首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alves DP  Tatsuo MA  Leite R  Duarte ID 《Life sciences》2004,74(20):2577-2591
In order to investigate to the contribution of K+ channels on the peripheral antinociception induced by diclofenac, we evaluated the effect of several K+ channel blockers, using the rat paw pressure test, in which sensitivity is increased by intraplantar injection (2 microg) of prostaglandin E2. Diclofenac administered locally into the right hindpaw (25, 50, 100 and 200 microg) elicited a dose-dependent antinociceptive effect which was demonstrated to be local, since only higher doses produced an effect when injected in the contralateral paw. This blockade of PGE2 mechanical hyperalgesia induced by diclofenac (100 microg/paw) was antagonized in a dose-dependent manner by intraplantar administration of the sulphonylureas glibenclamide (40, 80 and 160 microg) and tolbutamide (80, 160 and 320 microg), specific blockers of ATP-sensitive K+ channels, and it was observed even when the hyperalgesic agent used was carrageenin, while the antinociceptive action of indomethacin (200 microg/paw), a typical cyclo-oxygenase inhibitor, over carrageenin-induced hyperalgesia was not affected by this treatment. Charybdotoxin (2 microg/paw), a blocker of large conductance Ca2+-activated K+ channels and dequalinium (50 microg/paw), a selective blocker of small conductance Ca2+-activated K+ channels, did not modify the effect of diclofenac. This effect was also unaffected by intraplantar administration of non-specific voltage-dependent K+ channel blockers tetraethylammonium (1700 microg) and 4-aminopyridine (100 microg) or cesium (500 microg), a non-specific K+ channel blocker. The peripheral antinociceptive effect induced by diclofenac was antagonized by NG-Nitro L-arginine (NOarg, 50 microg/paw), a NO synthase inhibitor and methylene blue (MB, 500 microg/paw), a guanylate cyclase inhibitor, and this antagonism was reversed by diazoxide (300 microg/paw), an ATP-sensitive K+ channel opener. We also suggest that an endogenous opioid system may not be involved since naloxone (50 microg/paw) did not affect diclofenac-induced antinociception in the PGE2-induced hyperalgesia model. This study provides evidence that the peripheral antinociceptive effect of diclofenac may result from activation of ATP-sensitive K+ channels, possible involving stimulation of L-arginine/NO/cGMP pathway, while Ca2+-activated K+ channels, voltage-dependent K+ channels as well as endogenous opioids appear not to be involved in the process.  相似文献   

2.
NG-nitro-L-arginine methyl ester (L-NAME) has been used extensively as a paradigmatic inhibitor of NO synthase and has been shown to cause antinociception in several experimental models. We describe here how L-NAME produced a dose-dependent antinociceptive effect when injected intraperitoneally in the mouse after acetic acid induced writhings, or intraplantarly in the rat paw pressure hyperalgesia induced by carrageenin or prostaglandin E2. In contrast another NO synthase inhibitor, NG-monomethyl-L-arginine (L-NMMA), had no significant effect per se but inhibited L-NAME systemic induced antinociception in mice and local induced antinociception in the rat paw hyperalgesia test. D-NAME had no antinociceptive effect upon carrageenin-induced hyperalgesia. Pretreatment of the paws with two inhibitors of guanylate cyclase, methylene blue (MB) and 1H-:[1,2,4]-oxadiazolo-:[4,3-a] quinoxalin-1-one (ODQ) abolished the antinociceptive effect of L-NAME. L-Arginine and the cGMP phosphodiesterase inhibitor, MY 5445 significantly enhanced the L-NAME antinociceptive effect. The central antinociceptive effect of L-NAME was blocked by co-administration of L-NMMA, ODQ and MB. The present series of experiments shows that L-NAME, but not L-NMMA, has an antinociceptive effect. It can be suggested that L-NAME causes the antinociceptive effect by stimulation of the arginine/ NO/ cGMP pathway, since the antinociceptive effect of L-NAME can be antagonized by L-NMMA and abolished by the guanylate cyclase inhibitors (MB and ODQ). In addition, the NO synthase substrate, L-arginine and the cGMP phosphodiesterase inhibitor, MY5445 were seen to potentiate the effects of L-NAME. Thus, L-NAME used alone, has limitations as a specific inhibitor of the arginine-NO-cGMP pathway and may therefore be a poor pharmacological tool for use in characterising participation in pathophysiological processes.  相似文献   

3.
In this study, we characterized the role of delta(1) and delta(2) opioids receptors, as well the involvement of the l-arginine/NO/cGMP pathway in the peripheral antinociception induced by delta-opioid receptor agonist (+)-4-[(alphaR)-alpha-((2S,5R)-4-Allyl-2,5-dimethyl-1-piperazinyl)-3-methoxybenzyl]-N,N-diethylbenzamide (SNC80). The paw pressure test was utilized, in which pain sensitivity is increased by intraplantar injection of prostaglandin E(2) (2 microg). Administration of SNC80 (20, 40 and 80 microg/paw) decreased the hyperalgesia induced by prostaglandin E(2) in a dose-dependent manner. The possibility that the higher dose of SNC80 (80 microg) has a central or systemic effect was excluded, since administration of the drug into the contralateral paw did not elicit antinociception in the right paw. 7-Benzylidenenaltrexone (BNTX), 5, 10 and 20 microg/paw, and 17-(Cyclopropylmethyl)-6,7-didehydro-3,14beta-dihydroxy-4,5alpha-epoxy-6,7-2',3'-benzo[b]furanomorphinan (naltriben), 2.5, 5 and 10 microg/paw, delta(1) and delta(2) opioid receptor antagonist respectively, elicited partial antagonism of the peripheral antinociceptive effect of the SNC80 (80 microg). The BNTX (10 microg/paw)-naltriben (5 microg/paw) combination completely antagonized the peripheral antinociception induced by SNC80 (80 microg). Further, blockers of the l-arginine/NO/cGMP pathway, N(G)-nitro-l-arginine (12, 18 and 24 microg/paw) and methylene blue (125, 250 and 500 microg/paw) were observed reverting the peripheral antinociceptive effect of SNC80. This study provides evidence that the peripheral antinociception induced by SNC80 occurs via delta(1) and delta(2) receptors and may result from l-arginine/NO/cGMP pathway activation.  相似文献   

4.
Picolo G  Cury Y 《Life sciences》2004,75(5):559-573
Previous work has shown that nitric oxide (NO) mediates the antinociceptive effect of Crotalus durissus terrificus venom on carrageenin-induced hyperalgesia. In the present study the role of constitutive neuronal or of inducible form of nitric oxide synthase on venom effect was determined. The rat paw prostaglandin E(2) (PGE(2))-induced mechanical hyperalgesia model was used for nociceptive evaluation. The venom (200 microg/kg) administered per oz immediately before prostaglandin induced antinociception that persisted for 120 h. The characterisation of the antinociceptive effect of the venom in this model of hyperalgesia showed that kappa and delta-opioid receptors are involved in this effect. 7-nitroindazole (7-NI), a neuronal nitric oxide synthase (NOS) inhibitor, but not L-N(6)-(1-iminoethyl)lysine (L-NIL), an inhibitor of the inducible form of NOS, injected by intraplantar (i.pl.) route, antagonized the antinociceptive effect of the venom. The i.pl. administration of 1H-(1,2,4)oxadiazolo[4,3-a]quinoxaline-1-one (ODQ), a selective guanylate cyclase inhibitor, blocked antinociception, whereas Rp-cGMP triethylamine, a cGMP-dependent protein kinase inhibitor, partially reversed this effect. These data indicate that peripheral kappa- and delta-opioid receptors are involved in the antinociceptive effect of Crotalus durissus terrificus on prostaglandin E(2)-induced hyperalgesia. Peripheral nitric oxide, generated by neuronal NO synthase, and cGMP/PKc are responsible, at least partially, for the molecular mechanisms of venom effect.  相似文献   

5.
The production of nitric oxide (NO) from l-arginine is catalyzed by NO synthase (NOS), which exists as the following three isoforms: endothelial (eNOS), neuronal (nNOS), and inducible (iNOS). The participation of this pathway in peripheral antinociception has been extensively established by our group with the use of several types of drugs, including opioids, cannabinoids, cholinergic, and α(2C) adrenoceptor agonists and nonsteroidal anti-inflammatory drugs (NSAIDS), and even non-pharmacological procedures such as electroacupuncture. In this study, we aimed to refine the previous data to investigate which type of NOS isoform is involved in the peripheral antinociception mechanism induced by anandamide, morphine, SNC80, bremazocine, acetylcholine, xylazine, baclofen, dipyrone, and diclofenac. After hyperalgesia was induced by intraplantar injection of prostaglandin E(2) in male Wistar rats, we measured peripheral nociception with the paw pressure test. All drugs that were used induced a peripheral antinociception effect that was completely blocked by injection of the selective neuronal NO synthase inhibitor, L-NPA (24μg/paw). The exception was the GABA(B) agonist baclofen, which induced an effect that was not antagonized. We used the inhibitors L-NIO and -NIL (24μg/paw) to exclude the involvement of endothelial and inducible NO synthase, respectively. These drugs were ineffective against the antinociception effect induced by all analgesic drugs that we utilized. Based on the experimental evidence, we conclude that the local injection of analgesic drugs activates nNOS to release NO and induce peripheral antinociception.  相似文献   

6.
Cholinergic-NO-cGMP mediation of sildenafil-induced antinociception   总被引:2,自引:0,他引:2  
Acetylcholine and cholinomimetic agents with predominant muscarinic action are known to increase the concentration of cGMP by activation of nitric oxide signaling pathway in the nociceptive conditions. The present study was aimed to investigate the NO-cGMP-PDE5 pathway in nociceptive conditions in the experimental animals. Nociceptive threshold was assessed by acetic acid-induced writhing assay (chemonociception) or carrageenan-induced hyperalgesia. Sildenafil [1-5 mg/kg, ip, 50-200 microg/paw, intraplantar (ipl)] produced dose dependent antinociception in both the tested models. Coadministration of acetylcholine (50 mcg/paw, ipl) or cholinomimetic agent, neostigmine (0.1 mcg/kg, ip and 25 ng/paw, ipl) augmented the peripheral antinociceptive effect of sildenafil. This effect was sensitive to blockade by L-NAME (20 mg/kg, ip, 100 microg/paw, ipl), a non-selective NOS inhibitor and methylene blue (1 mg/kg, ip), a guanylate cyclase inhibitor, which per se had little or no effect in both the models of nociception. Further, the per se analgesic effect of acetylcholine and neostigmine was blocked by both L-NAME and methylene blue in the models of nociception, suggesting the activation of NO-cGMP pathway. Also, both L-NAME and methylene blue blocked the per se analgesic effect of sildenafil. These results indicate the peripheral accumulation of cGMP may be responsible for antinociceptive effect, and a possible interaction between cholinergic agents and PDE5 system in models of nociception.  相似文献   

7.
AimsThe effects of several potassium (K+) channel blockers were studied to determine which K+ channels are involved in peripheral antinociception induced by the cannabinoid receptor agonist, anandamide.Main methodsHyperalgesia was induced by subcutaneous injection of 250 μg carrageenan into the plantar surface of the hind paw of rats. The extent of hyperalgesia was measured using a paw pressure test 3 h following carrageenan injection. The weight in grams (g) that elicited a nociceptive response, paw flexion, during the paw pressure test was used as the nociceptive response threshold.Key findingsDoses of 50, 75, and 100 ng of anandamide elicited a dose-dependent antinociceptive effect. Following a 100 ng dose of anandamide no antinociception was observed in the paw that was contralateral to the anandamide injection site, which shows that anandamide has a peripheral site of action. Pretreatment with 20, 40 and 80 μg AM251, a CB1 receptor antagonist, caused a dose-dependent decrease in anandamide-induced antinociception, suggesting that the CB1 receptor is directly involved in anandamide effect. Treatment with 40, 80 and 160 μg glibenclamide, an ATP-sensitive K+ channel blocker, caused a dose-dependent reversal of anandamide-induced peripheral antinociception. Treatment with other K+ channel antagonists, tetraethylammonium (30 μg), paxilline (10 μg) and dequalinium (50 μg), had no effect on the induction of peripheral antinociception by anandamide.SignificanceThis study provides evidence that the peripheral antinociceptive effect of the cannabinoid receptor agonist, anandamide, is primarily caused by activation of ATP-sensitive K+ channels and does not involve other potassium channels.  相似文献   

8.
The purpose of this study was to investigate the role of the L-arginine/nitric oxide (NO)/cGMP pathway in p-benzoquinone-induced writhing model in mouse. L-arginine, a NO precursor, displayed antinociceptive effects at the doses of 0.125-1.0 mg/kg. When the doses of L-arginine were increased gradually to 10-100 mg/kg, a dose-dependent triphasic pattern of nociception-antinociception-nociception was obtained. The NO synthase (NOS) inhibitor, NG-nitro-L-arginine methyl ester (L-NAME) (18.7515 mg/kg), possessed antinociceptive activity. Methylene blue (MB), a guanylyl cyclase and/or NOS inhibitor, (5-160 mg/kg) also produced a dose-dependent triphasic response. When L-arginine (50 mg/ kg) was combined with L-NAME (75 mg/kg). L-arginine-induced antinociception did not change significantly. Cotreatment of L-arginine with 5 mg/kg MB significantly decreased MB-induced antinociception and reversed the nociception induced by 40 mg/kg MB to antinociception. It is concluded that the components of L-arginine/nitric oxide/cGMP cascade may participate in nociceptive processes both peripherally and centrally by a direct effect on nociceptors or by the involvement of other related pathways of nociceptive processes induced by NO.  相似文献   

9.
Jesse CR  Savegnago L  Nogueira CW 《Life sciences》2007,81(25-26):1694-1702
The present study examined the antinociceptive effects induced by 2,3-bis(mesitylseleno)propenol, a bis-selenide alkene derivate, given orally, in chemical models of pain in rats and mice. Selenide administered orally (p.o.) into the rats caused antinociception against the first and second phases of the formalin test, with mean ID(50) values of 28.17 and 39.68 mg/kg, respectively. The antinociceptive effect caused by selenide (50 mg/kg, p.o.) on the formalin test was reversed by pretreatment with N(G)-L-nitro-arginine methyl ester (L-NAME, a nitric oxide (NO) synthase inhibitor), methylene blue (a non-specific NO/guanylyl cyclase inhibitor) and glibenclamide (an ATP-sensitive K(+) channel inhibitor), but not by atropine (a muscarinic antagonist). Given orally selenide in mice produced an inhibition of glutamate-, histamine- and compound 48/80-induced nociception with mean ID(50) values of 27.58, 36.18 and 44.53 mg/kg, respectively. Moreover, oral treatment with selenide in mice decreased licking -- induced by serotonin (mean ID(50) value of >50 mg/kg). The data show that selenide exerts pronounced systemic antinociception in chemical (formalin, glutamate, histamine, compound 48/80 and serotonin-induced pain) models of nociception. Taken together, these results suggest that the antinociceptive effect of selenide on the formalin test involves the participation of nitric oxide/cyclic GMP/K(+) channel pathways in rats.  相似文献   

10.
Metoclopramide, a prokinetic drug, has been documented to produce antinociceptive response in animal models through opioid pathways. Morphine has been shown to act through ATP sensitive potassium channels (KATP) to produce antinociceptive response. However, such a possibility has not been examined for metoclopramide. The present study investigated this using pharmacological tools. Acetic acid induced abdominal constriction assay procedure was utilized to assess antinociception. The results confirmed that metoclopramide has antinociceptive response. Glibenclamide, a KATP channel blocker, pretreatment antagonized this response. Where as, in minoxidil pretreated animals, metoclopramide elicited an enhanced antinociceptive response. Glibenclamide and minoxidil, which are known KATP channel blocker and opener respectively, interfered with metoclopramide antinociception. These finding are suggestive of a role for KATP channels in metoclopramide antinociception in mice.  相似文献   

11.
Reis GM  Duarte ID 《Life sciences》2007,80(14):1268-1273
We investigated the effect of chloride and potassium channel blockers on the antinociception induced by GABA(C) receptor agonist CACA (cis-4-aminocrotonic acid) using the paw pressure test, in which pain sensitivity was increased by an intraplantar injection (2 microg) of prostaglandin E(2) (PGE(2)). CACA administered locally into the right hindpaw (25, 50 and 100 microg/paw) elicited a dose-dependent antinociceptive effect which was demonstrated to be local, since only higher doses produced an effect when injected in the contralateral paw. The GABA(C) receptor antagonist (1,2,5,6 tetrahydropyridin-4-yl) methylphosphinic acid (TPMPA; 5, 10 and 20 microg/paw) antagonized, in a dose-dependent manner, the peripheral antinociception induced by CACA (100 microg), suggesting a specific effect. This effect was reversed by the chloride channel coupled receptor blocker picrotoxin (0.8 microg/paw). Glibenclamide (160 microg) and tolbutamide (320 microg), blockers of ATP-sensitive potassium channels, charybdotoxin (2 microg), a large-conductance potassium channel blocker, dequalinium (50 microg), a small-conductance potassium channel blocker, and cesium (500 microg), a non-specific potassium channel blocker did not modify the peripheral antinociception induced by CACA. This study provides evidence that activation of GABA(C) receptors in the periphery induces antinociception, that this effect results from the activation of chloride channel coupled GABA(C) receptors and that potassium channels appear not to be involved.  相似文献   

12.
Ortiz MI 《Life sciences》2012,90(1-2):8-12
AimsRecent evidence has shown that systemic administration of sulfonylureas and biguanides block the diclofenac-induced antinociception, but not the effect produced by indomethacin. However, there are no reports about the peripheral interaction between analgesics and the biguanides metformin and phenformin. Therefore, this work was undertaken to determine whether glibenclamide and glipizide and the biguanides metformin and phenformin have any effect on the peripheral antinociception induced by diclofenac and indomethacin.Main methodsDiclofenac and indomethacin were administered locally in the formalin-injured rat paw, and the antinociceptive effect was evaluated using the 1% formalin test. To determine whether peripheral antinociception induced by diclofenac or indomethacin was mediated by either the ATP-sensitive K+ channels or biguanides-induced mechanisms, the effect of pretreatment with the appropriates vehicles or glibenclamide, glipizide, metformin and phenformin on the antinociceptive effect induced by local peripheral diclofenac and indomethacin was assessed.Key findingsLocal peripheral injections of diclofenac (50–200 μg/paw) and indomethacin (200–800 μg/paw) produced a dose-dependent antinociception during the second phase of the test. Local pretreatment with glibenclamide, glipizide, metformin and phenformin blocked the diclofenac-induced antinociception. On the other hand, the pretreatment with glibenclamide and glipizide did not prevent the local antinociception produced by indomethacin. Nonetheless, metformin and phenformin reversed the local antinociception induced by indomethacin.SignificanceData suggest that diclofenac could activate the K+ channels and biguanides-dependent mechanisms to produce its peripheral antinociceptive effects in the formalin test. Likewise, a biguanides-dependent mechanism could be activated by indomethacin consecutively to generate its peripheral antinociceptive effect.  相似文献   

13.

Background

In addition to their central effects, opioids cause peripheral analgesia. There is evidence showing that peripheral activation of kappa opioid receptors (KORs) inhibits inflammatory pain. Moreover, peripheral ??-opioid receptor (MOR) activation are able to direct block PGE2-induced ongoing hyperalgesia However, this effect was not tested for KOR selective activation. In the present study, the effect of the peripheral activation of KORs on PGE2-induced ongoing hyperalgesia was investigated. The mechanisms involved were also evaluated.

Results

Local (paw) administration of U50488 (a selective KOR agonist) directly blocked, PGE2-induced mechanical hyperalgesia in both rats and mice. This effect was reversed by treating animals with L-NMMA or N-propyl-L-arginine (a selective inhibitor of neuronal nitric oxide synthase, nNOS), suggesting involvement of the nNOS/NO pathway. U50488 peripheral effect was also dependent on stimulation of PI3K??/AKT because inhibitors of these kinases also reduced peripheral antinociception induced by U50488. Furthermore, U50488 lost its peripheral analgesic effect in PI3K?? null mice. Observations made in vivo were confirmed after incubation of dorsal root ganglion cultured neurons with U50488 produced an increase in the activation of AKT as evaluated by western blot analyses of its phosphorylated form. Finally, immunofluorescence of DRG neurons revealed that KOR-expressing neurons also express PI3K?? (? 43%).

Conclusions

The present study indicates that activation of peripheral KORs directly blocks inflammatory hyperalgesia through stimulation of the nNOS/NO signaling pathway which is probably stimulated by PI3K??/AKT signaling. This study extends a previously study of our group suggesting that PI3K??/AKT/nNOS/NO is an important analgesic pathway in primary nociceptive neurons.  相似文献   

14.
Ochi T  Motoyama Y  Goto T 《Life sciences》2000,66(23):2239-2245
We investigated the antinociceptive effect of a novel anti-inflammatory and analgesic drug, 3-(difluoromethyl)-1-(4-methoxyphenyl)-5-[4-(methylsulfinyl)phenyl]pyraz ole (FR140423), in the tail-pinch test in mice, and evaluated the mechanism of action of FR140423 using L-leucyl-L-arginine (Leu-Arg), a kyotorphin (endogenous Met-enkephalin releaser) receptor antagonist, L-NG-nitroarginine methylester (L-NAME), an inhibitor of nitric oxide (NO) synthase, and methylene blue (MB), an inhibitor of activation of guanylate cyclase. Oral administration of FR140423, at doses of 5-80 mg/kg, produced a dose-dependent antinociceptive effect with an ED50 value of 18 mg/kg. This antinociception was reversed by intrathecal (i.t.) (10 microg/mouse), but not by intracerebroventricular (i.c.v.) (100 microg/mouse), injection of Leu-Arg. Moreover, the antinociceptive effect of i.t. injection of FR140423 with an ED50 value of 3.7 microg/mouse was completely antagonized by co-administered Leu-Arg 10 microg/mouse. However, L-NAME (2000 mg/kg s.c.) and MB (200 mg/kg s.c.) did not antagonize the antinociception of FR140423. These findings suggest that FR140423 plays a role in nociceptive modulation in the spinal cord, being antinociceptive via the kyotorphin-Met-enkephalin pathway but not via the peripheral NO-cyclic GMP pathway.  相似文献   

15.
AimsRecently, we demonstrated that peripheral antinociception induced by δ opioid receptor is dependent of Ca2 +-activated Cl? channels (CaCCs). Because opioid and cannabinoid receptors share some common mechanisms of action, our objective was to identify a possible relationship between CaCCs and the endocannabinoid system.Main methodsTo induce hyperalgesia, rat paws were treated with intraplantar prostaglandin E2 (PGE2, 2 μg). Nociceptive thresholds to pressure (grams) were measured using an algesimetric apparatus 3 h following injection. Probabilities were calculated using ANOVA/Bonferroni's test, and values that were less than 5% were considered to be statistically significant.Key findingsAdministration of the cannabinoid agonist CB1 anandamide (12.5, 25 and 50 μg/paw) and the cannabinoid agonist CB2 PEA (5, 10 and 20 μg/paw) decreased the PGE2-induced hyperalgesia in a dose-dependent manner. The possibility of the higher doses of anandamide (50 μg) and PEA (20 μg) having a central or systemic effect was excluded because the administration of the drug into the contralateral paw did not elicit antinociception in the right paw. As expected, the antinociceptive effects induced by anandamide and PEA were blocked by the CB1 and CB2 receptor antagonists AM251 and AM630, respectively. The peripheral antinociception was induced by anandamide but not PEA and was dose-dependently inhibited by the CaCC blocker niflumic acid (8, 16 and 32 μg).SignificanceThese results provide the first evidence for the involvement of CaCCs in the peripheral antinociception induced by activation of the CB1 cannabinoid receptor.  相似文献   

16.
The stimulation of peripheral opioid receptors counteracts thermal hyperalgesia produced by the intratibial inoculation of NCTC 2472 cells in mice, through the activation of the nitric oxide/cGMP/ATP-sensitive K+-channels (NO/cGMP/K+ ATP) cascade (Menéndez et al. 2007, Neuropharmacology 53:71–80). We aimed to elucidate whether this peripheral opioid antihyperalgesic effect is exclusive to this model or might also occur in other types of bone neoplastic processes. In C57BL/6 mice intratibially inoculated with B16-F10 melanoma cells, the progressive tumoral damage was accompanied by the establishment of thermal hyperalgesia (unilateral hot plate test) and mechanical allodynia (von Frey test). Intraplantar administration of loperamide (15 μg, 30 min before) inhibited thermal hyperalgesia, but did not modify the intense mechanical allodynia. The fact that the coadministration of naloxone-methiodide (5 μg) completely suppressed the thermal antihyperalgesic effect induced by loperamide indicates its production through the stimulation of peripheral opioid receptors. Furthermore, its prevention by the coadministration of the non-selective inhibitor of the NO synthase, NG-monomethyl-L-arginine (L-NMMA, 10 μg), the selective inhibitor of neural NOS, N-ω-propyl-L-arginine (1–10 μg), or the K+ ATP channel blocker, glibenclamide (10 μg) demonstrated the involvement of the NO/cGMP/K+ ATP pathway in the antihyperalgesic effect induced by loperamide. Overall, the present results show that the intratibial inoculation of B16-F10 cells to C57BL/6 mice evokes thermal hyperalgesia and mechanical allodynia and that, as occurred in the osteosarcoma model, the stimulation of peripheral opioid receptors is not effective in modifying neoplastic allodynia but completely inhibits thermal hyperalgesia through the activation of the NO/cGMP/K+ ATP cascade.  相似文献   

17.
There is convincing evidence that nitric oxide (NO), cGMP and cGMP-dependent protein kinase I (PKG-I) are involved in the development of hyperalgesia in response to noxious stimuli. However, downstream target proteins contributing to nociception have not been completely identified so far. Several reports indicate a role of the NO/cGMP/PKG cascade in the regulation of neurite outgrowth which is suggested to be involved in specific mechanisms of nociception. Since neurite outgrowth is strongly dependent on modulation of cytoskeleton proteins we were interested in the impact of PKG-I activation on the actin cytoskeleton and its role in inflammatory hyperalgesia. Therefore we investigated the actin-destabilising protein cofilin and its NO-dependent effects in vitro in primary neuronal cultures as well as in vivo in the zymosan-induced paw inflammation model in rats. In primary neurons from rats, treatment with the PKG-I activator 8-Br-cGMP induced a time-dependent phosphorylation of cofilin and significantly increased neurite outgrowth. Further functional analysis revealed that the underlying signal transduction pathways involve activation of the Rho-GTPases RhoA, Rac1 and Cdc42 and their corresponding downstream targets Rho-kinase (ROCK) and p21-activated kinase (PAK). In vivo, treatment of rats with the NO-synthase inhibitor l-NAME and the ROCK-inhibitor Y-27632, respectively, led to a significant decrease of cofilin phosphorylation in the spinal cord and resulted in antinociceptive effects in a model of inflammatory hyperalgesia. Our results suggest that cofilin represents a downstream target of NO/cGMP/PKG signal transduction in neurons thus indicating that it is involved in NO-mediated nociception.  相似文献   

18.
The leaf essential oil from Croton sonderianus (EOCS) was evaluated for antinociceptive activity in mice using chemical and thermal models of nociception. Given orally, the essential oil at doses of 50, 100 and 200 mg/kg produced significant inhibitions on chemical nociception induced by intraperitoneal acetic acid and subplantar formalin or capsaicin injections. However, it evidenced no efficacy against thermal nociception in hot-plate test. More prominent inhibition of acetic acid-induced writhing and capsaicin-induced hind-paw licking responses was observed at 100 and 200 mg/kg of EOCS. At similar doses, the paw licking behavior in formalin test was more potently suppressed during the late phase (20-25 min, inflammatory) than in early phase (0-5 min, neurogenic). The EOCS-induced antinociception in both capsaicin and formalin tests was insensitive to naloxone (1 mg/kg, s.c.), but was significantly antagonized by glibenclamide (2 mg/kg, i.p.). In mice, the essential oil (100 and 200 mg/kg) neither significantly enhanced the pentobarbital-sleeping time nor impaired the motor performance in rota-rod test, indicating that the observed antinociception is unlikely due to sedation or motor abnormality. These results suggest that EOCS produces antinociception possibly involving glibenclamide-sensitive KATP+ channels, which merit further studies on its efficacy in more specific models of hyperalgesia and neuropathic pain.  相似文献   

19.
The peripheral antinociceptive effect of the selective COX-2 inhibitor celecoxib in the formalin-induced inflammatory pain was compared with that of resveratrol (COX-1 inhibitor) and diclofenac (non-selective COX inhibitor). Rats received local pretreatment with saline, celecoxib, diclofenac or resveratrol followed by 50 microl of either 1% or 5% formalin. Peripheral administration of celecoxib did not produce antinociception at either formalin concentration. In contrast, diclofenac and resveratrol produced a dose-dependent antinociceptive effect in the second phase of both 1% and 5% formalin test. The peripheral antinociception produced by diclofenac or resveratrol was due to a local action, as drug administration in the contralateral paw was ineffective. Results indicate that the selective COX-2 inhibitor celecoxib does not produce peripheral antinociception in formalin-induced inflammatory pain. In contrast, selective COX-1 and non-selective COX inhibitors (resveratrol and diclofenac, respectively) are effective drugs in this model of pain.  相似文献   

20.
The L-arginine/nitric oxide (NO)/cyclic guanosine monophosphate (cGMP) pathway is known to be involved in central and peripheral nociceptive processes. This study evaluated the rhythmic pattern of the L-arginine/NO/cGMP pathway using the mouse visceral pain model. Experiments were performed at six different times (1, 5, 9, 13, 17, and 21 h after light on) per day in male mice synchronized to a 12 h:12 h light-dark cycle. Animals were injected s.c. with saline, 2 mg/kg L-arginine (a NO precursor), 75 mg/kg L-N(G)-nitroarginine methyl ester (L-NAME, a NOS inhibitor), 40 mg/kg methylene blue (a soluble guanylyl cyclase and/or NOS inhibitor), or 0.1 mg/kg sodium nitroprusside (a nonenzymatic NO donor) 15 min before counting 2.5 mg/kg (i.p.) p-benzoquinone (PBQ)-induced abdominal constrictions for 15 min. Blood samples were collected after the test, and the nitrite concentration was determined in serum samples. L-arginine or L-NAME caused both antinociception and nociception, depending on the circadian time of their injection. The analgesic effect of methylene blue or sodium nitroprusside exhibited significant biological time-dependent differences in PBQ-induced abdominal constrictions. Serum nitrite levels also displayed a significant 24 h variation in mice injected with PBQ, L-NAME, methylene blue, or sodium nitroprusside, but not saline or L-arginine. These results suggest that components of L-arginine/NO/cGMP pathway exhibit biological time-dependent effects on visceral nociceptive process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号