首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Dubinský P., Rybo? M. and Tur?eková ?. 1985. Enzymes regulating glucosamine 6-phosphate synthesis in the zygote of Ascaris suum. International Journal for Parasitology15: 415–419. Formation of glucosamine 6-phosphate, a basic intermediate product of chitin synthesis in the zygote of Ascaris suum is catalyzed by glutamine-fructose-6-phosphate aminotransferase (EC 2.6.1.16). The highest activity of the enzyme was observed immediately after fertilization of mature oocytes. High enzyme activity also found in unfertilized oocytes indicates that formation of glucosamine 6-phosphate is catalyzed by enzymes that were present in the oocytes prior to their fertilization. In the Ascaris suum zygote, in contrast to the situation in other organisms, glucosaminephosphate isomerase (EC 5.3.1.10) plays no part in glucosamine 6-phosphate synthesis. The paper discusses possible participation of glucosaminephosphate isomerase in the resynthesis of fructose 6-phosphate from the surplus glucosamine 6-phosphate not utilized for chitin synthesis, and accordingly its involvement in the metabolism of the zygote.  相似文献   

2.
3.
Glucosamine-6-phosphate N-acetyltransferase (GNA1) catalyses the N-acetylation of d-glucosamine-6-phosphate (GlcN-6P), using acetyl-CoA as an acetyl donor. The product GlcNAc-6P is an intermediate in the biosynthesis UDP-GlcNAc. GNA1 is part of the GCN5-related acetyl transferase family (GNATs), which employ a wide range of acceptor substrates. GNA1 has been genetically validated as an antifungal drug target. Detailed knowledge of the Michaelis complex and trajectory towards the transition state would facilitate rational design of inhibitors of GNA1 and other GNAT enzymes. Using the pseudo-substrate glucose-6-phosphate (Glc-6P) as a probe with GNA1 crystals, we have trapped the first GNAT (pseudo-)Michaelis complex, providing direct evidence for the nucleophilic attack of the substrate amine, and giving insight into the protonation of the thiolate leaving group.  相似文献   

4.
Wang J  Liu X  Liang YH  Li LF  Su XD 《FEBS letters》2008,582(20):2973-2978
Glucosamine-6-phosphate (GlcN6P) N-acetyltransferase 1 (GNA1) is a key enzyme in the pathway toward biosynthesis of UDP-N-acetylglucosamine, an important donor substrate for N-linked glycosylation. GNA1 catalyzes the formation of N-acetylglucosamine-6-phosphate (GlcNAc6P) from acetyl-CoA (AcCoA) and the acceptor substrate GlcN6P. Here, we report crystal structures of human GNA1, including apo GNA1, the GNA1-GlcN6P complex and an E156A mutant. Our work showed that GlcN6P binds to GNA1 without the help of AcCoA binding. Structural analyses and mutagenesis studies have shed lights on the charge distribution in the GlcN6P binding pocket, and an important role for Glu156 in the substrate binding. Hence, these findings have broadened our knowledge of structural features required for the substrate affinity of GNA1. STRUCTURED SUMMARY:  相似文献   

5.
6.
1. Growth of Escherichia coli on glucosamine results in an induction of glucosamine 6-phosphate deaminase [2-amino-2-deoxy-d-glucose 6-phosphate ketol-isomerase (deaminating), EC 5.3.1.10] and a repression of glucosamine 6-phosphate synthetase (l-glutamine-d-fructose 6-phosphate aminotransferase, EC 2.6.1.16); glucose abolishes these control effects. 2. Growth of E. coli on N-acetylglucosamine results in an induction of N-acetylglucosamine 6-phosphate deacetylase and glucosamine 6-phosphate deaminase, and in a repression of glucosamine 6-phosphate synthetase; glucose diminishes these control effects. 3. The synthesis of amino sugar kinases (EC 2.7.1.8 and 2.7.1.9) is unaffected by growth on amino sugars. 4. Glucosamine 6-phosphate synthetase is inhibited by glucosamine 6-phosphate. 5. Mutants of E. coli that are unable to grow on N-acetylglucosamine have been isolated, and lack either N-acetylglucosamine 6-phosphate deacetylase (deacetylaseless) or glucosamine 6-phosphate deaminase (deaminaseless). Deacetylaseless mutants can grow on glucosamine but deaminaseless mutants cannot. 6. After growth on glucose, deacetylaseless mutants have a repressed glucosamine 6-phosphate synthetase and a super-induced glucosamine 6-phosphate deaminase; this may be related to an intracellular accumulation of acetylamino sugar that also occurs under these conditions. In one mutant the acetylamino sugar was shown to be partly as N-acetylglucosamine 6-phosphate. Deaminaseless mutants have no abnormal control effects after growth on glucose. 7. Addition of N-acetylglucosamine or glucosamine to cultures of a deaminaseless mutant caused inhibition of growth. Addition of N-acetylglucosamine to cultures of a deacetylaseless mutant caused lysis, and secondary mutants were isolated that did not lyse; most of these secondary mutants had lost glucosamine 6-phosphate deaminase and an uptake mechanism for N-acetylglucosamine. 8. Similar amounts of (14)C were incorporated from [1-(14)C]-glucosamine by cells of mutants and wild-type growing on broth. Cells of wild-type and a deaminaseless mutant incorporated (14)C from N-acetyl[1-(14)C]glucosamine more efficiently than from N[1-(14)C]-acetylglucosamine, incorporation from the latter being further decreased by acetate; cells of a deacetylaseless mutant showed a poor incorporation of both types of labelled N-acetylglucosamine.  相似文献   

7.
8.
Chu SH  Noh HN  Kim S  Kim KH  Hong SW  Lee H 《Plant molecular biology》2010,74(4-5):493-502
In animals, high glucose exerts some of its deleterious effects by activation of the hexosamine biosynthesis pathway (HBP), a branch of the glycolytic pathway that produces amino sugars (Daniels et al. in Mol Endocrinol 7:1041-1048, 1993; Du et al. in Proc Natl Acad Sci USA 97:12222-12226, 2000). Glucosamine (GlcN) is a naturally occurring amino sugar produced by amidation of fructose-6-phosphate. Previously, we observed that glucosamine (GlcN) inhibits hypocotyl elongation in Arabidopsis thaliana by a process involving the significant increase of reactive oxygen species. The present study investigated the relationship between GlcN-induced ROS generation and abiotic stress responses in Arabidopsis by generating two types of transgenic plant. Scavenging of endogenous GlcN by ectopic expression of E. coli glucosamine-6-phosphate deaminase (NagB) was observed to confer enhanced tolerance to oxidative, drought, and cold stress. Consistent with this result, overproduction of GlcN by the ectopic expression of E. coli glucosamine-6-phosphate synthase (GlmS) induced cell death at an early stage. Taken together, these data suggest that genetic manipulation of endogenous GlcN level can effectively lead to the generation of abiotic stress-tolerant transgenic crop plants.  相似文献   

9.
To study the role of LecRK (lectin-like receptor kinase) genes in the legumerhizobia symbiosis, we have characterized the four Medicago truncatula Gaernt. LecRK genes that are most highly expressed in roots. Three of these genes, MtLecRK7;1, MtLecRK7;2, and MtLecRK7;3, encode proteins most closely related to the Class A LecRKs of Arabidopsis, whereas the protein encoded by the fourth gene, MtLecRK1;1, is most similar to a Class B Arabidopsis LecRK. All four genes show a strongly enhanced root expression, and detailed studies on MtLecRK1;1 and MtLecRK7;2 revealed that the levels of their mRNAs are increased by nitrogen starvation and transiently repressed after either rhizobial inoculation or addition of lipochitooligosaccharidic Nod factors. Studies of the MtLecRK1;1 and MtLecRK7;2 proteins, using green fluorescent protein fusions in transgenic M. truncatula roots, revealed that they are located in the plasma membrane and that their central transmembrane-spanning helix is required for correct sorting. Moreover, their lectin-like domains appear to be highly glycosylated. Of the four proteins, only MtLecRK1;1 shows a high conservation of key residues implicated in monosaccharide binding, and molecular modeling revealed that this protein may be capable of interacting with Nod factors. However, no increase in Nod factor binding was found in roots overexpressing a fusion in which the kinase domain of this protein had been replaced with green fluorescent protein. Roots expressing this fusion protein however showed an increase in nodule number, suggesting that expression of MtLecRK1;1 influences nodulation. The potential role of LecRKs in the legume-rhizobia symbiosis is discussed.  相似文献   

10.
11.
Analysis of the Arabidopsis genome revealed the complete set of plastidic phosphate translocator (pPT) genes. The Arabidopsis genome contains 16 pPT genes: single copies of genes coding for the triose phosphate/phosphate translocator and the xylulose phosphate/phosphate translocator, and two genes coding for each the phosphoenolpyruvate/phosphate translocator and the glucose-6-phosphate/phosphate translocator. A relatively high number of truncated phosphoenolpyruvate/phosphate translocator genes (six) and glucose-6-phosphate/phosphate translocator genes (four) could be detected with almost conserved intron/exon structures as compared with the functional genes. In addition, a variety of PT-homologous (PTh) genes could be identified in Arabidopsis and other organisms. They all belong to the drug/metabolite transporter superfamily showing significant similarities to nucleotide sugar transporters (NSTs). The pPT, PTh, and NST proteins all possess six to eight transmembrane helices. According to the analysis of conserved motifs in these proteins, the PTh proteins can be divided into (a) the lysine (Lys)/arginine group comprising only non-plant proteins, (b) the Lys-valine/alanine/glycine group of Arabidopsis proteins, (c) the Lys/asparagine group of Arabidopsis proteins, and (d) the Lys/threonine group of plant and non-plant proteins. None of these proteins have been characterized so far. The analysis of the putative substrate-binding sites of the pPT, PTh, and NST proteins led to the suggestion that all these proteins share common substrate-binding sites on either side of the membrane each of which contain a conserved Lys residue.  相似文献   

12.
Phosphomannomutase (PMM) catalyzes the interconversion of mannose-6-phosphate and mannose-1-phosphate. However, systematic molecular and functional investigations on PMM from higher plants have hitherto not been reported. In this work, PMM cDNAs were isolated from Arabidopsis, Nicotiana benthamiana, soybean, tomato, rice and wheat. Amino acid sequence comparisons indicated that plant PMM proteins exhibited significant identity to their fungal and mammalian orthologs. In line with the similarity in primary structure, plant PMM complemented the sec53-6 temperature sensitive mutant of Saccharomyces cerevisiae. Histidine-tagged Arabidopsis PMM (AtPMM) purified from Escherichia coli converted mannose-1-phosphate into mannose-6-phosphate and glucose-1-phosphate into glucose-6-phosphate, with the former reaction being more efficient than the latter one. In Arabidopsis and N. benthamiana, PMM was constitutively expressed in both vegetative and reproductive organs. Reducing the PMM expression level through virus-induced gene silencing caused a substantial decrease in ascorbic acid (AsA) content in N. benthamiana leaves. Conversely, raising the PMM expression level in N. benthamiana using viral-vector-mediated ectopic expression led to a 20-50% increase in AsA content. Consistent with this finding, transgenic expression of an AtPMM-GFP fusion protein in Arabidopsis also increased AsA content by 25-33%. Collectively, this study improves our understanding on the molecular and functional properties of plant PMM and provides genetic evidence on the involvement of PMM in the biosynthesis of AsA in Arabidopsis and N. benthamiana plants.  相似文献   

13.
14.
Hydrogen peroxide (H2O2) is now recognised as a key signalling molecule in eukaryotes. In plants, H2O2 is involved in regulating stomatal closure, gravitropic responses, gene expression and programmed cell death. Although several kinases, such as oxidative signal-inducible 1 (OXI1) kinase and mitogen-activated protein kinases are known to be activated by exogenous H2O2, little is known about the proteins that directly react with H2O2. Here, we utilised a proteomic approach, using iodoacetamide-based fluorescence tagging of proteins in conjunction with mass spectrometric analysis, to identify several proteins that might be potential targets of H2O2 in the cytosolic fraction of Arabidopsis thaliana, the most prominent of which was cytosolic glyceraldehyde 3-phosphate dehydrogenase (cGAPDH; EC 1.2.1.12). cGAPDH from Arabidopsis is inactivated by H2O2 in vitro, and this inhibition is reversible by the subsequent addition of reductants such as reduced glutathione (GSH). It has been suggested recently that Arabidopsis GAPDH has roles outside of its catalysis as part of glycolysis, while in other systems this includes that of mediating reactive oxygen species (ROS) signalling. Here, we suggest that cGAPDH in Arabidopsis might also have such a role in mediating ROS signalling in plants.  相似文献   

15.
An assay for glucosamine-6-phosphate synthase using a yeast glucosamine-6-phosphate N-acetyltransferase 1 (GNA1) as coupling enzyme was developed. GNA1 transfers the acetyl moiety from acetyl-coenzyme A (CoA) to glucosamine-6-phosphate, releasing coenzyme A. The assay measures the production of glucosamine-6-phosphate by either following the consumption of acetyl-CoA spectrophotometrically at 230nm or quantifying the free thiol with 5,5'-dithio-bis(2-nitrobenzoic acid) (Ellman's reagent) in a discontinuous manner. This method is simple to perform and can be adapted to a 96-well microtiter plate format, which will facilitate high-throughput inhibitor screening and mechanistic studies using purified GlmS.  相似文献   

16.
The tetrameric form of human erythrocyte glucose 6-phosphate dehydrogenase (G6PD) was investigated in respect to interaction of coenzyme at its ron-structural sites. 1:N6-ethenoadenine dinucleotide phosphate (ε-NADP), although displaying a lower catalytic efficiency compared to NADP, showed identical binding patterns, i.e. four moles per tetramer with a Kdiss of 1.0 μM. Furthermore, spectrofluorometric titrations with NADPH in the absence and in presence of varying NADP concentrations revealed a typically competitive mechanism of binding of NADP (four moles) and NADP (two moles) at the non-structural sites of the tetramer.  相似文献   

17.
Glucosamine and glucosamine sulphate have been promoted as a disease-modifying agent to improve the clinical symptoms of osteoarthritis. The precise mechanism of the action of the suggested positive effect of glucosamine or glucosamine sulphate on cartilage proteoglycans is not known, since the level of glucosamine in plasma remains very low after oral administration of glucosamine sulphate. We examined whether exogenous hexosamines or their sulphated forms would increase steady-state levels of aggrecan and hyaluronan synthase (HAS) or glycosaminoglycan synthesis using Northern blot and 35S-sulphate incorporation analyses. Total RNA was extracted from bovine primary chondrocytes which were cultured either in 1 mM concentration of glucosamine, galactosamine, mannosamine, glucosamine 3-sulphate, glucosamine 6-sulphate or galactosamine 6-sulphate for 0, 4, 8 and 24 h, or in three different concentrations (control, 100 μM and 1 mM) of glucosamine sulphate salt or glucose for 24 or 72 h. Northern blot assay showed that neither hexosamines nor glucosamine sulphate salt stimulated aggrecan and HAS-2 mRNA expression. Glycosaminoglycan synthesis remained at a control level in the treated cultures, with the exception of mannosamine which inhibited 35S-sulphate incorporation in low-glucose DMEM treatment. In our culture conditions, hexosamines or their sulphated forms did not increase aggrecan expression or 35S-sulphate incorporation.  相似文献   

18.
19.
雪花莲凝集素基因(gna)的改造及其抗蚜性   总被引:21,自引:1,他引:21  
用定点突变方法对编码雪花莲凝集素(Galanthus nivalis agglutinin,GNA)前体蛋白的DNA序列进行了改造和转基因烟草9Nicotana tabacum L.)抗蚜性的研究。结果表明,将GNA编码序列中含有的稀有密码子改造后,GNA的表达水平从占总可溶性蛋白的0.17%增加到0.25%,转基因烟草的抗蚜性也随之增强,从平均抑制桃蚜(Myzus per-sicae(Sulzer))虫口密度63.7%显地提高到71.0%。  相似文献   

20.
Hu Y  Xing J  Chen L  Guo X  Du Y  Zhao C  Zhu Y  Lin M  Zhou Z  Sha J 《Biology of reproduction》2008,79(6):1021-1029
The heterotrimeric G-protein pathway controls numerous cellular processes, including proliferation, differentiation, migration, membrane trafficking, and embryonic development. Regulator of G-protein signaling (RGS) proteins are known to function at the G-protein level. Here, the functional role of a novel RGS protein, regulator of G-protein signaling 22 (RGS22), in the testis was investigated at the mRNA and protein levels. Our results demonstrate that RGS22 is a testis-specific gene. However, significantly decreased expression of RGS22 was found in the testes of patients with azoospermia. RGS22 was translated or posttranslationally modified into multiple proteins of different molecular sizes in prokaryocytes as well as in the testes. Its protein (NP_056483) was localized in spermatogenic cells and Leydig cells and could interact with guanine nucleotide binding protein, alpha 12, 13, and 11 (GNA12, GNA13, and GNA11). Fragmental GFP-fusion protein tracking revealed that the N-terminal of RGS22 was localized in the nucleus. RGS22 and GNA13 were localized in the nucleus from the elongated spermatid stage onward. Indirect immunofluorescence studies revealed defective expression of GNA13 in macrocephalic and global nucleus spermatozoa. These findings suggest that their functions in this subcellular compartment are likely related to the postmeiotic developmental phase, spermiogenesis. RGS22 may also play a role in GNA13 translocation from the cytoplasm to the nucleus during spermiogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号