首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Sonic hedgehog opposes epithelial cell cycle arrest.   总被引:14,自引:0,他引:14       下载免费PDF全文
Stratified epithelium displays an equilibrium between proliferation and cell cycle arrest, a balance that is disrupted in basal cell carcinoma (BCC). Sonic hedgehog (Shh) pathway activation appears sufficient to induce BCC, however, the way it does so is unknown. Shh-induced epidermal hyperplasia is accompanied by continued cell proliferation in normally growth arrested suprabasal cells in vivo. Shh-expressing cells fail to exit S and G2/M phases in response to calcium-induced differentiation and also resist exhaustion of replicative growth capacity. In addition, Shh blocks p21(CIP1/WAF1)-induced growth arrest. These data indicate that Shh promotes neoplasia by opposing normal stimuli for epithelial cell cycle arrest.  相似文献   

4.
Control of cell cycle progression/exit and differentiation of neuronal precursors is of paramount importance during brain development. BM88 is a neuronal protein associated with terminal neuron-generating divisions in vivo and is implicated in mechanisms underlying neuronal differentiation. Here we have used mouse neuroblastoma Neuro 2a cells as an in vitro model of neuronal differentiation to dissect the functional properties of BM88 by implementing gain- and loss-of-function approaches. We demonstrate that stably transfected cells overexpressing BM88 acquire a neuronal phenotype in the absence of external stimuli, as judged by enhanced expression of neuronal markers and neurite outgrowth-inducing signaling molecules. In addition, cell cycle measurements involving cell growth assays, BrdUrd incorporation, and fluorescence-activated cell sorting analysis revealed that the BM88-transfected cells have a prolonged G(1) phase, most probably corresponding to cell cycle exit at the G(0) restriction point, as compared with controls. BM88 overexpression also results in increased levels of the cell cycle regulatory protein p53, and accumulation of the hypophosphorylated form of the retinoblastoma protein leading to cell cycle arrest, with concomitant decreased levels and, in many cells, cytoplasmic localization of cyclin D1. Conversely, BM88 gene silencing using RNA interference experiments resulted in acceleration of cell proliferation accompanied by impairment of retinoic acid-induced neuronal differentiation of Neuro 2a cells. Taken together, our results suggest that BM88 plays an essential role in regulating cell cycle exit and differentiation of Neuro 2a cells toward a neuronal phenotype and further support its involvement in the proliferation/differentiation transition of neural stem/progenitor cells during embryonic development.  相似文献   

5.
The ability of progenitor cells to exit the cell cycle is essential for proper embryonic development and homeostasis, but the mechanisms governing cell cycle exit are still not fully understood. Here, we tested the requirement for the retinoblastoma (Rb) protein and its family members p107 and p130 in G0/G1 arrest and differentiation in mammalian cells. We found that Rb family triple knockout (TKO) mouse embryos survive until days 9-11 of gestation. Strikingly, some TKO cells, including in epithelial and neural lineages, are able to exit the cell cycle in G0/G1 and differentiate in teratomas and in culture. This ability of TKO cells to arrest in G0/G1 is associated with the repression of key E2F target genes. Thus, G1 arrest is not always dependent on Rb family members, which illustrates the robustness of cell cycle regulatory networks during differentiation and allows for the identification of candidate pathways to inhibit the expansion of cancer cells with mutations in the Rb pathway.  相似文献   

6.
Paclitaxel (PTX), a microtubule-active drug, causes mitotic arrest leading to apoptosis in certain tumor cell lines. Here we investigated the effects of PTX on human arterial smooth muscle cell (SMC) cells. In SMC, PTX caused both (a) primary arrest in G1 and (b) post-mitotic arrest in G1. Post-mitotic cells were multinucleated (MN) with either 2C (near-diploid) or 4C (tetraploid) DNA content. At PTX concentrations above12 ng/ml, MN cells had 4C DNA content consistent with the lack of cytokinesis during abortive mitosis. Treatment with 6-12 ng/ml PTX yielded MN cells with 2C DNA content. Finally, 1-6 ng/ml of PTX, the lowest concentrations that affected cell proliferation, caused G1 arrest without multinucleation. It is important that PTX did not cause apoptosis in SMC. The absence of apoptosis could be explained by mitotic exit and G1 arrest as well as by low constitutive levels of caspase expression and by p53 and p21 induction. Thus, following transient mitotic arrest, SMC exit mitosis to form MN cells. These post-mitotic cells were subsequently arrested in G1 but maintained normal elongated morphology and were viable for at least 21 days. We conclude that in SMC PTX causes post-mitotic cell cycle arrest rather than cell death.  相似文献   

7.
Hajnal A  Berset T 《The EMBO journal》2002,21(16):4317-4326
In the Caenorhabditis elegans hermaphrodite germline, spatially restricted mitogen-activated protein kinase (MAPK) signalling controls the meiotic cell cycle. First, the MAPK signal is necessary for the germ cells to progress through pachytene of meiotic prophase I. As the germ cells exit pachytene and enter diplotene/diakinesis, MAPK is inactivated and the developing oocytes arrest in diakinesis (G(2)/M arrest). During oocyte maturation, a signal from the sperm reactivates MAPK to promote M phase entry. Here, we show that the MAPK phosphatase LIP-1 dephosphorylates MAPK as germ cells exit pachytene in order to maintain MAPK in an inactive state during oocyte development. Germ cells lacking LIP-1 fail to arrest the cell cycle at the G(2)/M boundary, and they enter a mitotic cell cycle without fertilization. LIP-1 thus coordinates oocyte cell cycle progression and maturation with ovulation and fertilization.  相似文献   

8.
Tissue homeostasis requires precise control of cell proliferation and arrest in response to environmental cues. In situation such as wound healing, injured cells are stimulated to divide, but as soon as confluence is reached proliferation must be blocked. Such reversible cell cycle exit occurs in G1, requires pRb family members, and is driven by p27Kip1-dependent Cdk inactivation. This implies that, while dividing, cells should simultaneously prepare the exit once mitosis is accomplished. For a long time, the decision to cycle or not was presumed to occur in G1, prior to the restriction point, beyond which the cells were bound to divide even in the absence of mitogens, before finally arresting after mitosis. However, more recent reports suggested that the commitment to cycle in response to serum occurs already in G2 phase and requires the Ras-dependent induction of cyclin D1, which promotes following G1/S transition. To test whether this hypothesis applies to arrest induced by contact inhibition, we used an in vitro wounding model where quiescent human dermal fibroblasts, stimulated to proliferate by mechanical injury, synchronously exit cell cycle after mitosis due to renewed confluence. We show that this exit is preceded by p27-dependent inhibition of cyclin A-Cdk1/2, cyclin D1 downregulation and reduced pre-mitotic pRb pocket protein phosphorylation. Over-expression of cyclin D1 but not p27 depletion reversed this phenotype and compromised confluence-driven cell cycle exit. Thus, a balance between cyclin D1 and p27 may provide sensitive responses to variations in proliferative cues operating throughout the cell cycle.  相似文献   

9.
The retinoblastoma tumor suppressor protein (pRb) is involved in mitotic exit, promoting the arrest of myoblasts, and myogenic differentiation. However, it is unclear how permanent cell cycle exit is maintained in differentiated muscle. Using RNA interference, expression profiling, and chromatin immunoprecipitations, we show that pRb is essential for cell cycle exit and the differentiation of myoblasts and is also uniquely required to maintain this arrest in myotubes. Remarkably, we also uncover a function for the pRb-related proteins p107 and p130 as enforcers of a G2/M phase checkpoint that prevents progression into mitosis in cells that have lost pRb. We further demonstrate that pRb effects permanent cell cycle exit in part by maintaining trimethylation of histone H3 lysine 27 (H3K27) on cell cycle genes. H3K27 trimethylation silences other genes, including Cyclin D1, in a pRb-independent but polycomb-dependent manner. Thus, our data distinguish two distinct chromatin-based regulatory mechanisms that lead to terminal differentiation.  相似文献   

10.
Alpha-factor-mediated cell cycle arrest and mating inhibition of a mating-type cells of Saccharomyces cerevisiae have been examined in liquid cultures. Cell cycle arrest may be monitored unambiguously by the appearance of morphologically abnormal cells after administration of alpha factor, whereas mating inhibition is determined by comparing the mating efficiency in the absence or presence of added alpha factor. For both cell cycle arrest and mating inhibition, a dose-dependent response may be observed at limiting concentrations of the pheromone. If cell cycle arrest and mating inhibition require a small number of alpha-factor molecules, one might expect that responsive/nonresponsive cells = K(alpha factor)(N) where N is the order of dependence of cell cycle arrest (or mating inhibition) on alpha-factor concentration. The value of N has been determined to be 0.98 +/- 0.18 (standard error of the mean) for cell cycle arrest and 1.08 +/- 0.32 for mating inhibition. These results support the notion that saturation of a single site by alpha factor is sufficient to cause cell cycle arrest or mating inhibition of a mating-type cells.  相似文献   

11.
12.
Development of the nervous system requires that timely withdrawal from the cell cycle be coupled with initiation of differentiation. Ubiquitin-mediated degradation of the N-Myc oncoprotein in neural stem/progenitor cells is thought to trigger the arrest of proliferation and begin differentiation. Here we report that the HECT-domain ubiquitin ligase Huwe1 ubiquitinates the N-Myc oncoprotein through Lys 48-mediated linkages and targets it for destruction by the proteasome. This process is physiologically implemented by embryonic stem (ES) cells differentiating along the neuronal lineage and in the mouse brain during development. Genetic and RNA interference-mediated inactivation of the Huwe1 gene impedes N-Myc degradation, prevents exit from the cell cycle by opposing the expression of Cdk inhibitors and blocks differentiation through persistent inhibition of early and late markers of neuronal differentiation. Silencing of N-myc in cells lacking Huwe1 restores neural differentiation of ES cells and rescues cell-cycle exit and differentiation of the mouse cortex, demonstrating that Huwe1 restrains proliferation and enables neuronal differentiation by mediating the degradation of N-Myc. These findings indicate that Huwe1 links destruction of N-Myc to the quiescent state that complements differentiation in the neural tissue.  相似文献   

13.
In the presence of double strand breaks, DNA damage checkpoint halts cell cycle progression. However, cells ultimately escape the checkpoint arrest and re-enter cell cycle in the presence of irreparable DNA damage. cdc5-ad was identified as a mutant that fails to adapt to the cell cycle arrest induced by DNA damage checkpoint. In budding yeast, Cdc5 protein kinase is a component of both MEN and FEAR pathways that are required for mitotic exit. It remains unclear whether the adaptation defect of cdc5-ad mutant cells is related to the function of Cdc5 in mitotic exit. Here we present evidence indicating that cdc5-ad mutant cells exhibit defects in mitotic exit. cdc5-ad mutant cells are sensitive to high dosage of Amn1, a negative regulator of MEN. It also shows synthetic growth defects with mutants in MEN pathway. Moreover, mutants in FEAR pathway exhibit defects in DNA damage adaptation. Thus, we conclude that the compromised mitotic exit pathway contributes to DNA damage adaptation defects in cdc5-ad mutant cells.  相似文献   

14.
Senescence was classically defined as an irreversible cell cycle arrest in G1 phase (G1 exit) triggered by eroded telomeres in aged primary cells. The molecular basis of this G1 arrest is thought to be due to a DNA damage response, resulting in accumulation of the cyclin dependent kinase (Cdk) inhibitors p21 and p16 that block the inactivating phosphorylation of the retinoblastoma tumor suppressor pRb, thereby preventing DNA replication. More than a decade ago, several studies showed that p21 also mediates permanent DNA damage-induced cell cycle arrest in G2 (G2 exit) by inhibiting mitotic Cdk complexes and pRb phosphorylation. The idea that the senescence program can also be launched after G2 arrest has gained support from several recent publications, including evidence for its existence in vivo.  相似文献   

15.
16.
The effect of chemoresistance induction in radiosensitivity and cellular behavior after irradiation remains misunderstood. This study was designed to understand the relationship between radiation-induced cell cycle arrest, apoptosis, and radiosensitivity in KB cell line and KB3 subline selected after 5-fluorouracil (5FU) exposure. Exposure of KB cells to 5FU led to an increase in radiosensitivity. G2/M cell cycle arrest was observed in the two cell lines after irradiation. The radioresistant KB cell line reached the maximum arrest two hours before KB3. The cellular exit from this arrest was found to be related to the wild type p53 protein expression induction. After irradiation, only KB3 cell line underwent apoptosis. This apoptosis induction seemed to be independent of G2/M arrest exit, which was carried out later. The difference in radiosensitivity between KB and KB3 subline may result therefore from both a difference in apoptosis induction and a difference in G2/M arrest maximum duration. Moreover, 5FU exposure has led to an increase in constitutive p53 protein expression, which may be associated with an increase in basal apoptosis cell fraction. Given the existing correlation between radiosensitivity and the percentage of basal apoptosis, the constitutive p53 protein expression may be related to intrinsic radiosensitivity in our cellular model.  相似文献   

17.
Neighbour suppression of growth of tumour cells by stationary normal cells might be important in early stages of cancer. We have studied this using suppressor and non-suppressor lines of 3T3 fibroblasts and SV40 transformed derivatives. Growth suppression of transformed cells depended on direct contact with stationary confluent cultures of 3T3 cells but not on gap junction communication. It was not caused by apoptosis nor through the normal G0/G1 block present in the confluent normal cells. Instead, there was a progressive elongation of the cell cycle leading to arrest in G2/M in the transformed cells. This indicates an unusual type of growth arrest not previously involved in social control of cell growth.  相似文献   

18.
Aurora A kinase has drawn considerable attention as a therapeutic target for cancer therapy. However, the underlying molecular and cellular mechanisms of the anticancer effects of Aurora A kinase inhibition are still not fully understood. Herein, we show that depletion of Aurora A kinase by RNA interference (RNAi) in hepatocellular carcinoma (HCC) cells upregulated FoxO1 in a p53-dependent manner, which induces cell cycle arrest. Introduction of an RNAi-resistant Aurora A kinase into Aurora A-knockdown cells resulted in downregulation of FoxO1 expression and rescued proliferation. In addition, silencing of FoxO1 in Aurora A-knockdown cells allowed the cells to exit cytostatic arrest, which, in turn, led to massive cell death. Our results suggest that FoxO1 is responsible for growth arrest at the G2/M phase that is induced by Aurora A kinase inhibition.  相似文献   

19.
The extracellular matrix is a crucial component in determining cell fate. Fibrillar collagen in its native form inhibits cell proliferation, whereas in its monomeric form it stimulates proliferation. The observation of elevated levels of p27(KIP1) in cells plated in the presence of fibrillar collagen has led to the assumption that this kinase inhibitor was responsible for cell cycle arrest on fibrillar collagen. Here we provide evidence that p15(INK4b), rather than p27(KIP1), is the cyclin-dependent kinase inhibitor responsible for G0/G1 arrest of human melanoma cells grown on fibrillar collagen. Additionally, we demonstrate that fibrillar collagen can also arrest cells at the G2 phase, which is mediated in part by p21(CIP1). Our data, in addition to identifying cyclin-dependent kinase inhibitors important in cell cycle arrest mediated by fibrillar collagen, demonstrate the complexity of cell cycle regulation and indicate that modulating a single cyclin-dependent kinase inhibitor does not disrupt cell proliferation in the presence of fibrillar collagen.  相似文献   

20.
Upon DNA damage, cell cycle progression is temporally blocked to avoid propagation of mutations. While transformed cells largely maintain the competence to recover from a cell cycle arrest, untransformed cells past the G1/S transition lose mitotic inducers, and thus the ability to resume cell division. This permanent cell cycle exit depends on p21, p53, and APC/CCdh1. However, when and how permanent cell cycle exit occurs remains unclear. Here, we have investigated the cell cycle response to DNA damage in single cells that express Cyclin B1 fused to eYFP at the endogenous locus. We find that upon DNA damage Cyclin B1-eYFP continues to accumulate up to a threshold level, which is reached only in G2 phase. Above this threshold, a p21 and p53-dependent nuclear translocation required for APC/CCdh1-mediated Cyclin B1-eYFP degradation is initiated. Thus, cell cycle exit is decoupled from activation of the DNA damage response in a manner that correlates to Cyclin B1 levels, suggesting that G2 activities directly feed into the decision for cell cycle exit. Once Cyclin B1-eYFP nuclear translocation occurs, checkpoint inhibition can no longer promote mitotic entry or re-expression of mitotic inducers, suggesting that nuclear translocation of Cyclin B1 marks the restriction point for permanent cell cycle exit in G2 phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号