGF-beta, predominantly type 1, was spontaneously secreted in vitro by synovial tissue explants and synovial fibroblast-like cells. In addition, TGF-beta could be detected immunohistochemically in cells throughout rheumatoid and SCW-induced arthritic rat synovial tissues. Finally, exogenous TGF-beta induced collagen and inhibited collagenase mRNA levels by cultured synoviocytes. These data support an autocrine role for TGF-beta in the regulation of synoviocytes in rheumatoid arthritis and, in light of its demonstrated effects on the immune system, suggest that TGF-beta might also have important paracrine effects on infiltrating inflammatory cells.  相似文献   

3.
The synovium from patients with rheumatoid arthritis (RA) and LEW/N rats with streptococcal cell wall (SCW) arthritis, an experimental model resembling RA, is characterized by massive proliferation of synovial connective tissues and invasive destruction of periarticular bone and cartilage. Since heparin binding growth factor (HBGF)-1, the precursor of acidic fibroblast growth factor (FGF), is a potent angiogenic polypeptide and mitogen for mesenchymal cells, we sought evidence that it was involved in the synovial pathology of RA and SCW arthritis. HBGF-1 mRNA was detected in RA synovium using the polymerase chain reaction technique, and its product was immunolocalized intracellularly in both RA and osteoarthritis (OA) synovium. HBGF-1 staining was more extensive and intense in synovium of RA patients than OA and correlated with the extent and intensity of synovial mononuclear cell infiltration. HBGF-1 staining also correlated with c-Fos protein staining. In SCW arthritis, HBGF-1 immunostaining was noted in bone marrow, bone, cartilage, synovium, ligamentous and tendinous structures, as well as various dermal structures and developed early in both T-cell competent and incompetent rats. Persistent high level immunostaining of HBGF-1 was only noted in T-cell competent rats like the disease process in general. These observations implicate HBGF-1 in a multitude of biological functions in inflammatory joint diseases.  相似文献   

4.
Group A streptococcal cell wall fragments (SCW) induce erosive polyarthritis, characterized by synovial cell hyperplasia and intense mononuclear cell infiltration, in susceptible rats. Because of the known antiproliferative and immunomodulatory effects of interferon (IFN), we evaluated the effect of systemically administered alpha, beta and gamma IFN on the evolution of these destructive lesions. Treatment with gamma IFN not only reduced the acute response, but had an even greater suppressive effect on the chronic mononuclear cell-mediated destructive phase of the disease (articular index 10.2 +/- 1.2 for SCW only versus 3.8 +/- 0.7 for SCW + gamma IFN; p less than 0.01). Treatment with gamma IFN was more effective in the suppression of the arthritis than alpha, beta IFN. Histopathologic evaluation of the joints demonstrated that gamma IFN-treated animals had significantly fewer inflammatory cells, and less synovial hyperplasia and erosions than the SCW controls. gamma IFN suppression of mononuclear cell prostaglandin synthesis and synovial fibroblast proliferation was consistent with its anti-arthritic effects. These data indicate that the pathophysiology of SCW-induced erosive polyarthritis is subject to regulatory control by gamma IFN and that the mechanisms of suppression may be relevant in the treatment of rheumatoid arthritis.  相似文献   

5.
Rheumatoid arthritis (RA) is a chronic symmetric polyarticular joint disease that primarily affects the small joints of the hands and feet. The inflammatory process is characterized by infiltration of inflammatory cells into the joints, leading to proliferation of synoviocytes and destruction of cartilage and bone. In RA synovial tissue, the infiltrating cells such as macrophages, T cells, B cells and dendritic cells play important role in the pathogenesis of RA. Migration of leukocytes into the synovium is a regulated multi-step process, involving interactions between leukocytes and endothelial cells, cellular adhesion molecules, as well as chemokines and chemokine receptors. Chemokines are small, chemoattractant cytokines which play key roles in the accumulation of inflammatory cells at the site of inflammation. It is known that synovial tissue and synovial fluid from RA patients contain increased concentrations of several chemokines, such as monocyte chemoattractant protein-4 (MCP-4)/CCL13, pulmonary and activation-regulated chemokine (PARC)/CCL18, monokine induced by interferon-gamma (Mig)/CXCL9, stromal cell-derived factor 1 (SDF-1)/CXCL12, monocyte chemotactic protein 1 (MCP-1)/CCL2, macrophage inflammatory protein 1alpha (MIP-1alpha)/CCL3, and Fractalkine/CXC3CL1. Therefore, chemokines and chemokine-receptors are considered to be important molecules in RA pathology.  相似文献   

6.
Peritoneal and peripheral blood monocyte-macrophages from inbred Lewis (LEW) rats generate higher levels of reactive oxygen intermediates (ROI) in response to group A streptococcal cell walls (SCW) than do similar populations of cells from histocompatible Fischer rats. This differential sensitivity of the phagocytes to SCW is reflected in differences in susceptibility of the two strains to the development of arthritis in response to SCW. After systemic administration of the SCW, LEW rats develop acute and chronic erosive polyarthritis, whereas the Fischer rats are arthritis resistant. Inasmuch as these data suggested that the SCW-induced release of inflammatory cell products such as ROI might be an important contributory factor in the pathogenesis of arthritis in the LEW rats, the animals were injected with SCW and treated with ROI inhibitors. A single intraarticular injection of superoxide dismutase or catalase significantly reduced the SCW-induced inflammatory response and evolution of erosive arthritis in the treated animals (articular index 3.6 +/- 0.36 for SCW only vs 1.4 +/- 0.3 for SCW + SOD; p less than 0.001; n = 6). These data indicate that ROI play a pivotal role in synovitis and, furthermore, that suppression of these inflammatory mediators modulates both acute and chronic SCW-induced inflammation of the joint.  相似文献   

7.
Chemokines play an essential role in the progression of rheumatoid arthritis (RA). In the present study we examined the expression and regulatory mechanisms of IFN-gamma inducible protein (IP)-10 in RA synovitis. RA synovial fluid contained greater amounts of IP-10 than did synovial fluid from patients with osteoarthritis. Immunolocalization analysis indicated that IP-10 was associated mainly with infiltrating macrophage-like cells, and fibroblast-like cells in the RA synovium. The interaction of activated leukocytes with fibroblast-like synoviocytes resulted in marked increases in IP-10 expression and secretion. Moreover, induction of IP-10 was mediated via specific adhesion molecules, as indicated by the finding that both anti-integrin (CD11b and CD18) and intercellular adhesion molecule-1 antibodies significantly inhibited IP-10 induction. These results suggest that IP-10 expression within inflamed joints appears to be regulated not only by inflammatory cytokines but also by the physical interaction of activated leukocytes with fibroblast-like synoviocytes, and that IP-10 may contribute to the recruitment of specific subpopulations of T cells (Th1 type) from the bloodstream into the synovial joints.  相似文献   

8.
We report here that human synovial cells stimulated by interleukin-1 alpha and interleukin-1 beta express mRNA for both IL-8 (neutrophil chemotactic peptide) and monocyte chemotactic protein. IL-1 stimulated synovial cells from both osteoarthritis and rheumatoid arthritis patients exhibited similar mRNA expression of interleukin-8 and monocyte chemotactic protein. A capacity to produce factors selectively chemotactic for neutrophils, lymphocytes and monocytes provides a mechanism whereby synovial cells can facilitate inflammatory arthritis.  相似文献   

9.
Intraperitoneal injection of streptococcal cell walls (SCW) into Lewis rats results in dissemination of SCW to the liver, spleen, bone marrow, and peripheral joints. The uptake of SCW by Kupffer cells in the liver initiates a chain of events largely mediated by T lymphocytes and macrophages. Local synthesis and secretion of cytokines and growth factors in response to the persistent SCW lead to the evolution and maintenance of a chronic T cell-dependent granulomatous response and result in granuloma formation and irreversible hepatic fibrosis. In an attempt to impede the development of the chronic granulomatous lesions in the liver, we injected a plasmid DNA encoding TGF-beta 1 i.m. to the SCW animals to determine the effect of TGF-beta 1 gene transfer on the course of liver inflammation and fibrosis. A single injection of plasmid DNA encoding TGF-beta 1 resulted in virtual abolition of the development of the SCW-induced hepatic granuloma formation and matrix expansion. TGF-beta 1 DNA not only reduced key proinflammatory cytokines including TNF-alpha, IL-1 beta, IFN-gamma, and IL-18, but also inhibited both CXC and CC chemokine production, thereby blocking inflammatory cell recruitment and accumulation in the liver. Moreover, TGF-beta 1 gene delivery inhibited its own expression in the liver tissue, which is otherwise up-regulated in SCW-injected animals. Our study suggests that TGF-beta 1 gene transfer suppresses hepatic granuloma formation by blocking the recruitment of inflammatory cells to the liver, and thus may provide a new approach to the control of hepatic granulomatous and fibrotic diseases.  相似文献   

10.
Macrophages that accumulate in the synovium of rheumatoid arthritis patients play an important role in the pathogenesis of this inflammatory disease. However, the mechanism by which macrophages are attracted into the inflamed synovium and accumulate there has not been completely delineated. The results of this study show that rheumatoid arthritis synovial stromal cells produce the chemokines monocyte chemotactic protein-1 and IL-8, and these have the capacity to attract peripheral monocytes. These results suggest that one of the mechanisms by which macrophages accumulate in the inflamed synovium is by responding to the chemokines produced locally.  相似文献   

11.
12.
13.
In this study we investigated mechanisms involved in the chronic character of experimental collagen type II induced arthritis (CIA). We compared the knee joints of mouse strains which are prone to develop this autoimmune disease (DBA/1,B10RIII) with other nonsusceptible mouse strains (C57Bl/6,BALB/c) in their reaction to different stimuli: immune complexes (IC), zymosan and streptococcal cell walls (SCW). Inflammation was evaluated by(99m)Tc uptake measurements and in haematoxylin- and eosin-stained knee-joint sections. Passively induced immune complex mediated arthritis (ICA) in knee joints of C57Bl/6 and BALB/c mice, showed moderate cell influx at day 3, whereas at day 7 only minor amounts of inflammatory cells were observed. In contrast, in arthritic DBA/1 and, to a lesser extent, in B10.RIII joints, a tremendous cell influx was observed at day 3 and even at day 14 there was still significant synovitis. In contrast, if arthritis was elicited by intra-articular injection of zymosan or SCW in C57Bl/6 and DBA/1, the course of inflammation was similar in both strains and no chronic inflammation developed. In line with severe arthritis, chemotactic factor production was dramatically enhanced in ICA in DBA/1 mice, and a prolonged production of IL-1 was evident. When IL-1 was neutralized before or during the ICA using specific anti-IL-1alpha,beta antibodies, inflammation could be blocked completely. Single or multiple injection of IL-1 in the knee joint of C57Bl/6 or DBA/1 showed comparable inflammation, indicating that the chemotactic response per se is comparable in both strains. No prolonged production of IL-1 was found during zymosan or SCW arthritis. Selective removal of macrophages from the synovial intima prior to ICA induction (using clodronate-containing liposomes) prevented the onset of inflammation in C57Bl/6 and DBA/1 mice. It can be concluded that immune complexes, but not zymosan or SCW, cause a more severe and chronic arthritis in mouse strains which are susceptible for collagen type II autoimmune arthritis. This is due to higher and prolonged expression of IL-1 and chemotactic factors, caused by stimulation with immune complexes. The interaction of IC with lining macrophages probably plays a dominant role in development of chronicity.  相似文献   

14.

Introduction  

Experimental streptococcal cell wall (SCW)-induced arthritis is characterized by two successive phases of the disease. The acute phase occurs early and is associated with an inflammatory process and neutrophil infiltration into the synovium. The second chronic phase is related to effector T-cell activation and the dysregulation of macrophage function. Creation of an immunomodulatory environment has been attributed to apoptotic cells themselves, apoptotic cell uptake by phagocytes as well as a less sensibility of phagocytes capturing apoptotic bodies to activation. Therefore we evaluated the potential of apoptotic cell injection to influence the course of inflammation in SCW-induced arthritis in rats.  相似文献   

15.
Dendritic cells (DCs) are thought to play a key role in driving the immunopathogenic response underlying chronic inflammatory arthritis. In this study, we have examined the presence and phenotype of plasmacytoid DCs (pDCs) in the synovial fluids (SF) of patients with rheumatoid arthritis (RA), psoriatic arthritis (PA), and osteoarthritis (OA) and determined the chemotactic properties of SF from these patients toward pDCs. Flow cytometry analysis showed that the percentage of pDCs, identified as a population of Lin(-)CD123(++) cells, is 4- to 5-fold higher in RA SF and PA SF than in OA SF. The morphological and immunophenotypic characterization of pDCs isolated from PA and RA SF indicates that they are in an immature state, most likely due to inhibitory factors present in RA SF, but are still able to undergo maturation when exposed ex vivo to viral agent or unmethylated DNA. CD123(+) and BDCA2(+) pDCs were detected by immunohistochemistry in RA synovial tissue in which expression of the IFN-alpha-inducible protein MxA was also found, suggesting production of type I IFN by maturing pDCs. We also show that CXCR3 and CXCR4 are expressed by both blood-derived pDCs and pDCs isolated from RA and PA SF and that CXCL-10, CXCL-11, and CXCL-12 present in RA and PA SF stimulate chemotaxis of blood-derived pDCs. Altogether, these findings suggest that chemokine-driven recruitment of pDCs from the blood to the inflamed synovium could be important in the regulation of the immune response in chronic inflammatory arthritis.  相似文献   

16.
The purpose of this study was to analyze the expression of the two proinflammatory cytokines IL-20 and IL-24 and their shared receptors in rheumatoid arthritis and spondyloarthropathy. IL-20 was increased in plasma of rheumatoid arthritis patients compared with osteoarthritis patients and IL-24 was increased in synovial fluid and plasma of rheumatoid arthritis and spondyloarthropathy patients compared with osteoarthritis patients. IL-20 and IL-24 mRNA was only present at low levels in the synovium. In the synovial membrane, IL-20 protein was present in mononuclear cells and neutrophil granulocytes whereas IL-24 protein was observed in endothelial cells and mononuclear cells. IL-20 receptor type 1 and IL-22 receptor were expressed by granulocytes in the synovial fluid. In synovial fluid mononuclear cell cultures, stimulation with recombinant human IL-20 or recombinant human IL-24 induced monocyte chemoattractant protein 1 (CCL2/MCP-1) secretion, but not tumour necrosis factor alpha mRNA synthesis or IL-6 secretion. Both IL-20 and IL-24 showed correlations to CCL2/MCP-1 in plasma from rheumatoid arthritis and spondyloarthropathy patients. This study associates IL-20 and IL-24 to the synovium of rheumatoid arthritis and spondyloarthropathy and results indicate that the two cytokines contribute to disease pathogenesis through recruitment of neutrophil granulocytes and induction of CCL2/MCP-1.  相似文献   

17.
In patients with rheumatoid arthritis (RA), chemokine and chemokine receptor interactions play a central role in the recruitment of leukocytes into inflamed joints. This study was undertaken to characterize the expression of chemokine receptors in the synovial tissue of RA and non-RA patients. RA synovia (n = 8) were obtained from knee joint replacement operations and control non-RA synovia (n = 9) were obtained from arthroscopic knee biopsies sampled from patients with recent meniscal or articular cartilage damage or degeneration. The mRNA expression of chemokine receptors and their ligands was determined using gene microarrays and PCR. The protein expression of these genes was demonstrated by single-label and double-label immunohistochemistry. Microarray analysis showed the mRNA for CXCR5 to be more abundant in RA than non-RA synovial tissue, and of the chemokine receptors studied CXCR5 showed the greatest upregulation. PCR experiments confirmed the differential expression of CXCR5. By immunohistochemistry we were able to detect CXCR5 in all RA and non-RA samples. In the RA samples the presence of CXCR5 was observed on B cells and T cells in the infiltrates but also on macrophages and endothelial cells. In the non-RA samples the presence of CXCR5 was limited to macrophages and endothelial cells. CXCR5 expression in synovial fluid macrophages and peripheral blood monocytes from RA patients was confirmed by PCR. The present study shows that CXCR5 is upregulated in RA synovial tissue and is expressed in a variety of cell types. This receptor may be involved in the recruitment and positioning of B cells, T cells and monocytes/macrophages in the RA synovium. More importantly, the increased level of CXCR5, a homeostatic chemokine receptor, in the RA synovium suggests that non-inflammatory receptor–ligand pairs might play an important role in the pathogenesis of RA.  相似文献   

18.
In the absence of appropriate stimuli, monocytes undergo programmed cell death (PCD) or apoptosis. IL-1 beta and TNF-alpha prevent monocyte PCD, which suggests that viability may be regulated by biologically active peptides released during inflammation. To explore this possibility, we evaluated several chemotactic factors and pro-inflammatory cytokines for their ability to regulate PCD. The recruitment factors, FMLP, C fragment C5a, monocyte chemotactic protein-1, or transforming growth factor-beta 1, were incapable of rescuing monocytes from PCD nor did they enhance PCD, whereas several inflammatory cytokines in addition to IL-1 beta and TNF-alpha, including granulocyte-monocyte-CSF and IFN-gamma, prevented monocyte PCD provided that sufficient levels of these cytokines were continuously maintained in the cultures. Cytokine-mediated inhibition of PCD could be blocked by specific antisera, ruling out potential effects caused by LPS contamination. When tested at equivalent concentrations, IL-2, IL-4, and IL-6 had no effect on PCD indicating selectivity in cytokine modulation of monocyte PCD. Because monocytes produce IL-1 beta, TNF-alpha, and granulocyte-monocyte CSF when activated, the data suggest autocrine as well as paracrine control of cell survival and accumulation. The results also suggest that monocytes recruited to a site of inflammation will undergo PCD in the absence of specific cytokines and/or other stimuli that block this process.  相似文献   

19.
We have shown previously that an early complement C5-dependent cascade is required to recruit T cells to elicit 24-h contact sensitivity (CS) responses. In this paper, we have characterized molecular events of this early required cascade by biochemically analyzing extracts of mouse ears undergoing elicitation of CS. Chemotactic activity was found after local Ag challenge, in CS ear extracts early (by 1 h), in CS ear extracts late (through 24 h), in previously immunized mice, but not in ears of vehicle-immunized or non-immune-challenged mice. The early chemotactic activity at 2 h was likely caused by C5a, because it was neutralized in vitro by anti-C5a Ab, was inactive on C5aR-deficient (C5aR-/-) macrophages, and was absent in C5-deficient mice. The activity was present in T cell-deficient mice, but elaboration was Ag-specific. This T cell-independent, Ag-specific elaboration of C5a early in CS ear responses likely led to T cell recruitment, because subsequent local IFN-gamma mRNA and protein expression, as markers of T cell arrival and activation, began by 4 h after Ag challenge. In contrast to early C5a chemotactic activity, late chemotactic activity 24 h after Ag challenge was unaffected by anti-C5, was active on C5aR-/- macrophages, was T cell-dependent, and by ELISA appeared largely due to chemokines (macrophage-inflammatory protein-1alpha and -1beta, IFN-gamma-inducible protein-10, and monocyte chemoattractant protein-1). Importantly, early generation of C5a was required for T cell recruitment because C5aR-/- mice had absent 24-h CS. Taken together, these findings indicate an important linkage of C5a as a component of early activated innate immunity that is required for later elicitation of acquired T cell immunity, probably by facilitating the initial recruitment of T cells into the Ag-challenged local site in CS responses.  相似文献   

20.
The IL-1R/Toll-like receptor (TLR) superfamily of receptors has a key role in innate immunity and inflammation. In this study, we report that streptococcal cell wall (SCW)-induced joint inflammation is predominantly dependent on TLR-2 signaling, since TLR-2-deficient mice were unable to develop either joint swelling or inhibition of cartilage matrix synthesis. Myeloid differentiation factor 88 (MyD88) is a Toll/IL-1R domain containing adaptor molecule known to have a central role in both IL-1R/IL-18R and TLR signaling. Mice deficient for MyD88 did not develop SCW-induced arthritis; both joint swelling and disturbance of cartilage chondrocyte anabolic function was completely abolished. Local levels of proinflammatory cytokines and chemokines in synovial tissue washouts were strongly reduced in MyD88-deficient mice. Histology confirmed the pivotal role of MyD88 in acute joint inflammation. TLR-2-deficient mice still allow influx of inflammatory cells into the joint cavity, although the number of cells was markedly reduced. No influx of inflammatory cells was seen in joints of MyD88-deficient mice. In addition, cartilage matrix proteoglycan loss was completely absent in MyD88 knockout mice. These findings clearly demonstrated that MyD88 is a key component in SCW-induced joint inflammation. Since agonists of the Toll-like pathway are abundantly involved in both septic and rheumatoid arthritis, targeting of MyD88 may be a novel therapy in inflammatory joint diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号