首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Stimulation of RBL-2H3 m1 mast cells through the IgE receptor with antigen, or through a G protein-coupled receptor with carbachol, leads to the rapid appearance of phosphothreonine in nonmuscle myosin heavy chain II-A (NMHC-IIA). We demonstrate that this results from phosphorylation of Thr-1940 by calcium/calmodulin-dependent protein kinase II (CaM kinase II), activated by increased intracellular calcium. The phosphorylation site in rodent NMHC-IIA was localized to the carboxyl terminus of NMHC-IIA distal to the coiled-coil region, and identified as Thr-1940 by site-directed mutagenesis. A fusion protein containing the NMHC-IIA carboxyl terminus was phosphorylated by CaM kinase II in vitro, while mutation of Thr-1940 to Ala eliminated phosphorylation. In contrast to rodents, in humans Thr-1940 is replaced by Ala, and human NMHC-IIA fusion protein was not phosphorylated by CaM kinase II unless Ala-1940 was mutated to Thr. Similarly, co-transfected Ala --> Thr-1940 human NMHC-IIA was phosphorylated by activated CaM kinase II in HeLa cells, while wild type was not. In RBL-2H3 m1 cells, inhibition of CaM kinase II decreased Thr-1940 phosphorylation, and inhibited release of the secretory granule marker hexosaminidase in response to carbachol but not to antigen. These data indicate a role for CaM kinase stimulation and resultant threonine phosphorylation of NMHC-IIA in RBL-2H3 m1 cell activation.  相似文献   

3.
Eotaxin is a potent chemokine that acts via CC chemokine receptor 3 (CCR3) to induce chemotaxis, mainly on eosinophils. Here we show that eotaxin also induces chemotactic migration in rat basophilic leukemia (RBL-2H3) mast cells. This effect was dose-dependently inhibited by compound X, a selective CCR3 antagonist, indicating that, as in eosinophils, the effect was mediated by CCR3. Eotaxin-induced cell migration was completely blocked in RBL-RacN17 cells expressing a dominant negative Rac1 mutant, suggesting a crucial role for Rac1 in eotaxin signaling to chemotactic migration. ERK activation also proved essential for eotaxin signaling and it too was absent in RBL-RacN17 cells. Finally, we found that activation of Rac and ERK was correlated with eotaxin-induced actin reorganization known to be necessary for cell motility. It thus appears that Rac1 acts upstream of ERK to signal chemotaxis in these cells, and that a Rac-ERK-dependent cascade mediates the eotaxin-induced chemotactic motility of RBL-2H3 mast cells.  相似文献   

4.
Relationship of IgE receptor topography to secretion in RBL-2H3 mast cells.   总被引:4,自引:0,他引:4  
In RBL-2H3 rat leukemic mast cells, cross-linking IgE-receptor complexes with anti-IgE antibody leads to degranulation. Receptor cross-linking also stimulates the redistribution of receptors on the cell surface, a process observed here by labeling the anti-IgE with 15 nm protein A-gold particles that are visible by back-scattered electron imaging in the scanning electron microscope. We report that anti-IgE binding stimulates the redistribution of IgE-receptor complexes at 37 degrees C from a dispersed topography to distributions dominated sequentially by short chains, small clusters, and large aggregates of cross-linked receptors. Cells incubated with 1 microgram/ml anti-IgE, a concentration that stimulates maximum net secretion, redistribute receptors into chains and small clusters during a 15 min incubation period. At 3 and 10 micrograms/ml anti-IgE, net secretion is reduced and the majority of receptors redistribute rapidly into clusters and large aggregates. The addition of Fab fragments with the high anti-IgE concentrations, to reduce cross-linking, delays receptor aggregation and enhances secretion. The progression of receptors from small clusters to large aggregates is prevented in cells treated with dihydrocytochalasin B to prevent F-actin assembly. These results establish that characteristic patterns of receptor topography are correlated with receptor activity. In particular, they link the formation of large receptor aggregates to reduced signalling activity. Cytoskeleton-membrane interaction is implicated in the formation or stabilization of the large receptor clusters.  相似文献   

5.
Hrs binding protein (Hbp) tightly associated with Hrs is thought to play a regulatory role in vesicular trafficking during endocytosis and exocytosis. In this study, we have expressed dominant-negative mutants of Hbp to evaluate their effects on the degranulation of secretory granules in RBL-2H3 mast cells. The dominant-negative mutants of Hbp significantly inhibited IgE receptor (FcepsilonRI)-triggered secretory response as tested by beta-hexosaminidase release. These results suggest that Hbp functions as a regulator in the FcepsilonRI-triggered degranulation of secretory granules in mast cells.  相似文献   

6.
In the mast cell signaling pathways, the binding of immunoglobulin E (IgE) to FcRI, its high-affinity receptor, is generally thought to be a passive step. In this study, we examined the effect of IgE alone, that is, without antigen stimulation, on the degranulation in mast cells. Monomeric IgE (500–5,000 ng/ml) alone increased cytosolic Ca2+ level ([Ca2+]i) and induced degranulation in rat basophilic leukemia (RBL)-2H3 mast cells. Monomeric IgE (5,000 ng/ml) alone also increased [Ca2+]i and induced degranulation in bone marrow-derived mast cells. Interestingly, monomeric IgE (5–50 ng/ml) alone, in concentrations too low to induce degranulation, increased filamentous actin content in RBL-2H3 mast cells. We next examined whether actin dynamics affect the IgE alone-induced RBL-2H3 mast cell activation pathways. Cytochalasin D inhibited the ability of IgE alone (50 ng/ml) to induce de novo actin assembly. In cytochalasin D-treated cells, IgE (50 ng/ml) alone increased [Ca2+]i and induced degranulation. We have summarized the current findings into two points. First, IgE alone increases [Ca2+]i and induces degranulation in mast cells. Second, IgE, at concentrations too low to increase either [Ca2+]i or degranulation, significantly induces actin assembly, which serves as a negative feedback control in the mast cell Ca2+ signaling and degranulation. mast cell; immunoglobulin E; cytochalasin D; Y-27632; wortmannin  相似文献   

7.
We have previously shown that store-associated microdomains of high Ca(2+) are not essential for exocytosis in RBL-2H3 mucosal mast cells. We have now examined whether Ca(2+) microdomains near the plasma membrane are required, by comparing the secretory responses seen when Ca(2+) influx was elicited by two very different mechanisms. In the first, antigen was used to activate the Ca(2+) release-activated Ca(2+) (CRAC) current (I(CRAC)) through CRAC channels. In the second, a Ca(2+) ionophore was used to transport Ca(2+) randomly across the plasma membrane. Since store depletion by Ca(2+) ionophore will also activate I(CRAC), different means of inhibiting I(CRAC) before ionophore addition were used. Ca(2+) responses and secretion in individual cells were compared using simultaneous indo-1 microfluorometry and constant potential amperometry. Secretion still takes place when the increase in intracellular Ca(2+) occurs diffusely via the Ca(2+) ionophore, and at an average intracellular Ca(2)+ concentration that is no greater than that observed when Ca(2+) entry via CRAC channels triggers secretion. Our results suggest that microdomains of high Ca(2+) near the plasma membrane, or associated with mitochondria or Ca(2+) stores, are not required for secretion. Therefore, we conclude that modest global increases in intracellular Ca(2+) are sufficient for exocytosis in these nonexcitable cells.  相似文献   

8.
A direct degranulation assay has been developed to enable the use of RBL mast cells as a biosensor for screening chemical libraries for drug discovery and environmental toxicity evaluation. Release of beta-hexosaminidase into the extracellular milleu is widely used to characterize cellular components and mechanisms involved in stimulated exocytosis, including those initiated by crosslinking of IgE receptors on mast cells. To adapt this versatile assay for high throughput screening, we developed a direct, in situ method in which beta-hexosaminidase detection is carried out in a single step, convenient for multi-sample processing and thus for biosensor applications. This direct assay is efficient for measuring exocytosis in antigen-stimulated RBL mast cells, detecting antigen concentrations as low as 1 pM. We also demonstrate its utility in detecting inhibition of degranulation by a known pharmacologic inhibitor that blocks Syk tyrosine kinase activity critical for cell activation.  相似文献   

9.
Changes in farnesyl protein transferase (FPTase) activity and FPTase beta-subunit protein levels were determined in IgE-sensitized RBL-2H3 mast cells in response to polyvalent antigen administration. Ten minutes after the addition of DNP modified BSA to mast cells, whose high affinity receptor for IgE (FcvarepsilonRI) contained bound anti-DNP IgE, FPTase specific activity increased by 54 +/- 28%. Time course studies showed FPTase specific activity doubled during a 20- to 30-min period after antigen-induced cell aggregation. Also, an increase in FPTase beta-subunit protein during this time ( approximately 30%) was observed; this protein increase was not accompanied by a similar increase in FPTase beta-subunit m-RNA levels. The FcvarepsilonRI aggregation had no significant effect on the activities of other enzymes involved with farnesyl diphosphate (FPP) metabolism: FPP synthase, isopentenyl diphosphate isomerase, geranylgeranyl protein transferase, and squalene synthase. Specific inhibition of FPTase activity by manumycin was studied to determine what role FPTase plays in mast cell activation. Manumycin profoundly inhibited hexosaminidase release in activated cells, indicating FPTase is required for signal transduction involved with protein exocytosis from RBL-2H3 mast cells.  相似文献   

10.
There is a growing need to understand the impact of environmental sulfhydryl group-reactive heavy metals on the immune system. Here we show that Ag(+) induces mast cell degranulation, as does the aggregation of the high affinity immunoglobulin E receptor (FcepsilonRI). Micromolar quantities of Ag(+) specifically induced degranulation of mast cell model rat basophilic leukemia (RBL-2H3) cells without showing cytotoxicity. The Ag(+)-mediated degranulation could be observed as rapidly as 5 min after the addition of the ions. Ag(+) also induced a rapid change in tyrosine phosphorylation of multiple cellular proteins including the focal adhesion kinase but not Syk kinase. The Syk-selective inhibitor piceatannol and the Src family-selective tyrosine kinase inhibitor PP1 dose-dependently inhibited FcepsilonRI-mediated degranulation, whereas neither compound inhibited the Ag(+)-mediated degranulation. Furthermore, likewise FcepsilonRI aggregation, Ag(+) also induced leukotriene secretion. These results show that Ag(+) activates RBL-2H3 mast cells through a tyrosine phosphorylation-linked mechanism, which is distinct from that involved in FcepsilonRI-mediated activation.  相似文献   

11.
Ceramide has been suggested to function as a mediator of exocytosis in response to the addition of a calcium ionophore from PC12 cells. Here, we show that although cell-permeable C(6)-ceramide or a calcium ionophore alone did not increase either the degranulation of serotonin or the release of arachidonic acid (AA) from RBL-2H3 cells, their combined effect significantly stimulated these processes in a time- and dose-dependent manner. This effect was inhibited by the presence of an exogenous calcium chelator and significantly suppressed by the CERK inhibitor (K1) and phospholipase A(2) (PLA(2)) inhibitors. Moreover, cytosolic PLA(2) GIVA (cPLA(2) GIVA) siRNA-transfected RBL-2H3 cells showed a lower level of serotonin release than scramble siRNA-transfected cells. Little is known about the regulation of degranulation proximal to the activation of cytosolic phospholipase A(2) GIVA, the initial rate-limiting step in RBL-2H3 cells. In this study, we suggest that CERK, ceramide-1-phosphate, and PLA(2) are involved in degranulation in a calcium-dependent manner. Inhibition of p44/p42 mitogen-activated protein kinase partially decreased the AA release, but did not affect degranulation. Furthermore, treatment of the cells with AA (ω-6, C20:4), not linoleic acid (ω-6, C18:2) or α-linolenic acid (ω-6, C18:3), induced degranulation. Taken together, these results suggest that ceramide is involved in mast cell degranulation via the calcium-mediated activation of PLA(2).  相似文献   

12.
Ca2+ acts as an important second messenger in mast cells. However, the mechanisms involved in the secretion of inflammatory cytokines from activated mast cells are unknown. In this study, we examined the signaling pathway involved in calcium-related cytokine secretion in a mast cell line, RBL-2H3 cells. We report that treatment with 1,2-bis (2-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid acetoxymethyl ester (BAPTA-AM), a chelator of intracellular calcium, can inhibit IgE-stimulated TNF-alpha and IL-6 secretion in a concentration-dependent manner with IC50 values of 0.41 and 0.014 microM, respectively. Maximal inhibition of TNFalpha- and IL-6 secretion was 58.5 +/- 3% and 87 +/- 8% in BAPTA-AM, respectively. BAPTA-AM also completely inhibited the IgE-induced TNF-alpha and IL-6 mRNA levels. In activated RBL-2H3 cells, the expression level of NF-kappaB/Rel A protein increased in the nucleus. However, the level of NF-kappaB/Rel A in nucleus was decreased by treatment of BAPTA-AM. In addition, BAPTA-AM completely inhibited the IgE-induced IkappaB kinase beta (IKKbeta) activation and IkappaBalpha phosphorylation. These observations demonstrate that the intracellular Ca2+ may play an important role in IgE-induced TNF-alpha and IL-6 secretion from mast cells via IKKbeta activation.  相似文献   

13.
The current study examined the role of PLD2 in the maintenance of mast cell structure. Phospholipase D (PLD) catalyzes hydrolysis of phosphatidylcholine to produce choline and phosphatidic acid (PA). PLD has two isoforms, PLD1 and PLD2, which vary in expression and localization depending on the cell type. The mast cell line RBL-2H3 was transfected to overexpress catalytically active (PLD2CA) and inactive (PLD2CI) forms of PLD2. The results of this study show that PLD2CI cells have a distinct star-shaped morphology, whereas PLD2CA and RBL-2H3 cells are spindle shaped. In PLD2CI cells, the Golgi complex was also disorganized with dilated cisternae, and more Golgi-associated vesicles were present as compared with the PLD2CA and RBL-2H3 cells. Treatment with exogenous PA led to the restoration of the wild-type Golgi complex phenotype in PLD2CI cells. Conversely, treatment of RBL-2H3 and PLD2CA cells with 1% 1-Butanol led to a disruption of the Golgi complex. The distribution of acidic compartments, including secretory granules and lysosomes, was also modified in PLD2CI cells, where they concentrated in the perinuclear region. These results suggest that the PA produced by PLD2 plays an important role in regulating cell morphology in mast cells.  相似文献   

14.
Gidwani A  Holowka D  Baird B 《Biochemistry》2001,40(41):12422-12429
Specialized plasma membrane domains known as lipid rafts participate in signal transduction and other cellular processes, and their liquid ordered (L(o)) phase appears to be important for their function. To quantify ordered lipids in biological membranes, we investigated steady-state fluorescence anisotropy of two lipid probes, 2-[3-(diphenylhexatrienyl)propanoyl]-1-hexadecanoyl-sn-glycero-3-phosphocholine (DPH-PC) and N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine (NBD-PE). We show using model membranes with varying amounts of cholesterol that steady-state fluorescence anisotropy is a sensitive measure of cholesterol-dependent ordering. The results suggest that DPH-PC is a more sensitive probe than NBD-PE. In the presence of cholesterol, ordering also depends on the degree of saturation of the phospholipid acyl chains. Using DPH-PC, we find that the plasma membrane of RBL-2H3 mast cells is substantially ordered, roughly 40%, as determined by comparison with anisotropy values for model membranes entirely in a liquid ordered (L(o)) phase and in a liquid disordered (L(alpha)) phase. This result is consistent with the finding that approximately 30% of plasma membrane phospholipids are insoluble in 0.5% Triton X-100. Furthermore, detergent-resistant membranes isolated by sucrose gradient fractionation of Triton X-100 cell lysates are more ordered than plasma membrane vesicles, suggesting that they represent a more ordered subset of the plasma membrane. Treatment of plasma membrane vesicles with methyl-beta-cyclodextrin resulting in 75% cholesterol depletion leads to commensurate decreases in lipid order as measured by anisotropy of DPH-PC and NBD-PE. These results demonstrate that steady-state fluorescence anisotropy of DPH-PC is a useful way to measure the amount of lipid order in biological membranes.  相似文献   

15.
Surface and subsurface dynamics of Rat Basophilic Leukemia cells, a model system of stimulated secretion, were imaged using Scanning Force Microscopy (SFM) at a rate of 50-60 s/image. Cytoskeletal elements and organelles were tracked within quiescent cells and those activated after IgE receptor crosslinking. In addition, surface waves were observed moving within the plasma membrane. The structures seen in quiescent and activated cells can be correlated with those seen in electron micrographs and topographic SFM images of fixed detergent-extracted cells. Furthermore, images of the detergent-extracted nuclei reveal the presence of numerous nuclear pore complexes. High-magnification images of the nuclear pore complexes show evidence of subunit structure and exhibit dimensions consistent with those reported previously using electron microscopy. The behavior and overall change in morphology of cells observed during activation was consistent with that observed under similar conditions with Differential Interference Contrast microscopy. This study demonstrates that SFM, unlike other techniques, can be used to provide high-resolution information in both fixed and living cells.  相似文献   

16.
In RBL-2H3 rat basophilic leukemia cells, Ca2+ influx and secretion are activated by antigens that crosslink IgE-receptor complexes and by the Ca2+ ionophore, ionomycin. Here we report that antigen-stimulated Ca2+ influx and secretion are impaired and ionomycin-induced responses are strongly inhibited following the removal of HCO3- from the medium. These results raised the possibility that HCO3(-)-dependent pH regulation mechanisms play a role in the cascade of events leading to mast cell activation. To test this hypothesis, intracellular pH (pHi) was measured by ratio imaging microscopy in individual RBL-2H3 cells labeled with 2',7'-bis-(2-carboxyethyl)-5-(6) carboxyfluorescein (BCECF). In unstimulated cells, it was found that basal pHi in the presence of HCO3- is 7.26, significantly greater than pHi in its absence, 7.09 (P less than 10(-6]. These results, as well as evidence that pHi increases rapidly when HCO3- is added to cells initially incubated in HCO3(-)-free medium, indicate that unstimulated cells use a HCO3(-)-dependent mechanism to maintain cytoplasmic pH. Further analyses comparing unstimulated with stimulated cells showed that antigen causes a small transient acidification in medium containing HCO3- and a larger sustained acidification in HCO3(-)-depleted medium. Ionomycin is a more potent acidifying agent, stimulating a sustained acidification in complete medium and causing further acidification in HCO3(-)-free medium. These results support the hypothesis that the inhibition of antigen- and ionomycin-induced 45Ca2+ influx and secretion in cells incubated in HCO3(-)-free medium is at least partially due to the inactivation of HCO3(-)-dependent mechanisms required to maintain pH in unstimulated cells and to permit pH recovery from stimulus-induced acidification.  相似文献   

17.
Microtubule-dependent transport of secretory vesicles in RBL-2H3 cells   总被引:1,自引:0,他引:1  
Antigen-mediated activation of mast cells results in Ca2+-dependent exocytosis of preformed mediators of the inflammatory response. To investigate the role of secretory vesicle motility in this response, we have performed time-lapse confocal microscopy on RBL-2H3 cells transfected with a green fluorescent protein-Fas ligand fusion protein (GFP-FasL). Green fluorescent protein-labeled vesicles exhibit rapid, bidirectional movement in both resting and activated cells and can be localized adjacent to microtubules. Colchicine treatment inhibits the motility of secretory vesicles as measured by fluorescence recovery after photobleaching (FRAP). Colchicine also inhibits both the extent and the rate of exocytosis triggered by receptor activation or by Ca2+ ionophore, demonstrating that microtubule-dependent movement of secretory vesicles plays an important role in the exocytic response .  相似文献   

18.
Mast cells play a central role in immediate allergic reactions mediated by immunoglobulin E. It has recently been reported that mast cells generate intracellular reactive oxygen species (ROS) in response to stimulation with divergent physiologically relevant stimulants. However, the physiological role of ROS is poorly understood. Here we demonstrate that mast cell model rat basophilic leukemia (RBL-2H3) cells generate ROS in response to antigen and the calcium-ionophore A23187 via activation of diphenyleneiodonuim (DPI)-sensitive enzyme and that blockade of ROS generation by DPI suppresses histamine release induced by either stimulant. Increased tyrosine phosphorylation of pp125(FAK) and a 77-kDa protein coprecipitating specifically with the kinase occurred in parallel with the secretion, and blockade of ROS generation by DPI also suppressed the tyrosine phosphorylation of both proteins. These findings suggest that ROS generated by a flavoenzyme-dependent mechanism may be involved in histamine release through the pp125(FAK) pathway.  相似文献   

19.
Four chain spin labels and a spin-labeled cholestane were used to study the dynamic structure of plasma membrane vesicles (PMV) prepared from RBL-2H3 mast cells at temperatures ranging from 22 degrees C to 45 degrees C. Analysis shows that the spectra from most labels consist of two components. The abundant spectral components exhibit substantial ordering that is intermediate between that of a liquid-ordered (Lo) phase, and that of a liquid-crystalline (Lc) phase as represented by model membranes. Also, rotational diffusion rates of the spin labels are comparable to those in the Lo phase. In contrast, the ordering for the less abundant components is much lower. These results indicate that a Lo-like region or phase (the abundant component) and an Lc-like region or phase (the less abundant component) coexist in the PMV. In contrast, membranes reconstituted from extracted lipids exhibit the more ordered phase only. This suggests that membrane-associated proteins are important for the coexistence of Lo-like and Lc-like regions in the plasma membrane. In addition, binding of the myristoylated protein, ARF6 to PMV, leads to a new spectral component for a headgroup lipid spin label that indicates the formation of plasma membrane defects by this low molecular weight GTPase.  相似文献   

20.
In RBL-2H3 rat mucosal mast cells, the crosslinking of cell-surface IgE-receptor complexes by multivalent antigens initiates a sequence of responses leading to degranulation. We have developed a family of dinitrophenol (DNP)-conjugated fluorescent antigens to study dynamic membrane events associated with these responses. Lysyl groups on the phycobiliproteins, B-phycoerythrin and C-phycocyanin, were labelled with DNP, yielding fluorescent conjugates that cause the release of [3H]serotonin from anti-DNP-IgE-primed RBL-2H3 cells. The binding of these antigens to IgE-receptor complexes was observed by fluorescence microscopy and quantified by flow cytometry. Incubation with 1 microgram/ml DNP42-B-phycoerythrin stimulates maximum degranulation from IgE-saturated cells. Under these conditions, approximately 26 X 10(3) molecules of DNP42-B-phycoerythrin are bound per cell at equilibrium. The rate and extent of antigen binding and of antigen-stimulated mediator release decrease in parallel as the concentration and DNP:protein ratio of the fluorescent conjugates is reduced. Secretion stops immediately when the nonfluorescent monovalent antigen, DNP-lysine, is added to degranulating cell suspensions. DNP-lysine also displaces surface-bound antigen when added during the first minutes after multivalent antigen. However, the ability of DNP-lysine to displace surface-bound DNP42-B-phycoerythrin from IgE-receptor complexes decreases progressively with time. Treatment with dihydrocytochalasin B and several analogs that prevent antigen-stimulated F-actin assembly enhances secretion and delays the transition of antigen to its DNP-lysine-resistant form. Cytochalasin treatment also permits the long-range movement of antigen into surface caps.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号