首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
Survival of the human pathogen Streptococcus pneumoniae requires a functional mevalonate pathway, which produces isopentenyl diphosphate, the essential building block of isoprenoids. Flux through this pathway appears to be regulated at the mevalonate kinase (MK) step, which is strongly feedback-inhibited by diphosphomevalonate (DPM), the penultimate compound in the pathway. The human mevalonate pathway is not regulated by DPM, making the bacterial pathway an attractive antibiotic target. Since DPM has poor drug characteristics, being highly charged, we propose to use unphosphorylated, cell-permeable prodrugs based on mevalonate that will be phosphorylated in turn by MK and phosphomevalonate kinase (PMK) to generate the active compound in situ. To test the limits of this approach, we synthesized a series of C3-substituted mevalonate analogues to probe the steric and electronic requirements of the MK and PMK active sites. MK and PMK accepted substrates with up to two additional carbons, showing a preference for small substituents. This result establishes the feasibility of using a prodrug strategy for DPM-based antibiotics in S. pneumoniae and identified several analogues to be tested as inhibitors of MK. Among the substrates accepted by both enzymes were cyclopropyl, vinyl, and ethynyl mevalonate analogues that, when diphosphorylated, might be mechanism-based inactivators of the next enzyme in the pathway, diphosphomevalonate decarboxylase.  相似文献   

3.
Bacterial signal peptidase I is responsible for proteolytic processing of the precursors of secreted proteins. The enzymes from gram-negative and -positive bacteria are different in structure and specificity. In this study, we have cloned, expressed, and purified the signal peptidase I of gram-positive Streptococcus pneumoniae. The precursor of streptokinase, an extracellular protein produced in pathogenic streptococci, was identified as a substrate of S. pneumoniae signal peptidase I. Phospholipids were found to stimulate the enzymatic activity. Mutagenetic analysis demonstrated that residues serine 38 and lysine 76 of S. pneumoniae signal peptidase I are critical for enzyme activity and involved in the active site to form a serine-lysine catalytic dyad, which is similar to LexA-like proteases and Escherichia coli signal peptidase I. Similar to LexA-like proteases, S. pneumoniae signal peptidase I catalyzes an intermolecular self-cleavage in vitro, and an internal cleavage site has been identified between glycine 36 and histidine 37. Sequence analysis revealed that the signal peptidase I and LexA-like proteases show sequence homology around the active sites and some common properties around the self-cleavage sites. All these data suggest that signal peptidase I and LexA-like proteases are closely related and belong to a novel class of serine proteases.  相似文献   

4.
Streptococcus pneumoniae (the pneumococcus) produces 1 of 91 capsular polysaccharides (CPS) that define the serotype. The cps loci of 88 pneumococcal serotypes whose CPS is synthesized by the Wzy-dependent pathway were compared with each other and with additional streptococcal polysaccharide biosynthetic loci and were clustered according to the proportion of shared homology groups (HGs), weighted for the sequence similarities between the genes encoding the shared HGs. The cps loci of the 88 pneumococcal serotypes were distributed into eight major clusters and 21 subclusters. All serotypes within the same serogroup fell into the same major cluster, but in six cases, serotypes within the same serogroup were in different subclusters and, conversely, nine subclusters included completely different serotypes. The closely related cps loci within a subcluster were compared to the known CPS structures to relate gene content to structure. The Streptococcus oralis and Streptococcus mitis polysaccharide biosynthetic loci clustered within the pneumococcal cps loci and were in a subcluster that also included the cps locus of pneumococcal serotype 21, whereas the Streptococcus agalactiae cps loci formed a single cluster that was not closely related to any of the pneumococcal cps clusters.  相似文献   

5.
6.
A protein encoded by sulD, one of four genes in a previously cloned folate biosynthetic operon of Streptococcus pneumoniae, had been shown to harbor 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase activity. This SulD protein was purified and shown now to harbor also dihydroneopterin aldolase activity. The bifunctional protein therefore catalyzes two successive steps in folate biosynthesis. The aldolase activity can be ascribed to the N-terminal domain of the SulD polypeptide, and the pyrophosphokinase activity can be ascribed to the C-terminal domain. Homologs of the dihydroneopterin aldolase domain were identified in other species, in one of which the domain was encoded as a separate polypeptide. The native SulD protein is a trimer or tetramer of a 31-kDa subunit, and it dissociated reversibly after purification. Dihydroneopterin aldolase activity required the multimeric protein, whereas pyrophosphokinase was expressed by the monomeric form. With purified SulD, the amount of 6-hydroxymethyl-7,8-dihydropterin product formed by the aldolase was proportional to the fourth power of the enzyme concentration, as expected for a reversibly dissociating tetramer. By identifying the gene encoding dihydroneopterin aldolase, this work extends our understanding of the molecular basis of the folate biosynthetic system common to many organisms.  相似文献   

7.
The YYCFG two-component signal transduction system (TCSTS) has been shown to be essential to the viability of several gram-positive bacteria. However, the function of the gene pair remains unknown. Interestingly, while both components are essential to Staphylococcus aureus and Bacillus subtilis, only the response regulator (YYCF) is essential to Streptococcus pneumoniae. To study this essential TCSTS further, the S. pneumoniae and S. aureus truncated YycG histidine kinase and full-length YycF response regulator proteins were characterized at a biochemical level. The recombinant proteins from both organisms were expressed in Escherichia coli and purified. The YycG autophosphorylation activities were activated by ammonium. The apparent K(m )(ATP) of S. aureus YycG autophosphorylation was 130 microM and S. pneumoniae was 3.0 microM. Each had similar K(cat )values of 0.036 and 0.024 min(-1), respectively. Cognate phosphotransfer was also investigated indicating different levels of the phosphorylated YycG intermediates during the reaction. The S. pneumoniae YycG phosphorylated intermediate was not detectable in the presence of its cognate YycF, while phosphorylated S. aureus YycG and YycF were detected concurrently. In addition, noncognate phosphotransfer was demonstrated between the two species. These studies thoroughly compare the essential YycFG TCSTS from the two species at the biochemical level and also establish methods for assaying the activities of these antibacterial targets.  相似文献   

8.
Streptococcus pneumoniae is among the most common pathogens associated with chronic otitis media with effusion, which has been hypothesized to be a biofilm disease. S. pneumoniae has been shown to form biofilms, however, little is known about the developmental process, the architecture, and the changes that occur upon biofilm development. In the current study we made use of a continuous-culture biofilm system to characterize biofilm development of 14 different S. pneumoniae strains representing at least 10 unique serotypes. The biofilm development process was found to occur in three distinct stages, including initial attachment, cluster formation, and biofilm maturation. While all 14 pneumococcal strains displayed similar developmental stages, the mature biofilm architecture differed significantly among the serotypes tested. Overall, three biofilm architectural groups were detected based on biomass, biofilm thickness, and cluster size. The biofilm viable cell counts and total protein concentration increased steadily over the course of biofilm development, reaching approximately 8 x 10(8) cells and approximately 15 mg of protein per biofilm after 9 days of biofilm growth. Proteomic analysis confirmed the presence of distinct biofilm developmental stages by the detection of multiple phenotypes over the course of biofilm development. The biofilm development process was found to correlate not only with differential production of proteins but also with a dramatic increase in the number of detectable proteins, indicating that biofilm formation by S. pneumoniae may be a far more complex process than previously anticipated. Protein identification revealed that proteins involved in virulence, adhesion, and resistance were more abundant under biofilm growth conditions. A possible role of the identified proteins in biofilm formation is discussed.  相似文献   

9.
10.
Catharanthus roseus is an important medicinal plant and the sole commercial source of monoterpenoid indole alkaloids (MIA), anticancer compounds. Recently, triterpenoids like ursolic acid and oleanolic acid have also been found in considerable amounts in C. roseus leaf cuticular wax layer. These simple pentacyclic triterpenoids exhibit various pharmacological activities such as anti-inflammatory, anti-tumor and anti-microbial properties. Using the EST collection from C. roseus leaf epidermome (http://www.ncbi.nlm.nih.gov/dbEST), we have successfully isolated a cDNA (CrAS) encoding 2,3-oxidosqualene cyclase (OSC) and a cDNA (CrAO) encoding amyrin C-28 oxidase from the leaves of C. roseus. The functions of CrAS and CrAO were analyzed in yeast (Saccharomyces cerevisiae) systems. CrAS was characterized as a novel multifunctional OSC producing α- and β-amyrin in a ratio of 2.5:1, whereas CrAO was a multifunctional C-28 oxidase converting α-amyrin, β-amyrin and lupeol to ursolic-, oleanolic- and betulinic acids, respectively, via a successive oxidation at the C-28 position of the substrates. In yeast co-expressing CrAO and CrAS, ursolic- and oleanolic acids were detected in the yeast cell extracts, while the yeast cells co-expressing CrAO and AtLUP1 from Arabidopsis thaliana produced betulinic acid. Both CrAS and CrAO genes show a high expression level in the leaf, which was consistent with the accumulation patterns of ursolic- and oleanolic acids in C. roseus. These results suggest that CrAS and CrAO are involved in the pentacyclic triterpene biosynthesis in C. roseus.  相似文献   

11.
The sequences of the capsular biosynthetic (cps) loci of 90 serotypes of Streptococcus pneumoniae have recently been determined. Bioinformatic procedures were used to predict the general functions of 1,973 of the 1,999 gene products and to identify proteins within the same homology group, Pfam family, and CAZy glycosyltransferase family. Correlating cps gene content with the 54 known capsular polysaccharide (CPS) structures provided tentative assignments of the specific functions of the different homology groups of each functional class (regulatory proteins, enzymes for synthesis of CPS constituents, polymerases, flippases, initial sugar transferases, glycosyltransferases [GTs], phosphotransferases, acetyltransferases, and pyruvyltransferases). Assignment of the glycosidic linkages catalyzed by the 342 GTs (92 homology groups) is problematic, but tentative assignments could be made by using this large set of cps loci and CPS structures to correlate the presence of particular GTs with specific glycosidic linkages, by correlating inverting or retaining linkages in CPS repeat units with the inverting or retaining mechanisms of the GTs predicted from their CAZy family membership, and by comparing the CPS structures of serotypes that have very similar cps gene contents. These large-scale comparisons between structure and gene content assigned the linkages catalyzed by 72% of the GTs, and all linkages were assigned in 32 of the serotypes with known repeat unit structures. Clear examples where very similar initial sugar transferases or glycosyltransferases catalyze different linkages in different serotypes were also identified. These assignments should provide a stimulus for biochemical studies to evaluate the reactions that are proposed.  相似文献   

12.
Streptococcus pneumoniae is a naturally transformable bacterium that is able to take up single-stranded DNA from its environment and incorporate the exogenous DNA into its genome. This process, known as transformational recombination, is dependent upon the presence of the recA gene, which encodes an ATP-dependent DNA recombinase whose sequence is 60% identical to that of the RecA protein from Escherichia coli. We have developed an overexpression system for the S. pneumoniae RecA protein and have purified the protein to greater than 99% homogeneity. The S. pneumoniae RecA protein has ssDNA-dependent NTP hydrolysis and NTP-dependent DNA strand exchange activities that are generally similar to those of the E. coli RecA protein. In addition to its role as a DNA recombinase, the E. coli RecA protein also acts as a coprotease, which facilitates the cleavage and inactivation of the E. coli LexA repressor during the SOS response to DNA damage. Interestingly, the S. pneumoniae RecA protein is also able to promote the cleavage of the E. coli LexA protein, even though a protein analogous to the LexA protein does not appear to be present in S. pneumoniae.  相似文献   

13.
14.
Genetic properties of markers may discriminate between deletions and point mutations. We have designed a physical method for a direct characterization of deletions which also gives an estimate of their size.  相似文献   

15.
The mutant gene lyt-4 of the autolysin-defective mutant R6ly4-4 of Streptococcus pneumoniae, which synthesized a temperature-sensitive autolytic enzyme, has been cloned in Escherichia coli. The nucleotide defect of the lyt-4 mutation has been characterized as a CG to TA transition. This transition causes the appearance of a glutamic acid instead of a glycine in the amino acid sequence of the autolysin, altering the hydropathic profile of the protein. This alteration might explain the observed thermosensitivity of the mutated autolytic enzyme. The present work represents the first molecular characterization of a mutation in the structural gene of a bacterial autolysin.  相似文献   

16.
The absolute configuration of the 2-substituted arabinitol 1-phosphate residue present in the repeating unit of the capsular polysaccharide (CPS) from Streptococcus pneumoniae Type 17F is confirmed as D, based on a comparison of proton and carbon chemical shifts in a synthetic oligosaccharide and in an oligosaccharide derived from the CPS by degradation.  相似文献   

17.
[目的] 新颖结构的天然萘醌-氧吲哚类生物碱coprisidins(A和B)分离自昆虫肠道相关链霉菌,具有预防癌症的活性。作为首例具有萘醌-氧吲哚骨架的生物碱,对其独特生物合成机理的研究可为II型聚酮类化合物生物合成途径提供新的认知。[方法] 本研究对coprisidins的产生菌Streptomyces sp.SNU607进行全基因组测序,并根据测序结果的生物信息学分析初步定位coprisidins的生物合成基因簇;通过基因敲除以及异源表达手段确定coprisidins的生物合成基因簇;基于体内遗传学实验与生物信息学分析初步推导coprisidins的生物合成途径。[结果] Streptomyces sp.SNU607中有23个基因簇可能参与次级代谢,其中4个基因簇与聚酮合酶(PKS)相关;通过基因敲除与异源表达实验,本研究证实1个II型PKS负责coprisidins的生物合成;基于生物信息学分析,我们推测copH/I/M/O/N构成了1个基因盒,并负责起始单元丁酰CoA的合成;KSβ(CopB)的序列比对表明coprisidins的II型PKS系统更倾向于合成C20的初始聚酮链。[结论] Coprisidins的萘醌-吲哚结构是由II型PKSs催化形成,我们推测丁酰CoA是coprisidins聚酮骨架的起始单元,在最小PKS、聚酮酶、环化酶的催化下先形成类似蒽环的四环系统,随后在后修饰酶与氧化重排的作用下生成萘醌-氧吲哚骨架。本研究为进一步探究萘醌-氧吲哚类生物碱的生物合成机制奠定了基础,同时增加了II型PKSs合成产物的结构多样性。  相似文献   

18.
The structure of the capsular polysaccharide elaborated by Streptococcus pneumoniae type 18F (S18F) has been investigated by using n.m.r. spectroscopy, methylation analysis, and characterisation of oligosaccharides obtained on partial hydrolysis. It is concluded that the polysaccharide is composed of pentasaccharide repeating-units having the following structure. (formula; see text) In this structure, the absolute configuration of the glycerol phosphate moiety has not been determined, but is assumed to be D-glycerol 1-phosphate (sn-glycerol 3-phosphate). The location of an O-acetyl group at O-6 of the terminal alpha-D-glucopyranosyl groups is tentative only.  相似文献   

19.
Full proton, 13C and 31P NMR assignments for the capsular polysaccharide from Streptococcus pneumoniae Type 17F are reported, and a revised structure differing in the anomeric configuration of the sidechain beta-Galp residue proposed. This polysaccharide is a component of the current 23-valent polysaccharide vaccine. The implications of this revised structure for published work are discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号