首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As a fitness trait, survival is assumed to exhibit low heritability due to strong selection eroding genetic variation and/or spatio-temporal variation in mortality agents reducing genetic and increasing residual variation. The latter phenomenon in particular may contribute to low heritability in multigeneration data, even if certain cohorts exhibit significant genetic variation. Analysis of survival data from 10 year classes of rainbow trout reared at three test stations showed that treating survival as a single trait across all generations resulted in low heritability (h(2) = 0.08-0.17). However, when heritabilities were estimated from homogeneous generation and test station-specific cohorts, a wide range of heritability values was revealed (h(2) = 0.04-0.71). Of 64 genetic correlations between different cohorts, 20 were positive, but 16 were significantly negative, confirming that genetic architecture of survival is not stable across generations and environments. These results reveal the existence of hidden genetic variation for survival and demonstrate that treating survival as one trait over several generations may not reveal its true genetic architecture. Negative genetic correlations between cohorts indicate that overall survival has limited potential to predict general resistance, and care should be taken when using it as selection criterion.  相似文献   

2.
To portray aspen clonal and spatial genetic structures, we mapped and genotyped trees in two 1-ha plots, each containing three aspen cohorts originating from fire or subsequent secondary disturbances. We used four microsatellite loci to identify aspen clones and increment core analysis to determine tree age. Clonal dimensions were measured by the maximum distance between two ramets and the number of ramets per genet. Standard normal deviate (SND) was used to assess the spatial distribution of aspen genets and cohorts, and multivariate spatial genetic autocorrelations to assess the spatial distribution of aspen genetic variation. Most aspen genets consisted of only one ramet (> 75%). Median clonal dimensions were 19 and 29 m (maxima: 104 and 72 m in the two plots). No segregation was observed between clones. Aspen cohorts were spatially segregated but trees were spatially aggregated within old and medium-aged cohorts. In contrast, trees were more randomly distributed within the youngest cohorts. This coincided with a spatial genetic autocorrelation at small scales (up to 30 m) in the older cohorts and a more random genetic distribution in the youngest ones. Our results suggest that aspen spatial genetic structuring reflects the spatial patterns produced by the regeneration of discrete cohorts at different stages of succession. Vegetative reproduction leads to aspen genetic spatial structuring at small scales (few metres) until midsuccession. However, as the stand gets older, the spatial distribution of aspen trees and genetic structure evolve from a structured pattern to a more random one under a gap disturbances regime.  相似文献   

3.
State MW 《Neuron》2010,68(2):254-269
Investigations into the genetics of child psychiatric disorders have finally begun to shed light on molecular and cellular mechanisms of psychopathology. The first strains of success in this notoriously difficult area of inquiry are the result of an increasingly sophisticated appreciation of the allelic architecture of common neuropsychiatric and neurodevelopmental disorders, the consolidation of large patient cohorts now beginning to reach sufficient size to power reliable studies, the emergence of genomic tools enabling comprehensive investigations of rare as well as common genetic variation, and advances in developmental neuroscience that are fueling the rapid translation of genetic findings.  相似文献   

4.
In vitro whole-genome analysis identifies a susceptibility locus for HIV-1   总被引:2,自引:1,他引:1  
Advances in large-scale analysis of human genomic variability provide unprecedented opportunities to study the genetic basis of susceptibility to infectious agents. We report here the use of an in vitro system for the identification of a locus on HSA8q24.3 associated with cellular susceptibility to HIV-1. This locus was mapped through quantitative linkage analysis using cell lines from multigeneration families, validated in vitro, and followed up by two independent association studies in HIV-positive individuals. Single nucleotide polymorphism rs2572886, which is associated with cellular susceptibility to HIV-1 in lymphoblastoid B cells and in primary T cells, was also associated with accelerated disease progression in one of two cohorts of HIV-1–infected patients. Biological analysis suggests a role of the rs2572886 region in the regulation of the LY6 family of glycosyl-phosphatidyl-inositol (GPI)–anchored proteins. Genetic analysis of in vitro cellular phenotypes provides an attractive approach for the discovery of susceptibility loci to infectious agents.  相似文献   

5.
Population subdivision into behaviorally cohesive kin groups influences rates of inbreeding and genetic drift and has important implications for the evolution of social behavior. Here we report the results of a study designed to test the hypothesis that harem social structure promotes inbreeding and genetic subdivision in a population with overlapping generations. Genetic consequences of harem social structure were investigated in a natural population of a highly polygynous fruit bat, Cynopterus sphinx (Chiroptera: Pteropodidae), in western India. The partitioning of genetic variance within and among breeding groups was assessed using 10-locus microsatellite genotypes for 431 individually marked bats. Genetic analysis of the C. sphinx study population was integrated with field data on demography and social structure to determine the specific ways in which mating, dispersal, and new social group formation influenced population genetic structure. Microsatellite data revealed striking contrasts in genetic structure between consecutive offspring cohorts and between generations. Relative to the 1998 (dry-season) offspring cohort, the 1997 (wet-season) cohort was characterized by a more extensive degree of within-group heterozygote excess (F(IS) = -0.164 vs. -0.050), a greater degree of among-group subdivision (F(ST) = 0.123 vs. 0.008), and higher average within-group relatedness (r = 0.251 vs. 0.017). Differences in genetic structure between the two offspring cohorts were attributable to seasonal differences in the number and proportional representation of male parents. Relative to adult age-classes, offspring cohorts were characterized by more extensive departures from allelic and genotypic equilibria and a greater degree of genetic subdivision. Generational differences in F-statistics indicated that genetic structuring of offspring cohorts was randomized by natal dispersal prior to recruitment into the breeding population. Low relatedness among harem females (r = 0.002-0.005) was primarily attributable to high rates of natal dispersal and low rates of juvenile survivorship. Kin selection is therefore an unlikely explanation for the formation and maintenance of behaviorally cohesive breeding groups in this highly social mammal.  相似文献   

6.
The failure of researchers to replicate genetic-association findings is most commonly attributed to insufficient statistical power, population stratification, or various forms of between-study heterogeneity or environmental influences.(1) Here, we illustrate another potential cause for nonreplications that has so far not received much attention in the literature. We illustrate that the strength of a genetic effect can vary by age, causing "age-varying associations." If not taken into account during the design and the analysis of a study, age-varying genetic associations can cause nonreplication. By using the 100K SNP scan of the Framingham Heart Study, we identified an age-varying association between a SNP in ROBO1 and obesity and hypothesized an age-gene interaction. This finding was followed up in eight independent samples comprising 13,584 individuals. The association was replicated in five of the eight studies, showing an age-dependent relationship (one-sided combined p = 3.92 x 10(-9), combined p value from pediatric cohorts = 2.21 x 10(-8), combined p value from adult cohorts = 0.00422). Furthermore, this study illustrates that it is difficult for cross-sectional study designs to detect age-varying associations. If the specifics of age- or time-varying genetic effects are not considered in the selection of both the follow-up samples and in the statistical analysis, important genetic associations may be missed.  相似文献   

7.
Kankare M  Várkonyi G  Saccheri I 《Hereditas》2002,136(2):169-176
Several species in the noctuid genus Xestia exhibit periodic dynamics, with two coexisting cohorts flying in alternate years. The population dynamics and two-year life cycle of Xestia moths suggest that the two cohorts are more or less isolated in time. Typically one cohort is abundant and the other one is rare. Knowledge of the extent of isolation between the two cohorts is important to fully understand the population dynamics and the evolution of alternate-year flight in these species. We applied allozyme electrophoresis and mitochondrial genome sequencing to infer the extent of genetic differentiation among different cohorts of Xestia tecta (Hübner) within the same geographical area as well as between cohorts with opposite-phase flight pattern in different geographical regions. We found no evidence for substantial genetic differentiation and isolation between the even- and odd-year cohorts in eastern Lapland, nor between the cohorts in eastern and western Lapland. The most informative markers were the most polymorphic allozyme loci (Pgm and Mpi) and the AT-rich region in the mtDNA. However, owing to the generally low levels of genetic variation it was not possible to establish conclusively the degree of genetic isolation between the different cohorts. We discuss the implications of our results in relation to two different hypotheses which could account for this pattern: ongoing gene flow between different cohorts and recent common ancestry.  相似文献   

8.
1. Genetic techniques are being used increasingly to address questions about dispersal and gene flow of freshwater invertebrates. However, population genetic structure can be affected by factors other than dispersal. Many stream insects have long life cycles that result in the simultaneous existence of multiple cohorts throughout the larval development period. If larval development is fixed, successive cohorts may be reproductively isolated and, as a result, genetically distinct. In such cases, significant levels of genetic differentiation between cohorts could confound estimates of dispersal based on population genetic structure.
2.  Peltoperla tarteri is a stonefly that can be abundant in Appalachian headwater streams. Although P. tarteri is univoltine at the type locality (Big Paint Hollow, WV, U.S.A.), the study populations in southwestern Virginia, U.S.A., were semivoltine. This semivoltine life cycle results in the simultaneous existence of multiple cohorts with the potential for significant genetic differentiation among them.
3. Levels of genetic differentiation among P. tarteri cohorts were analysed with mitochondrial DNA (mtDNA) sequence data from the non-coding origin of replication or `control' region from 93 individuals from two successive cohorts (collected in 1998 and 1999).
4. Analysis of molecular variance ( AMOVA ) indicated no genetic differentiation among cohorts ( F ST=0.0), and gene flow among cohorts was very high ( Nm =∞).
5. High levels of gene flow among cohorts suggest that larval development of P. tarteri is not fixed. Gene flow among cohorts most likely occurs as a result of a cohort split in which some individuals complete development in one or three years instead of two.  相似文献   

9.
Reduction of telomere length has been postulated to be a causal factor in cellular aging. Human telomeres terminate in tandemly arranged repeat arrays consisting of the (TTAGGG) motif. The length of these arrays in cells from human mitotic tissues is inversely related to the age of the donor, indicating telomere reduction with age. In addition to telomere length differences between different age cohorts, considerable variation is present among individuals of the same age. To investigate whether this variation can be ascribed to genetic influences, we have measured the size of terminal restriction fragments (TRFs) in HaeIII-digested genomic DNA from 123 human MZ and DZ twin pairs 2-95 years of age. The average rate of telomere shortening was 31 bp/year, which is similar to that observed by others. Statistical analysis in 115 pairs 2-63 years of age indicates a 78% heritability for mean TRF length in this age cohort. The individual differences in mean TRF length in blood, therefore, seem to a large extent to be genetically determined.  相似文献   

10.
The biennial plant Gentianella bohemica is a subendemic of the Bohemian Massif, where it occurs in seminatural grasslands. It has become rare in recent decades as a result of profound changes in land use. Using amplified fragment length polymorphisms (AFLP) fingerprint data, we investigated the genetic structure within and among populations of G. bohemica in Bavaria, the Czech Republic, and the Austrian border region. The aim of our study was (1) to analyze the genetic structure among populations and to discuss these findings in the context of present and historical patterns of connectivity and isolation of populations, (2) to analyze genetic structure among consecutive generations (cohorts of two consecutive years), and (3) to investigate relationships between intrapopulational diversity and effective population size (N(e)) as well as plant traits. (1) The German populations were strongly isolated from each other (pairwise F(ST)= 0.29-0.60) and from all other populations (F(ST)= 0.24-0.49). We found a pattern of near panmixis among the latter (F(ST)= 0.15-0.35) with geographical distance explaining only 8% of the genetic variance. These results were congruent with a principal coordinate analysis (PCoA) and analysis using STRUCTURE to identify genetically coherent groups. These findings are in line with the strong physical barrier and historical constraints, resulting in separation of the German populations from the others. (2) We found pronounced genetic differences between consecutive cohorts of the German populations (pairwise F(ST)= 0.23 and 0.31), which can be explained by local population history (land use, disturbance). (3) Genetic diversity within populations (Shannon index, H(Sh)) was significantly correlated with N(e) (R(S)= 0.733) and reflected a loss of diversity due to several demographic bottlenecks. Overall, we found that the genetic structure in G. bohemica is strongly influenced by historical periods of high connectivity and isolation as well as by marked demographic fluctuations in declining populations.  相似文献   

11.
Visualizing the pattern of variation using microsatellites within a Eucalyptus globulus forest on the island of Tasmania provided surprising insights into the complex nature of the fine-scale spatial genetic structure that resides in these forests. We used spatial autocorrelation and principal coordinate analysis to compare fine-scale genetic structure between juvenile and mature cohorts in a study area, 140 m in diameter, located within a typical, continuous E. globulus forest. In total, 115 juvenile and 168 mature individuals were genotyped with eight highly polymorphic microsatellite loci. There was no significant difference in the level of genetic diversity between cohorts. However, there were differences in the spatial distribution of the genetic variation. Autocorrelation analysis provided clear evidence for significant spatial genetic structure in the mature cohort and significant, but weaker, structure in the juvenile cohort. The spatial interpolation of principal coordinate axes, derived from ordination of the genetic distance matrix between individuals, revealed a spatially coherent family group which was evident in both cohorts. Direct comparison of the genetic structure within each cohort allowed visualization of a shift in the spatial distribution of genetic variation within the population of approximately 10 m. As the shift coincided with the direction of prevailing winds, it is hypothesized that this phenomenon is due to downwind dispersal of seeds and is indicative of the important role of prevailing winds in forcing eastward gene flow in these high-latitude forests.  相似文献   

12.
A complex genetic examination of children which belong to two cohorts and their parents were carried out. The first cohort included children and constantly living on territories contaminated with radionuclides (Novozybkov district, Bryansk region). They were subdivided in groups according to the ontogenetic age periods of development of their parents at the time of the Chernobyl accident. In the children born in 1986-1995 the level of aberrant genomes is significantly higher as compared to the control (p < 0.001). In children born in 1998-2002 the differences are insignificant (p > 0.05). The frequency of aberrant genomes had a tendency to decrease with the period of time between the birth date of a child and the moment of the accident. Analysis of the results of cytogenetic investigation for the same living on territories with different densities of radioactive contamination (zone I-- 627-688 kBq/m2, 137Cs and zone II-- 135-402 kBq/m2, 137Cs) revealed insignificant differences in the spectrum and average frequencies of chromosome aberrations. The second cohort included children born in 1987-1991 and 1993-2002 from irradiated fathers (Chernobyl clean-up workers) and unirradiated mothers living on territories without radionuclide contamination. These children also displayed increased frequencies of aberrant genomes as compared to the control (p < 0.001). The analysis of the dynamics years of birth of cytogenetic disturbances in the same cohorts of children showed the average frequencies of aberrant genomes remain higher than the control level. In most of the children of both cohorts the repair synthesis of genome DNA by gamma- and UV-radiation is reduced as compared to one in the children from the control group.  相似文献   

13.
In animal models, single-gene mutations in genes involved in insulin/IGF and target of rapamycin signalling pathways extend lifespan to a considerable extent. The genetic, genomic and epigenetic influences on human longevity are expected to be much more complex. Strikingly however, beneficial metabolic and cellular features of long-lived families resemble those in animals for whom the lifespan is extended by applying genetic manipulation and, especially, dietary restriction. Candidate gene studies in humans support the notion that human orthologues from longevity genes identified in lower species do contribute to longevity but that the influence of the genetic variants involved is small. Here we discuss how an integration of novel study designs, labour-intensive biobanking, deep phenotyping and genomic research may provide insights into the mechanisms that drive human longevity and healthy ageing, beyond the associations usually provided by molecular and genetic epidemiology. Although prospective studies of humans from the cradle to the grave have never been performed, it is feasible to extract life histories from different cohorts jointly covering the molecular changes that occur with age from early development all the way up to the age at death. By the integration of research in different study cohorts, and with research in animal models, biological research into human longevity is thus making considerable progress.  相似文献   

14.
Temporal changes at 17 allozyme loci in the Diplodus sargus population of Banyuls sur Mer (Mediterranean Sea, France) were monitored within a single population among ten year‐classes (cohorts) sampled over a 6‐month period. The genetic survey was combined with evaluation of the demographic structure of the population by determining variation of abundance between cohorts. The population showed variation in abundance among cohorts ranging from 16 to 214 individuals. Significant divergences in genetic structure were observed between cohorts (P < 0.0001) despite very low values of FST (multilocus FST over all cohorts = 0.0018). The heterozygosity of each cohort, as well as the FIS values, was significantly correlated with the abundance of each cohort, with abundant cohorts showing lower heterozygosity and a significant deficit of heterozygotes (positive FIS values). Finally, multilocus temporal genetic variance (Fk) computed between successive cohorts was higher in low abundance cohorts. Change of heterozygosity between cohorts, distribution of year‐class genetic structure, and change in the genetic structure within a cohort appear to be affected mostly by the abundance of the cohort and are therefore driven by genetic drift. We propose that the Diplodus sargus cohorts are built up from the mixing of families during the pelagic stage or later during recruitment, and that the decrease in heterozygosity leading to a deficit of heterozygotes is characteristic of a Wahlund effect. Such a Wahlund effect would derive from the mixing of the progeny of families made up of few individuals, but exhibiting high fecundity and high variability of reproductive success. Therefore, although cohorts derived from poor recruitment would only group a few families and would exhibit limited deficit of heterozygotes (higher heterozygosity values), they would lead to high genetic drift and appear more divergent (higher mean temporal genetic variance) than cohorts with high abundance. While not demonstrating directly the family structure of marine populations, our survey provides evidence of highly structured populations. © 2002 The Linnean Society of London, Biological Journal of the Linnean Society, 2002, 76 , 9–20.  相似文献   

15.
Natural variation in DNA sequence contributes to individual differences in quantitative traits. While multiple studies have shown genetic control over gene expression variation, few additional cellular traits have been investigated. Here, we investigated the natural variation of NADPH oxidase-dependent hydrogen peroxide (H2O2 release), which is the joint effect of reactive oxygen species (ROS) production, superoxide metabolism and degradation, and is related to a number of human disorders. We assessed the normal variation of H2O2 release in lymphoblastoid cell lines (LCL) in a family-based 3-generation cohort (CEPH-HapMap), and in 3 population-based cohorts (KORA, GenCord, HapMap). Substantial individual variation was observed, 45% of which were associated with heritability in the CEPH-HapMap cohort. We identified 2 genome-wide significant loci of Hsa12 and Hsa15 in genome-wide linkage analysis. Next, we performed genome-wide association study (GWAS) for the combined KORA-GenCord cohorts (n = 279) using enhanced marker resolution by imputation (>1.4 million SNPs). We found 5 significant associations (p<5.00×10−8) and 54 suggestive associations (p<1.00×10−5), one of which confirmed the linked region on Hsa15. To replicate our findings, we performed GWAS using 58 HapMap individuals and ∼2.1 million SNPs. We identified 40 genome-wide significant and 302 suggestive SNPs, and confirmed genome signals on Hsa1, Hsa12, and Hsa15. Genetic loci within 900 kb from the known candidate gene p67phox on Hsa1 were identified in GWAS in both cohorts. We did not find replication of SNPs across all cohorts, but replication within the same genomic region. Finally, a highly significant decrease in H2O2 release was observed in Down Syndrome (DS) individuals (p<2.88×10−12). Taken together, our results show strong evidence of genetic control of H2O2 in LCL of healthy and DS cohorts and suggest that cellular phenotypes, which themselves are also complex, may be used as proxies for dissection of complex disorders.  相似文献   

16.
Previous twin studies have indicated that approximately 25% of the variation in life span can be attributed to genetic factors and recent studies have also suggested a moderate clustering of extreme longevity within families. Here we discuss various definitions of extreme longevity and some analytical approaches with special attention to the challenges due to censored data. Lexis diagrams are provided for the Danish, Dutch, Finnish, Italian, Norwegian, and Swedish Twin registries hereby outlining possibilities for longevity studies within GenomEUtwin. We extend previous analyses of lifespan for the Danish 1870-1900 twin cohorts to include the new 1901-1910 cohorts, which are consistent with the previous findings. The size of the twin cohorts in GenomEUtwin and the existence of population-based, nationwide health and death registers make epidemiological studies of longevity very powerful. The combined GenomEUtwin sample will also allow detailed age-specific heritability analyses of lifespan. Finally, it will provide a resource for identifying unusual sibships (i.e., dizygotic twin pairs) where both survived to extreme ages, as a basis for discovering genetic variants of importance for extreme survival.  相似文献   

17.
Behaviors related to fertility constitute primary candidates for investigating the relevance of evolutionary influences and biological dispositions on contemporary human behaviors. Using female Danish twin cohorts born 1870-1968, we document important transformations in the relative contributions of "nurture" and "nature" to within-cohort variations in early and complete fertility, and we point toward a systematic relation between the socioeconomic context of cohorts and the relevance of genetic and shared environmental factors. This transformation is most striking for early fertility where genetic factors strengthen over time and are consistent with up to 50 percent of the variation in early fertility in most recent cohorts. Understanding this emerging relevance of genetic factors is of central importance because early fertility constitutes an important determinant of complete fertility levels in low-fertility societies, and because teenage motherhood and early childbearing are often associated with negative life-cycle consequences. Moreover, our results emphasize the need for socially and contextually informed analyses of nature and nurture that allow both factors to influence human reproductive behavior over time.  相似文献   

18.
《PloS one》2009,4(5)
Using principal component (PC) analysis, we studied the genetic constitution of 3,112 individuals from Europe as portrayed by more than 270,000 single nucleotide polymorphisms (SNPs) genotyped with the Illumina Infinium platform. In cohorts where the sample size was >100, one hundred randomly chosen samples were used for analysis to minimize the sample size effect, resulting in a total of 1,564 samples. This analysis revealed that the genetic structure of the European population correlates closely with geography. The first two PCs highlight the genetic diversity corresponding to the northwest to southeast gradient and position the populations according to their approximate geographic origin. The resulting genetic map forms a triangular structure with a) Finland, b) the Baltic region, Poland and Western Russia, and c) Italy as its vertexes, and with d) Central- and Western Europe in its centre. Inter- and intra- population genetic differences were quantified by the inflation factor lambda (λ) (ranging from 1.00 to 4.21), fixation index (Fst) (ranging from 0.000 to 0.023), and by the number of markers exhibiting significant allele frequency differences in pair-wise population comparisons. The estimated lambda was used to assess the real diminishing impact to association statistics when two distinct populations are merged directly in an analysis. When the PC analysis was confined to the 1,019 Estonian individuals (0.1% of the Estonian population), a fine structure emerged that correlated with the geography of individual counties. With at least two cohorts available from several countries, genetic substructures were investigated in Czech, Finnish, German, Estonian and Italian populations. Together with previously published data, our results allow the creation of a comprehensive European genetic map that will greatly facilitate inter-population genetic studies including genome wide association studies (GWAS).  相似文献   

19.
Life history traits of highly vagile marine species, such as adult reproductive success and larval dispersal, are strongly determined by oceanographic and climatic forces. Nevertheless, marine organisms may show restricted dispersal in time and space. Patterns of isolation by distance (IBD) have been repeatedly observed in marine species. If spawning time is a function of geographical location, temporal and spatial isolation, can easily be confounded or misinterpreted. In this study, we aimed at discriminating between various forces shaping the genetic composition of recruiting juveniles of the European eel (Anguilla anguilla L.). By controlling for geographical variation, we assessed temporal variation and tested for possible isolation by time (IBT) between recruitment waves within and between years. Using 12 polymorphic allozyme and six variable microsatellite loci, we show that genetic differentiation was low (F(ST) = 0.01-0.002) and significant between temporal samples. Regression analysis between genetic and temporal distance, was consistent with a subtle interannual pattern of IBT. Our data suggest that the population dynamics of the European eel may be governed by a double pattern of temporal variance in genetic composition: (i) a broad-scale IBT of spawning cohorts, possibly as a consequence of the large migration loop in anguillids and strong variance in annual adult reproductive contribution; and (ii) a smaller-scale variance in reproductive success (genetic patchiness) within cohorts among seasonally separated spawning groups, most likely originating from fluctuating oceanic and climatic forces. The consistency of both mechanisms remains to be verified with fine-scale analyses of both spawning/migrating aged adults and their offspring to confirm the stochastic/deterministic nature of the IBT pattern in eel.  相似文献   

20.
Temporal variability was studied in the common sea urchin Paracentrotus lividus through the analysis of the genetic composition of three yearly cohorts sampled over two consecutive springs in a locality in northwestern Mediterranean. Individuals were aged using growth ring patterns observed in tests and samples were genotyped for five microsatellite loci. No reduction of genetic diversity was observed relative to a sample of the adult population from the same location or within cohorts across years. F ST and amova results indicated that the differentiation between cohorts is rather shallow and not significant, as most variability is found within cohorts and within individuals. This mild differentiation translated into estimates of effective population size of 90–100 individuals. When the observed excess of homozygotes was taken into account, the estimate of the average number of breeders increased to c . 300 individuals. Given our restricted sampling area and the known small-scale heterogeneity in recruitment in this species, our results suggest that at stretches of a few kilometres of shoreline, large numbers of progenitors are likely to contribute to the larval pool at each reproduction event. Intercohort variation in our samples is six times smaller than spatial variation between adults of four localities in the western Mediterranean. Our results indicate that, notwithstanding the stochastic events that take place during the long planktonic phase and during the settlement and recruitment processes, reproductive success in this species is high enough to produce cohorts genetically diverse and with little differentiation between them. Further research is needed before the link between genetic structure and underlying physical and biological processes can be well established.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号