首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electropolymerized film of 3,3',3',3'-tetraaminophthalocyanatonickel(II) (p-Ni(II)TAPc) on glassy carbon (GC) electrode was used for the selective and stable determination of 3,4-dihydroxy-L-phenylalanine (L-dopa) in acetate buffer (pH 4.0) solution. Bare GC electrode fails to determine the concentration of L-dopa accurately in acetate buffer solution due to the cyclization reaction of dopaquinone to cyclodopa in solution. On the other hand, p-Ni(II)TAPc electrode successfully determines the concentration of L-dopa accurately because the cyclization reaction was prevented at this electrode. It was found that the electrochemical reaction of L-dopa at the modified electrode is faster than that at the bare GC electrode. This was confirmed from the higher heterogeneous electron transfer rate constant (k(0)) of L-dopa at p-Ni(II)TAPc electrode (3.35 x 10(-2) cms(-1)) when compared to that at the bare GC electrode (5.18 x 10(-3) cms(-1)). Further, it was found that p-Ni(II)TAPc electrode separates the signals of ascorbic acid (AA) and L-dopa in a mixture with a peak separation of 220 mV. Lowest detection limit of 100 nM was achieved at the modified electrode using amperometric method. Common physiological interferents like uric acid, glucose and urea does not show any interference within the potential window of L-dopa oxidation. The present electrode system was also successfully applied to estimate the concentration of L-dopa in the commercially available tablets.  相似文献   

2.
A modified electrode, nickel(II)-baicalein complex modified multiwall carbon nanotube paste electrode (Ni(II)-BA-MWCNT-PE), has been fabricated by electrodepositing Ni(II)-BA complex on the surface of MWCNT-PE in alkaline solution. The Ni(II)-BA-MWCNT-PE exhibits the characteristic of improved reversibility and enhanced current responses of the Ni(III)/Ni(II) couple compared with Ni(II)-BA-carbon paste electrode (CPE). It also shows better electrocatalytic activity toward the oxidation of glycine than Ni(II)-MWCNT-PE. Kinetic parameters such as the electron transfer coefficient α, rate constant ks of the electrode reaction, the diffusion coefficient D of glycine, and the catalytic rate constant kcat of the catalytic reaction are determined. Moreover, the catalytic currents present linear dependence on the concentration of glycine from 20 μM to 1.0 mM by amperometry. The detection limit and sensitivity are 9.2 μM and 3.92 μA mM−1, respectively. The modified electrode for glycine determination is of the property of simple preparation, fast response, and good stability.  相似文献   

3.
This work reports on the use of nickel(II) tetrahydroxy (NiPc(OH)4) and (poly-Ni(OH)Pc(OH)4) phthalocyanine complexes as films on ordinary poly graphite electrode (OPGE) for the electrochemical oxidation of 4-chlorophenol (4-CP). The NiPc(OH)4 film was electrotransformed to Ni(OH)Pc(OH)4 film in aqueous 0.1 M NaOH solution to the ‘O-Ni-O oxo’ bridge form. The result showed that the Ni(OH)Pc(OH)4 film on OPGE was more electroactive in terms of increase in current and less catalytic in terms of potential compared to the adsorbed NiPc(OH)4 on OPGE. The reactivity of the two molecules was explained by theoretical calculations. The energies of the frontier orbitals of NiPc(OH)4, Ni(OH)Pc(OH)4 and 4-chlorophenol were calculated using density functional theory (DFT) method. The inter molecular hardness (η) and donor-acceptor hardness (ηDA) of Ni(OH)Pc(OH)4, NiPc(OH)4, Ni(OH)Pc(OH)4/4-chlorophenol and NiPc(OH)4/4-chlorophenol were estimated. The Ni(OH)Pc(OH)4, showed stronger interaction with 4-chlorophenol than NiPc(OH)4. DFT method was also used to model IR and Raman spectrum of H2Pc(OH)4 and NiPc(OH)4.  相似文献   

4.
Two different hydrogen peroxide sensors were constructed with Ni/Al and Co/Al layered double hydroxides (LDHs) modified glassy carbon electrodes (GCE). Ni (Co)/Al-LDHs were synthesized by electrochemical method and were characterized by scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS). The advantages and shortcoming of the two hydrogen peroxide sensors were described in detail. Compared to Co/Al-LDHs modified electrode, sensors fabricated by Ni/Al-LDHs showed quicker heterogeneous electron transfer rate constants (k(s)), lower detection and better reproducibility. But Co/Al-LDHs modified electrode held the advantages of wider linear range and higher sensitivity. Further more, the different catalytic redox mechanisms of hydrogen peroxide on the Ni/Al/GCE and Co/Al/GCE were firstly comparatively explored.  相似文献   

5.
Shan D  Han E  Xue H  Cosnier S 《Biomacromolecules》2007,8(10):3041-3046
A highly stable biological film was formed on the functional glassy carbon electrode (GCE) via step-by-step self-assembly of chitosan (CHT), laponite, and hemoglobin (Hb). Cyclic voltammetry (CV) of the Hb/laponite/CHT/GCE showed a pair of stable and quasi-reversible peaks for the Hb-Fe(III)/Fe(II) redox couple at about -0.035 V versus a saturated calomel electrode in pH 6.0 phosphate buffer at a scan rate of 0.1 V s(-1). The electrochemical reaction of Hb entrapped on the laponite/CHT self-assembled film exhibited a surface-controlled electrode process. The formal potential of the Hb-heme-Fe(III)/Fe(II) couple varied linearly with the increase of pH over the range of 3.0-8.0 with a slope of -63 mV pH(-1), which implied that an electron transfer was accompanied by single-proton transfer in the electrochemical reaction. The position of the Soret absorption band of this self-assembled Hb/laponite/CHT film suggested that the entrapped Hb kept its secondary structure similar to its native state. The self-assembled film showed excellent long-term stability, the CV peak potentials kept in the same positions, and the cathodic peak currents retained 90% of their values after 60 days. The film was used as a biological catalyst to catalyze the reduction of hydrogen peroxide. The electrocatalytic response showed a linear dependence on the H2O2 concentration ranging widely from 6.2 x 10(-6) to 2.55 x 10(-3) M with a detection limit of 6.2 x 10(-6) M at 3 sigma.  相似文献   

6.
In this paper a study of the electrocatalytic oxidation of salicylic acid (SA) at a Pt electrode coated with a Co/Al hydrotalcite-like compound (Co/Al HTLC coated-Pt) film is presented. The voltammetric behaviour of the modified electrode in 0.1M NaOH shows two different redox couples: Co(II)/Co(III) and Co(III)/Co(IV). The electrocatalysis occurs at the same potential of the latter couple, showing that Co(IV) centers act as the oxidant. The CV investigation demonstrates that the process is controlled both by mass and charge transfer and that the Co(IV) centers involved in the oxidation are two for each SA molecule. The estimated value of the catalytic constant is 4×10(4) M(-1) s(-1). The determination of salicylic acid was performed both by DPV and chronoamperometry. The linearity ranges and the LOD values resulted 1×10(-5) to 5×10(-4), 5×10(-7) to 1×10(-4), 6×10(-6) and 2×10(-7) M, respectively. The Co/Al HTLC electrode has been used for SA determination in BAYER Aspirina? and the obtained results are consistent with an independent HPLC analysis.  相似文献   

7.
A highly stable functional composite film was prepared using polyazetidine prepolymer (PAP) with peroxidase from horseradish (HRP) and/or glucose oxidase (GOx). The good permeability of the PAP layer to classical electrochemical mediators, as evaluated by the determination of the diffusion coefficient of different redox molecules, is of great importance in view of the use of PAP as an immobilizing agent in second-generation biosensor development. Cyclic voltammetry of the HRP-PAP layer on a glassy carbon electrode (GCE) showed a pair of stable and quasi-reversible peaks for the HRP-Fe((III))/Fe((II)) redox couple at about -370 mV vs. Ag/AgCl electrode in pH 6.5 phosphate buffer. The electrochemical reaction of HRP entrapped in the PAP film exhibited a surface-controlled electrode process. This film and the successive modifications (HRP-PAP self-assembled monolayer (SAM) modified Au electrode) were used as a biological catalyst (hydrogen peroxide transducers) for glucose biosensors, after coupling to GOx. Both HRP/GOx-PAP and HRP/GOx-PAP SAM third generation biosensors were prepared and characterized. The use of PAP as immobilizing agent offers a biocompatible micro-environment for confining the enzyme and foreshadows the great potentiality of this immobilizing agent not only in theoretical studies on protein direct electron transfer but also from an applications point of view in the development of second- and third-generation biosensors.  相似文献   

8.
Electrochemical oxidation of serotonin (SN) onto zinc oxide (ZnO)-coated glassy carbon electrode (GCE) results in the generation of redox mediators (RMs) that are strongly adsorbed on electrode surface. The electrochemical properties of zinc oxide-electrogenerated redox mediator (ZnO/RM) (inorganic/organic) hybrid film-coated electrode has been studied using cyclic voltammetry (CV). The scanning electron microscope (SEM), atomic force microscope (AFM), and electrochemical techniques proved the immobilization of ZnO/RM core/shell microparticles on the electrode surface. The GCE modified with ZnO/RM hybrid film showed two reversible redox peaks in acidic solution, and the redox peaks were found to be pH dependent with slopes of −62 and −60 mV/pH, which are very close to the Nernst behavior. The GCE/ZnO/RM-modified electrode exhibited excellent electrocatalytic activity toward the oxidations of ascorbic acid (AA), dopamine (DA), and uric acid (UA) in 0.1 M phosphate buffer solution (PBS, pH 7.0). Indeed, ZnO/RM-coated GCE separated the anodic oxidation waves of DA, AA, and UA with well-defined peak separations in their mixture solution. Consequently, the GCE/ZnO/RMs were used for simultaneous detection of DA, AA, and UA in their mixture solution. Using CV, calibration curves for DA, AA, and UA were obtained over the range of 6.0 × 10−6 to 9.6 × 10−4 M, 1.5 × 10−5 to 2.4 × 10−4 M, and 5.0 × 10−5 to 8 × 10−4 M with correlation coefficients of 0.992, 0.991, and 0.989, respectively. Moreover, ZnO/RM-modified GCE had good stability and antifouling properties.  相似文献   

9.
A method is described for the construction of an amperometric biosensor for detection of phenolic compounds based on covalent immobilization of laccase onto iron oxide nanoparticles (Fe(3)O(4)NPs) decorated carboxylated multiwalled carbon nanotubes (cMWCNTs)/polyaniline (PANI) composite electrodeposited onto a gold (Au) electrode. The modified electrode was characterized by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The biosensor showed optimum response within 3s at pH 6.0 (0.1M sodium acetate buffer) and 35°C, when operated at 0.3V vs. Ag/AgCl. Linear range, detection limit were 0.1-10μM (lower concentration range) and 10-500μM (higher concentration range), and 0.03μM respectively. The sensor measured total phenolic content in tea leaves extract. The enzyme electrode lost 25% of its initial activity after its 150 uses over a period of 4 months, when stored at 4°C.  相似文献   

10.
A chemically modified electrode constructed by incorporating iron(II) phthalocyanine [Fe(II)Pc] into carbon-paste matrix was used as a sensitive potentiometric sensor for detection of ascorbic acid. The resulting electrode exhibits catalytic properties for the electrooxidation of ascorbic acid, and lowers the overpotential for the oxidation of this compound. The faster rate of electron transfer results in a near-Nernstian behavior of the modified electrode, and makes it a suitable potentiometric sensor for detection of ascorbic acid. A linear response in concentration range from 10(-6) to 10(-2) M (0.18--1800 microg ml(-1)) was obtained with a detection limit of 5 x 10(-7) M for the potentiometric detection of ascorbic acid. The modified electrode was used for the determination of ascorbic acid in vitamin preparations. The recovery was 97.2--102.4% for the vitamin added to the preparations with a relative standard deviation of less than 5%. The modified electrode exhibited a fast response time (<10 s),had good stability, and had an extended lifetime.  相似文献   

11.
Electricity production by Geobacter sulfurreducens attached to electrodes   总被引:27,自引:0,他引:27  
Previous studies have suggested that members of the Geobacteraceae can use electrodes as electron acceptors for anaerobic respiration. In order to better understand this electron transfer process for energy production, Geobacter sulfurreducens was inoculated into chambers in which a graphite electrode served as the sole electron acceptor and acetate or hydrogen was the electron donor. The electron-accepting electrodes were maintained at oxidizing potentials by connecting them to similar electrodes in oxygenated medium (fuel cells) or to potentiostats that poised electrodes at +0.2 V versus an Ag/AgCl reference electrode (poised potential). When a small inoculum of G. sulfurreducens was introduced into electrode-containing chambers, electrical current production was dependent upon oxidation of acetate to carbon dioxide and increased exponentially, indicating for the first time that electrode reduction supported the growth of this organism. When the medium was replaced with an anaerobic buffer lacking nutrients required for growth, acetate-dependent electrical current production was unaffected and cells attached to these electrodes continued to generate electrical current for weeks. This represents the first report of microbial electricity production solely by cells attached to an electrode. Electrode-attached cells completely oxidized acetate to levels below detection (<10 micro M), and hydrogen was metabolized to a threshold of 3 Pa. The rates of electron transfer to electrodes (0.21 to 1.2 micro mol of electrons/mg of protein/min) were similar to those observed for respiration with Fe(III) citrate as the electron acceptor (E(o)' =+0.37 V). The production of current in microbial fuel cell (65 mA/m(2) of electrode surface) or poised-potential (163 to 1,143 mA/m(2)) mode was greater than what has been reported for other microbial systems, even those that employed higher cell densities and electron-shuttling compounds. Since acetate was completely oxidized, the efficiency of conversion of organic electron donor to electricity was significantly higher than in previously described microbial fuel cells. These results suggest that the effectiveness of microbial fuel cells can be increased with organisms such as G. sulfurreducens that can attach to electrodes and remain viable for long periods of time while completely oxidizing organic substrates with quantitative transfer of electrons to an electrode.  相似文献   

12.
A rapid, convenient and accurate method for the simultaneous detection of guanine (G), adenine (A), thymine (T) and cytosine (C) was developed at a multiwalled carbon nanotube (MWCNT)/choline (Ch) monolayer-modified glassy carbon electrode (GCE). X-ray photoelectron spectroscopy data demonstrated that Ch was covalently immobilised on the surface of GCE through oxygen atom. The Ch monolayer provides a positively charged surface with -N(+)(CH(3))(3) polar groups, so that it can attract negatively charged MWCNTs to the surface. Consequently, the MWCNT/Ch film exhibited remarkable electrocatalytic activities towards the oxidation of G, A, T and C due to the advantages of high electrode activity, large surface area, prominent antifouling property, and high electron transfer kinetics. All purine and pyrimidine bases showed well-defined catalytic oxidation peaks at MWCNT/Ch/GCE. The peak separations between G and A, A and T, and T and C are 270, 200, and 190 mV, respectively, which are sufficiently large for their potential recognition and simultaneous detection in mixture. Under the optimum conditions, the designed MWCNT/Ch/GCE exhibited low detection limit, high sensitivity and wide linear range for simultaneous detection of G, A, T and C. Moreover, the proposed method was successfully applied to the assessment of G, A, T and C contents in a herring sperm DNA sample with satisfactory results.  相似文献   

13.
The redox behaviour of the Ni(III)/Ni(II) transition in hydrogenase from Chromatium vinosum is described and compared with the redox behaviour of the nickel ion in the F420-nonreducing hydrogenase from Methanobacterium thermoautotrophicum. Analogous to the situation in the oxidised hydrogenase of Desulfovibrio gigas (Fernandez, V.M., Hatchikian, E.C., Patil, D.S. and Cammack, R. (1986) Biochim. Biophys. Acta 883, 145-154), the C. vinosum enzyme can also exist in two forms: the 'unready' form (EPR characteristics of Ni(III): gx,y,z = 2.32, 2.24, 2.01) and the 'ready' form (EPR characteristics Ni(III): gx,y,z = 2.34, 2.16, 2.01). Like in the oxidised enzyme of M. thermoautotrophicum the Ni(III)/Ni(II) transition for the unready form titrated completely reversible (both at pH 6.0 and pH 8.0). In contrast, the reversibility of the Ni(III)/Ni(II) transition in the ready enzyme was strongly dependent on pH and temperature. At pH 6.0 and 2 degrees C reduction of Ni(III) in ready enzyme was completely irreversible, whereas at pH 8.0 and 30 degrees C Ni(III) in both ready and unready enzyme titrated with E0' = -115 mV (n = 1). Hampered redox equilibration between the ready enzyme and the mediating dyes is interpreted in terms of an obstruction of the electron transfer from nickel at the active site to the artificial electron acceptors in solution. The origin of this obstruction might be related to possible changes in the protein structure induced by the activation process. The E0'-value of the Ni(III)/Ni(II) equilibrium was pH sensitive (-60 mV/delta pH) indicating that reduction of nickel is coupled to a protonation. A similar pH-dependence was observed for the titration of the spin-spin interaction of Ni(III) and a special form of the [3Fe-4S]+ cluster (E0' = +150 mV, pH 8.0, 30 degrees C). Redox equilibration of this coupling was extremely sensitive to pH and temperature. The uncoupled [3Fe-4S]+ cluster titrated pH-independently with E0' = -10 mV (pH 8.0, 30 degrees C).  相似文献   

14.
Diglycolic acid (DA) polymer was coated on glassy carbon (GC) electrode by cyclic voltammetry (CV) technique for the first time. The electrochemical performances of the modified electrode were investigated by CV and electrochemical impedance (EIS). The obtained electrode showed an excellent electrocatalytic activity for the oxidation of acetaminophen (ACOP). A couple of well-defined reversible electrochemical redox peaks were observed on the ploy(DA)/GC electrode in ACOP solution. Compared with bare GC electrode, the oxidation peak potential of ACOP on ploy(DA)/GC electrode moved from 0.289 V to 0.220 V. Meanwhile, the oxidation peak current was much higher on the modified electrode than that on the bare GC electrode, indicating DA polymer modified electrode possessed excellent performance for the oxidation of ACOP. This kind of capability of the modified electrode can be enlisted for the highly sensitive and selective determination of ACOP. Under the optimized conditions, a wide linear range from 2 × 10(-8) to 5.0 × 10(-4)M with a correlation coefficient 0.9995 was obtained. The detection limit was 6.7 × 10(-9)M (at the ratio of signal to noise, S/N=3:1). The modified electrode also exhibited very good stability and reproducibility for the detection of ACOP. The established method was applied to the determination of ACOP in samples. An average recovery of 100.1% was achieved. These results indicated that this method was reliable for determining ACOP.  相似文献   

15.
A method is described for construction of an amperometric biosensor for detection of phenolic compounds based on covalent immobilization of laccase (Lac) onto manganese dioxide nanoparticles (MnO(2)NPs) decorated carboxylated multiwalled carbon nanotubes (cMWCNTs)/PANI composite electrodeposited onto a gold (Au) electrode through N-ethyl-N'-(3-dimethylaminopropyl) carbodiimide (EDC) and N-hydroxy succinimide (NHS) chemistry. The modified electrode was characterized by scanning electron microscopy (SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The biosensor showed optimum response at pH 5.5 (0.1M sodium acetate buffer) and 35°C, when operated at 0.3 V vs. Ag/AgCl. Linear range, response time, detection limit were 0.1-10 μM (lower concentration range) and 10-500 μM (higher concentration range), 4s and 0.04 μM, respectively. Biosensor measured total phenolic content in tea leaves extract. The enzyme electrode was used 150 times over a period of 5 months.  相似文献   

16.
A new sensitive electrochemical sensor, a glassy carbon electrode modified with chemically cross-linked copper-complexed chitosan/multiwalled carbon nanotubes (Cu–CS/MWCNT/GCE), for rutin analysis was constructed. Experimental investigations of the influence of several parameters showed that the rutin can effectively accumulate on the surface of the Cu–CS/MWCNT/GCE, which accumulation caused a pair of well-defined redox peaks in the electrochemical signal when measurements were carried out in Britton–Robinson buffer solution (pH 3, 0.04 M). The surface of the Cu–CS/MWCNT/GCE was characterized by field-emission scanning electron microscopy, transmission electron microscopy, and X-ray diffractometry analysis. In a rutin concentration range of 0.05–100 μM and under optimized conditions, a linear relationship between the oxidation peak current of rutin and its concentration was obtained with a detection limit of 0.01 μM. The Cu–CS/MWCNT/GCE showed good selectivity, stability, and reproducibility. Moreover, the sensor was used to determine the presence of rutin in fruits with satisfactory results.  相似文献   

17.
Direct electrochemical and electrocatalytic behaviors of hemoglobin (Hb) immobilized on carbon paste electrode (CPE) by a silica sol-gel film derived from tetraethylorthosilicate (TEOS) were investigated for the first time. Hb/sol-gel film modified electrodes showed a pair of well-defined and nearly reversible cyclic voltammetric peaks for Hb Fe(III)/Fe(II) redox couple at about -0.312 V (versus Ag/AgCl) in a pH 7.0 phosphate buffer. The formal potential of Hb heme Fe(III)/Fe(II) couple varied linearly with the increase of pH in the range of 5.0-10.0 with a slope of 49.44 mV pH(-1), which suggests that a proton transfer is accompanied with each electron transfer (ET) in the electrochemical reaction. The immobilized Hb displayed the features of peroxidase and gave excellent electrocatalytic performance to the reduction of O2, NO2(-) and H2O2. The calculated apparent Michaelis-Menten constant was 8.98 x 10(-4)M, which indicated that there was a large catalytic activity of Hb immobilized on CPE by sol-gel film toward H2O2. In comparison with other electrodes, the chemically modified electrodes, used in this direct electrochemical study of Hb, are easy to be fabricated and rather inexpensive. Consequently, the Hb/sol-gel film modified electrode provides a convenient approach to perform electrochemical research on this kind of proteins. It also has potential use in the fabrication of the third generation biosensors and bioreactors.  相似文献   

18.
The current study describes the electrografting of 2,4-diamino-1,3,5-triazine (AT) groups at the surfaces of glassy carbon electrode (GCE) and indium tin oxide (ITO) through in situ diazotization of melamine. The presence of AT groups at the surface of the electrode was confirmed by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS), and cyclic voltammetry (CV). Furthermore, graphene oxide (GO) was self-assembled on AT grafted GCE. The oxygen functional groups present on the surface of GO were electrochemically reduced to form an electrochemically reduced graphene oxide (ERGO) on AT grafted electrode surface. Raman spectra show the characteristic D and G bands at 1340 and 1605 cm−1, respectively, which confirms the successful attachment of GO on AT grafted surface, and the ratio of D and G bands was increased after the electrochemical reduction of GO. EIS shows that the electron transfer reaction of [Fe(CN)6]3−/4− was higher at the ERGO modified electrode than at bare, AT grafted, and GO modified GCEs. The electrocatalytic activity of ERGO was investigated toward the oxidation of methylxanthines. It shows excellent electrocatalytic activity toward these methylxanthines by not only shifting their oxidation potentials toward less positive potentials but also enhancing their oxidation currents.  相似文献   

19.
Meldola's blue (MB) functionalized carbon nanotubes (CNT) nanocomposite film (MB/CNT) electrode was prepared by non-covalent adsorbing MB on the surface of a carbon nanotubes modified glassy carbon electrode (CNT/GCE). Electrochemical behaviors of the resulting electrode were investigated thoroughly with cyclic voltammetry in the potential range of -0.6 to 0.2V, and two well-defined redox couples were clearly visualized. We also studied the electron transfer kinetics of MB loaded on CNT (MB/CNT) in comparison with that of MB on conventional graphite powder (MB/GP). The heterogeneous electron transfer rate constant (k(s)) of MB/CNT was calculated to be about three times larger than that of MB/GP. The accelerated electron transfer kinetics was attributed to the unique electrical and nanostructural properties of CNT supports as well as the interaction between MB and CNT. In connection with the oxidation of nicotinamide adenine dinucleotide (NADH), excellent electrocatalytic activities were observed at MB/CNT/GCE compared with MB/GP modified glassy carbon electrode (MB/GP/GCE). Based on the results, a new NADH sensor was successfully established using the MB/CNT/GCE. Under a lower operation potential of -0.1V, NADH could be detected linearly up to a concentration of 500 microM with an extremely lower detection limit of 0.048+/-0.02 microM estimated at a signal-to-noise ratio of 3. Sensitivity, selectivity, reproducibility and stability of the NADH sensor were also investigated and the main analytical data were also compared with those obtained with the MB/GP/GCE.  相似文献   

20.
Fe(3)O(4) magnetic nanoparticles were in situ loaded on the surface of multiwalled carbon nanotubes (MWCNTs) by a simple coprecipitation procedure. The resulting Fe(3)O(4)/MWCNTs nanocomposite brings new capabilities for electrochemical sensing by combining the advantages of Fe(3)O(4) magnetic nanoparticles and MWCNTs. It was found that Fe(3)O(4) has redox properties similar to those of frequently used mediators used for electron transfer between NADH and electrode. The cyclic voltammetric results indicated the ability of Fe(3)O(4)/MWCNTs modified GC electrode to catalyze the oxidation of NADH at a very low potential (0.0 mV vs. Ag/AgCl) and subsequently, a substantial decrease in the overpotential by about 650 mV compared with the bare GC electrode. The catalytic oxidation current allows the stable and selective amperometric detection of NADH at an applied potential of 0.0 mV (Ag/AgCl) with a detection limit of 0.3 μM and linear response up to 300 μM. This modified electrode can be used as an efficient transducer in the design of biosensors based on coupled dehydrogenase enzymes. Lactate dehydrogenase (LDH) and NAD(+) were subsequently immobilized onto the Fe(3)O(4)/MWCNTs nanocomposite film by covalent bond formation between the amine groups of enzyme or NAD(+) and the carboxylic acid groups of the Fe(3)O(4)/MWCNT film. Differential pulse voltammetric detection of lactate on Fe(3)O(4)/MWCNT/LDH/NAD(+) modified GC electrode gives linear responses over the concentration range of 50-500 μM with the detection limit of 5 μM and sensitivity of 7.67 μA mM(-1). Furthermore, the applicability of the sensor for the analysis of lactate concentration in human serum samples has been successfully demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号