首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Staphylococcal gamma-hemolysin (Hlg), leukocidin (Luk), and Panton-Valentine leukocidin (PVL) are two-component and hetero-oligomeric pore-forming cytolytic toxins (or cytolysin), that were first identified in bacteria. No information on the existence of hetero-oligomeric pore-forming cytolytic toxins in bacteria except for staphylococcal strains is available so far. Hlg (Hlg1 of 34 kDa/Hlg2 of 32 kDa) effectively lyses erythrocytes from human and other mammalian species. Luk (LukF of 34 kDa/LukS of 33 kDa) is cytolytic toward human and rabbit polymorphonuclear leukocytes and rabbit erythrocytes, and PVL (LukF-PV of 34 kDa/LukS-PV of 33 kDa) reveals cytolytic activity with a high cell specificity to leukocytes. Hlg1 is identical to LukF and that the cell specificities of the cytolysins are determined by Hlg2 and LukS. Based on the primary and 3-dimensional structures of the toxin components, Hlg, Luk, and PVL are thought to form a family of proteins. In the first chapter of this article, we describe the molecular basis of the membrane pore-forming nature of Hlg, Luk, and PVL. We also describe a requirement of the phosphorylation of LukS and LukS-PV by protein kinase for their leukocytolytic activity besides their pore formation on human leukocytes.Recently, the assembly mechanism of the LukF and Hlg2 monomers into pore-forming hetero-oligomers of Hlg on human erythrocyte membranes has been clarified for the first time by our study using a single-molecular fluorescence imaging technique. We estimated 11 sequential equilibrium constants for the assembly pathway which includes the beginning with membrane binding of monomers, proceeds through single pore oligomerization, and culminates in the formation of clusters of the pores. In the second chapter of this article, we refer to an assembly mechanism of LukF and Hlg2 on human erythrocytes as well as the roles of the membranes of the target cells in pore formation by Hlg.The LukF, LukS, and Hlg2 proteins are derived from the Hlg locus (hlg), and have been found in 99% of clinical isolates of Staphylococcus aureus. In contrast, LukF-PV and LukS-PV are derived from the PVL locus (pvl) which is distinct from the hlg locus, and only a small percentage of clinically isolated S. aureus strains carries pvl. Recently, we discovered pvl on the genome of lysogenic bacteriophages, psiPVL, and determined the entire gene of the phage. We also demonstrated the phage conversion of S. aureus leading to the production of PVL through the discovery of a PVL-carrying temperate phage, psiSLT, from a clinical isolate of S. aureus. In the third chapter of this article, we discuss genetic analyses of the Hlg, Luk, and PVL genes. We also discuss the current status of knowledge of the genetic organization of PVL-converting phages in order to achieve an understanding of their molecular evolution.  相似文献   

2.
Ma X  Chang W  Zhang C  Zhou X  Yu F 《PloS one》2012,7(4):e34970
Panton-Valentine leukocidin (PVL) is a cytotoxin secreted by Staphylococcus aureus and associated with severe necrotizing infections. PVL targets polymorphonuclear leukocytes, especially neutrophils, which are the first line of defense against infections. Although PVL can induce neutrophil death by necrosis or apoptosis, the specific inflammatory responses of neutrophils to this toxin are unclear. In this study, both in vivo and in vitro studies demonstrated that recombinant PVL has an important cytotoxic role in human neutrophils, leading to apoptosis at low concentrations and necrosis at high concentrations. Recombinant PVL also increased the levels of pro-inflammatory cytokine secretion from neutrophils. The up-regulation of pro-inflammatory cytokines was due to nuclear factor-kappa B (NF-κB) activation induced by PVL. Moreover, blocking NF-κB inhibited the production of inflammatory cytokines. To test the role of neutrophil immune responses during the pathogenesis of PVL-induced acute lung injury, we used immunocompetent or neutropenic rabbits to develop a model of necrotizing pneumonia. Immunocompetent rabbits challenged with PVL demonstrated increased inflammation containing neutrophilic infiltrates. In addition, there were elevated levels of inflammatory cytokines (IL-6, IL-8, TNF-α and IL-10) and NF-κB in the lung homogenate. In contrast, the lung tissues from neutropenic rabbits contained mild or moderate inflammation, and the levels of inflammatory cytokines and NF-κB increased only slightly. Data from the current study support growing evidence that neutrophils play an important role in the pathogenesis of PVL-induced tissue injury and inflammation. PVL can stimulate neutrophils to release pro-inflammatory mediators, thereby causing an acute inflammatory response. The ability of PVL to induce inflammatory cytokine release may be associated with the activation of NF-κB or its pore-forming properties.  相似文献   

3.
Microglia are important innate immune effectors against invading CNS pathogens, such as Staphylococcus aureus (S. aureus), a common etiological agent of brain abscesses typified by widespread inflammation and necrosis. The NLRP3 inflammasome is a protein complex involved in IL-1β and IL-18 processing following exposure to both pathogen- and danger-associated molecular patterns. Although previous studies from our laboratory have established that IL-1β is a major cytokine product of S. aureus-activated microglia and is pivotal for eliciting protective anti-bacterial immunity during brain abscess development, the molecular machinery responsible for cytokine release remains to be determined. Therefore, the functional role of the NLRP3 inflammasome and its adaptor protein apoptosis-associated speck-like protein (ASC) in eliciting IL-1β and IL-18 release was examined in primary microglia. Interestingly, we found that IL-1β, but not IL-18 production, was significantly attenuated in both NLRP3 and ASC knockout microglia following exposure to live S. aureus. NLRP3 inflammasome activation was partially dependent on autocrine/paracrine ATP release and α- and γ-hemolysins produced by live bacteria. A cathepsin B inhibitor attenuated IL-β release from NLRP3 and ASC knockout microglia, demonstrating the existence of alternative inflammasome-independent mechanisms for IL-1β processing. In contrast, microglial IL-18 secretion occurred independently of cathepsin B and inflammasome action. Collectively, these results demonstrate that microglial IL-1β processing is regulated by multiple pathways and diverges from mechanisms utilized for IL-18 cleavage. Understanding the molecular events that regulate IL-1β production is important for modulating this potent proinflammatory cytokine during CNS disease.  相似文献   

4.
5.
6.
Leptospirosis is a worldwide zoonosis caused by spirochetes from the genus Leptospira. Although there is a large diversity of clinical signs and symptoms, a severe inflammatory response is common to all leptospirosis patients. The mechanism of IL-1β secretion during Leptospira infection has been previously studied in mouse macrophages. However, the outcome of Leptospira infection is very different in human and murine macrophages, and the mechanisms responsible for IL-1β secretion in human macrophages had not been investigated. This study therefore examines the effects of Leptospira interrogans infection on inflammasome activation and proinflammatory cytokine expression in human macrophages. Increased mRNA and protein expression of NLRP3 was observed by real time RT-PCR and flow cytometry at 1 h after co-cultivation. Enzyme-linked immunosorbent assay (ELISA) determination showed that IL-1β and IL-18 are released in the culture supernatants at 1 h after cultivation. The inhibition assay showed that glybenclamide (a K+ efflux inhibitor that blocks NLRP3 inflammasome activation) and N-benzyloxycarbony-Val-Ala-Asp (O-methyl)-fluoromethylketone (Z-VAD-FMK; a caspase-1 inhibitor) and NLRP3 depletion with siRNAs reduced the levels of IL-1β and IL-18 release. Moreover, the levels of IL-1β and IL-18 production decreased in CA-074 (a cathepsin B inhibitor) and NAC (an anti-oxidant) pretreated human macrophages, compared to untreated controls. This study suggests that L. interrogans infection leads to reactive oxygen species (ROS)- and cathepsin B-dependent NLRP3 inflammasome activation, which subsequently mediates caspase-1 activation and IL-1β and IL-18 release.  相似文献   

7.
Adenovirus type 5 (Ad5) infection of macrophages results in rapid secretion of interleukin-1β (IL-1β) and is dependent on the inflammasome components NLRP3 and ASC and the catalytic activity of caspase-1. Using lentivirus-expressed short hairpin RNA (shRNA) and competitive inhibitors, we show that Ad-induced IL-1β release is dependent upon Toll-like receptor 9 (TLR9) sensing of the Ad5 double-stranded DNA (dsDNA) genome in human cell lines and primary monocyte-derived macrophages but not in mouse macrophages. Additionally, a temperature-sensitive mutant of Ad5 unable to penetrate endosomal membranes, ts1, is unable to induce IL-1β release in TLR2-primed THP-1 cells, suggesting that penetration of endosomal membranes is required for IL-1β release. Disruption of lysosomal membranes and the release of cathepsin B into the cytoplasm are required for Ad-induced NLRP3 activation. Ad5 cell entry also induces reactive oxygen species (ROS) production, and inhibitors of ROS prevent Ad-induced IL-1β release. Ad5 activation of NLRP3 also induces necrotic cell death, resulting in the release of the proinflammatory molecule HMGB1. This work further defines the mechanisms of virally induced inflammasome activation.  相似文献   

8.
Members of the nucleotide-binding, oligomerization domain (NOD)-like receptor (NLR) proteins assemble into a multiprotein platform, known as the inflammasome, to induce caspase-1 activation followed by the subsequent secretion of IL-1β and IL-18. In this review, we focus on the role of NLRs in inflammasome activation as part of the host defence against bacterial pathogens. One of activators of the NLRC4 inflammasome is bacterial flagellin secreted through type III or IV secretion systems, which are important for the pathogenicity of many Gram-negative bacteria. The NLRP3 inflammasome is mainly activated by a large number of bacterial pore-forming toxins. Despite our knowledge of inflammasome activation upon bacterial infection, the function of antibacterial defence under in vivo conditions remains to be elucidated. Further understanding of NLR function should provide new insights into the mechanisms of host pro-inflammatory responses and the pathogenesis of bacterial infections.  相似文献   

9.
Serum amyloid A (SAA) is an acute-phase protein, the serum levels of which can increase up to 1000-fold during inflammation. SAA has a pathogenic role in amyloid A-type amyloidosis, and increased serum levels of SAA correlate with the risk for cardiovascular diseases. IL-1β is a key proinflammatory cytokine, and its secretion is strictly controlled by the inflammasomes. We studied the role of SAA in the regulation of IL-1β production and activation of the inflammasome cascade in human and mouse macrophages, as well as in THP-1 cells. SAA could provide a signal for the induction of pro-IL-1β expression and for inflammasome activation, resulting in secretion of mature IL-1β. Blocking TLR2 and TLR4 attenuated SAA-induced expression of IL1B, whereas inhibition of caspase-1 and the ATP receptor P2X(7) abrogated the release of mature IL-1β. NLRP3 inflammasome consists of the NLRP3 receptor and the adaptor protein apoptosis-associated speck-like protein containing CARD (a caspase-recruitment domain) (ASC). SAA-mediated IL-1β secretion was markedly reduced in ASC(-/-) macrophages, and silencing NLRP3 decreased IL-1β secretion, confirming NLRP3 as the SAA-responsive inflammasome. Inflammasome activation was dependent on cathepsin B activity, but it was not associated with lysosomal destabilization. SAA also induced secretion of cathepsin B and ASC. In conclusion, SAA can induce the expression of pro-IL-1β and activation of the NLRP3 inflammasome via P2X(7) receptor and a cathepsin B-sensitive pathway. Thus, during systemic inflammation, SAA may promote the production of IL-1β in tissues. Furthermore, the SAA-induced secretion of active cathepsin B may lead to extracellular processing of SAA and, thus, potentially to the development of amyloid A amyloidosis.  相似文献   

10.

Background

Statins effectively lower blood cholesterol and the risk of cardiovascular death. Immunomodulatory actions, independent of their lipid-lowering effect, have also been ascribed to these compounds. Since macrophages participate in several vascular pathologies, we examined the effect of statin treatment on the survival and differentiation of primary human monocytes.

Methods

Peripheral blood mononuclear cells (PBMCs) from healthy individuals were cultured in the presence or absence of mevastatin. Apoptosis was monitored by annexin V / PI staining and flow cytometry. In parallel experiments, cultures were stimulated with LPS in the presence or absence of mevastatin and the release of IL-1β and IL-1Ra was measured by ELISA.

Results

Among PBMCs, mevastatin-treated monocytes were particularly susceptible to apoptosis, which occurred at doses >1 microM and was already maximal at 5 microM. However, even at the highest mevastatin dose used (10 microM), apoptosis occurred only after 24 h of culture, possibly reflecting a requirement for cell commitment to differentiation. After 72 h of treatment the vast majority (>50%) of monocytes were undergoing apoptosis. Stimulation with LPS revealed that mevastatin-treated monocytes retained the high IL-1β output characteristic of undifferentiated cells; conversely, IL-1Ra release was inhibited. Concurrent treatment with mevalonolactone prevented the induction of apoptosis and suppressed both IL-1β and IL-1Ra release in response to LPS, suggesting a rate-limiting role for HMG-CoA reductase in monocyte differentiation.

Conclusions

Our findings indicate that statins arrest the functional differentiation of monocytes into macrophages and steer these cells into apoptosis, suggesting a novel mechanism for the vasculoprotective properties of HMG-CoA reductase inhibitors.  相似文献   

11.
Pathogen-activated and damage-associated molecular patterns activate the inflammasome in macrophages. We report that mouse macrophages release IL-1β while co-incubated with pro-B (Ba/F3) cells dying, as a result of IL-3 withdrawal, by apoptosis with autophagy, but not when they are co-incubated with living, apoptotic, necrotic or necrostatin-1 treated cells. NALP3-deficient macrophages display reduced IL-1β secretion, which is also inhibited in macrophages deficient in caspase-1 or pre-treated with its inhibitor. This finding demonstrates that the inflammasome is activated during phagocytosis of dying autophagic cells. We show that activation of NALP3 depends on phagocytosis of dying cells, ATP release through pannexin-1 channels of dying autophagic cells, P(2)X(7) purinergic receptor activation, and on consequent potassium efflux. Dying autophagic Ba/F3 cells injected intraperitoneally in mice recruit neutrophils and thereby induce acute inflammation. These findings demonstrate that NALP3 performs key upstream functions in inflammasome activation in mouse macrophages engulfing dying autophagic cells, and that these functions lead to pro-inflammatory responses.  相似文献   

12.
The opportunistic gram-positive pathogen Staphylococcus aureus is a leading cause of pneumonia and?sepsis. Staphylococcal α-toxin, a prototypical pore-forming toxin, is a major virulence factor of S.?aureus clinical isolates, and lung epithelial cells are highly sensitive to α-toxin's cytolytic activity. Type I interferon (IFN) signaling activated in response to S.?aureus increases pulmonary cell resistance to α-toxin, but the underlying mechanisms are uncharacterized. We show that IFNα protects human lung epithelial cells from α-toxin-induced intracellular ATP depletion and cell death by reducing extracellular ATP leakage. This effect depends on protein palmitoylation and induction of phospholipid scramblase 1 (PLSCR1). IFNα-induced PLSCR1 associates with the cytoskeleton after exposure to α-toxin, and cellular depletion of PLSCR1 negates IFN-induced protection from α-toxin. PLSCR1-deficient mice display enhanced sensitivity to inhaled α-toxin and an α-toxin-producing S.?aureus strain. These results uncover PLSCR1 activity as part of an innate protective mechanism to a bacterial pore-forming toxin.  相似文献   

13.
The role of the pore-forming Staphylococcus aureus toxin Panton-Valentine leukocidin (PVL) in severe necrotizing diseases is debated due to conflicting data from epidemiological studies of community-associated methicillin-resistant S. aureus (CA-MRSA) infections and various murine disease-models. In this study, we used neutrophils isolated from different species to evaluate the cytotoxic effect of PVL in comparison to other staphylococcal cytolytic components. Furthermore, to study the impact of PVL we expressed it heterologously in a non-virulent staphylococcal species and examined pvl-positive and pvl-negative clinical isolates as well as the strain USA300 and its pvl-negative mutant. We demonstrate that PVL induces rapid activation and cell death in human and rabbit neutrophils, but not in murine or simian cells. By contrast, the phenol-soluble modulins (PSMs), a newly identified group of cytolytic staphylococcal components, lack species-specificity. In general, after phagocytosis of bacteria different pvl-positive and pvl-negative staphylococcal strains, expressing a variety of other virulence factors (such as surface proteins), induced cell death in neutrophils, which is most likely associated with the physiological clearing function of these cells. However, the release of PVL by staphylococcal strains caused rapid and premature cell death, which is different from the physiological (and programmed) cell death of neutrophils following phagocytosis and degradation of virulent bacteria. Taken together, our results question the value of infection-models in mice and non-human primates to elucidate the impact of PVL. Our data clearly demonstrate that PVL acts differentially on neutrophils of various species and suggests that PVL has an important cytotoxic role in human neutrophils, which has major implications for the pathogenesis of CA-MRSA infections.  相似文献   

14.
Outer membrane vesicles (OMVs) are secreted by Gram-negative bacteria and induce a stronger inflammatory response than pure LPS. After endocytosis of OMVs by macrophages, lipopolysaccharide (LPS) is released from early endosomes to activate its intracellular receptors followed by non-canonical inflammasome activation and pyroptosis, which are critically involved in sepsis development. Previously, we could show that the synthetic anti-endotoxin peptide Pep19-2.5 neutralizes inflammatory responses induced by intracellular LPS. Here, we aimed to investigate whether Pep19-2.5 is able to suppress cytoplasmic LPS-induced inflammation under more physiological conditions by using OMVs which naturally transfer LPS to the cytosol. Isothermal titration calorimetry revealed an exothermic reaction between Pep19-2.5 and Escherichia coli OMVs and the Limulus Amebocyte Lysate assay indicated a strong endotoxin blocking activity. In THP-1 macrophages and primary human macrophages Pep19-2.5 and polymyxin B reduced interleukin (IL)-1β and tumor necrosis factor (TNF) release as well as pyroptosis induced by OMVs, while the Toll-like receptor 4 signaling inhibitor TAK-242 suppressed OMV-induced TNF and IL-1β secretion, but not pyroptosis. Internalization of Pep19-2.5 was at least partially mediated by the P2X7 receptor in macrophages but not in monocytes. Additionally, a cell-dependent difference in the neutralization efficiency of Pep19-2.5 became evident in macrophages and monocytes, indicating a critical role for peptide-mediated IL-1β secretion via the P2X7 receptor. In conclusion, we provide evidence that LPS-neutralizing peptides inhibit OMV-induced activation of the inflammasome/IL-1 axis and give new insights into the mechanism of peptide-mediated neutralization of cytoplasmic LPS suggesting an essential and cell-type specific role for the P2X7 receptor.  相似文献   

15.
Streptococcus pneumoniae meningitis causes brain damage through inflammation-related pathways whose identity and mechanisms of action are yet unclear. We previously identified caspase-1, which activates precursor IL-1 type cytokines, as a central mediator of inflammation in pneumococcal meningitis. In this study, we demonstrate that lack of the inflammasome components ASC or NLRP3 that are centrally involved in caspase-1 activation decreases scores of clinical and histological disease severity as well as brain inflammation in murine pneumococcal meningitis. Using specific inhibitors (anakinra and rIL-18-binding protein), we further show that ASC- and NLRP3-dependent pathologic alterations are solely related to secretion of both IL-1β and IL-18. Moreover, using differentiated human THP-1 cells, we demonstrate that the pneumococcal pore-forming toxin pneumolysin is a key inducer of IL-1β expression and inflammasome activation upon pneumococcal challenge. The latter depends on the release of ATP, lysosomal destabilization (but not disruption), and cathepsin B activation. The in vivo importance of this pathway is supported by our observation that the lack of pneumolysin and cathepsin B inhibition is associated with a better clinical course and less brain inflammation in murine pneumococcal meningitis. Collectively, our study indicates a central role of the NLRP3 inflammasome in the pathology of pneumococcal meningitis. Thus, interference with inflammasome activation might be a promising target for adjunctive therapy of this disease.  相似文献   

16.
Morbid obesity is associated with a state of chronic inflammation. Interleukin-1 family (IL-1F) cytokine members are produced by human adipose tissue in obesity. Whereas certain IL-1F members such as IL-1β or IL-18 are potently proinflammatory, others such as IL-1 receptor antagonist (IL-1Ra) or IL-37 (formerly IL-1F7) are antiinflammatory. The NLRP3 inflammasome plays a key role in the processing of bioactive IL-1β and IL-18. We investigated the effect of excessive weight loss on subcutaneous adipose tissue and liver expression of IL-1α, IL-1β, IL-18, IL-1Ra, IL-37 and NLRP3. Twenty-one severely obese patients undergoing laparoscopic adjustable gastric banding were studied. Tissue samples were collected before and 6 months after laparoscopic adjustable gastric banding surgery. mRNA expression of all studied IL-1F members, but especially of IL-37, was much higher in subcutaneous/visceral adipose tissue compared with their liver expression. Subcutaneous adipose tissue mRNA expression of IL-1β decreased significantly after extensive weight loss; expression of IL-18 and IL-1Ra did not change, whereas IL-37 expression increased. Weight loss led to a significant reduction in liver IL-1β, IL-18 and IL-1Ra expression, whereas hepatic IL-37 mRNA expression remained stable. Adipose/liver NLRP3 inflammasome and IL-1α expression were not affected by weight loss. Tissue expression of IL-1β, IL-18 and IL-37 were significantly higher in subcutaneous/visceral adipose tissue compared with the liver. In conclusion, expression of IL-1F members is more pronounced in adipose compared with liver tissue in patients with severe obesity. Excessive weight loss changes the adipose and liver expression profile of IL-1F members toward a more antiinflammatory direction.  相似文献   

17.
Although the intimate linkage between hypoxia and inflammation is well known, the mechanism underlying this linkage has not been fully understood. Nucleotide-binding oligomerization domain-like receptor (NLR) family pyrin domain containing 3 (NLRP3) inflammasome is an intracellular multiprotein complex that regulates interleukin-1β (IL-1β) secretion and pyroptosis, and is implicated in the pathogenesis of sterile inflammatory diseases. Here, we investigated the regulatory mechanism of NLRP3 inflammasome activation in response to hypoxia in macrophages. Severe hypoxia (0.1% O2) induced the processing of pro-IL-1β, pro-caspase-1, and gasdermin D, as well as the release of IL-1β and lactate dehydrogenase in lipopolysaccharide (LPS)-primed murine macrophages, indicating that hypoxia induces NLRP3 inflammasome-driven inflammation and pyroptosis. NLRP3 deficiency and a specific caspase-1 blockade inhibited hypoxia-induced IL-1β release. Hypoxia-induced IL-1β release and cell death were augmented under glucose deprivation, and an addition of glucose in the media negatively regulated hypoxia-induced IL-1β release. Under hypoxia and glucose deprivation, hypoxia-induced glycolysis was not driven and subsequently, the intracellular adenosine triphosphates (ATPs) were depleted. Atomic absorption spectrometry analysis showed a reduction of intracellular K+ concentrations, indicating the K+ efflux occurring under hypoxia and glucose deprivation. Furthermore, hypoxia and glucose deprivation-induced IL-1β release was significantly prevented by inhibition of K+ efflux and KATP channel blockers. In vivo experiments further revealed that IL-1β production was increased in LPS-primed mice exposed to hypoxia (9.5% O2), which was prevented by a deficiency of NLRP3, an apoptosis-associated speck-like protein containing a caspase recruitment domain, and caspase-1. Our results demonstrate that NLRP3 inflammasome can sense intracellular energy crisis as a danger signal induced by hypoxia and glucose deprivation, and provide new insights into the mechanism underlying hypoxia-induced inflammation.  相似文献   

18.
Rahman MM  McFadden G 《Journal of virology》2011,85(23):12505-12517
The myxoma virus (MYXV)-encoded pyrin domain-containing protein M013 coregulates inflammatory responses mediated by both the inflammasome and the NF-κB pathways. Infection of human THP-1 monocytic cells with a MYXV construct deleted for the M013 gene (vMyxM013-KO), but not the parental MYXV, activates both the inflammasome and NF-κB pathways and induces a spectrum of proinflammatory cytokines and chemokines, like interleukin-1β (IL-1β), tumor necrosis factor (TNF), IL-6, and monocyte chemoattractant protein 1. Here, we report that vMyxM013-KO virus-mediated activation of inflammasomes and secretion of IL-1β are dependent on the adaptor protein ASC, caspase-1, and NLRP3 receptor. However, vMyxM013-KO virus-mediated activation of NF-κB signaling, which induces TNF secretion, was independent of ASC, caspase-1, and either the NLRP3 or AIM2 inflammasome receptors. We also report that early synthesis of pro-IL-1β in response to vMyxM013-KO infection is dependent upon the components of the inflammasome complex. Activation of the NLRP3 inflammasome and secretion of IL-1β was also dependent on the release of cathepsin B and production of reactive oxygen species (ROS). By using small interfering RNA screening, we further demonstrated that, among the RIG-I-like receptors (RLRs) and Toll-like receptors (TLRs), only TLR2, TLR6, TLR7, and TLR9 contribute to the NF-κB-dependent secretion of TNF and the inflammasome-dependent secretion of IL-1β in response to vMyxM013-KO virus infection. Additionally, we demonstrate that early triggering of the mitogen-activated protein kinase pathway by vMyxM013-KO virus infection of THP-1 cells plays a critical common upstream role in the coordinate induction of both NF-κB and inflammasome pathways. We conclude that an additional cellular sensor(s)/receptor(s) in addition to the known RLRs/TLRs plays a role in the M013 knockout virus-induced activation of NF-κB pathway signaling, but the activation of inflammasomes entirely depends on sensing by the NLRP3 receptor in response to vMyxM013-KO infection of human myeloid cells.  相似文献   

19.
Bacterial pathogens utilize pore-forming toxins or sophisticated secretion systems to establish infection in hosts. Recognition of these toxins or secretion system by nucleotide-binding oligomerization domain leucine-rich repeat proteins (NLRs) triggers the assembly of inflammasomes, the multiprotein complexes necessary for caspase-1 activation and the maturation of inflammatory cytokines such as IL-1β or IL-18. Here we demonstrate that both the NLRP3 and NLRC4 inflammasomes are activated by thermostable direct hemolysins (TDHs) and type III secretion system 1 (T3SS1) in response to V. parahaemolyticus infection. Furthermore, we identify T3SS1 secreted effector proteins, VopQ and VopS, which induce autophagy and the inactivation of Cdc42, respectively, to prevent mainly NLRC4 inflammasome activation. VopQ and VopS interfere with the assembly of specks in infected macrophages. These data suggest that bacterial effectors interfere with inflammasome activation and contribute to bacterial evasion from the host inflammatory responses.  相似文献   

20.
Inhalation of nanoparticles has been implicated in respiratory morbidity and mortality. In particular, carbon black nanoparticles are found in many different environmental exposures. Macrophages take up inhaled nanoparticles and respond via release of inflammatory mediators and in some cases cell death. Based on new data, we propose that exposure of macrophages (both a macrophage cell line and primary human alveolar macrophages) to carbon black nanoparticles induces pyroptosis, an inflammasome-dependent form of cell death. Exposure of macrophages to carbon black nanoparticles resulted in inflammasome activation as defined by cleavage of caspase 1 to its active form and downstream IL-1β release. The cell death that occurred with carbon black nanoparticle exposure was identified as pyroptosis by the protective effect of a caspase 1 inhibitor and a pyroptosis inhibitor. These data demonstrate that carbon black nanoparticle exposure activates caspase 1, increases IL-1β release after LPS priming, and induces the proinflammatory cell death, pyroptosis. The identification of pyroptosis as a cellular response to carbon nanoparticle exposure is novel and relates to environmental and health impacts of carbon-based particulates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号