首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Macroalgae have received much attention for heavy metal removal in treatment of domestic wastewater. In this report, the uptake capacity of a common freshwater green alga, Cladophora fracta, for heavy metal ions (copper, zinc, cadmium, and mercury) was evaluated. The equilibrium adsorption capacities were 2.388?mg Cu2+, 1.623?mg Zn2+, 0.240?mg Cd2+, and 0.228?mg Hg2+ per gram of living algae at 18°C and pH?5.0. The removal efficiency for Cu2+, Zn2+, Cd2+, and Hg2+ were 99, 85, 97, and 98%, respectively. Greater removal efficiency was achieved when the concentrations of metal ions were at very low level. The results indicated that living algae are suitable for removal and recovery of heavy metal ions from aqueous solutions and can be a potential tool to treat industrial wastewater.  相似文献   

2.
The recombination-activating protein, RAG1, a key component of the V(D)J recombinase, binds multiple Zn2+ ions in its catalytically required core region. However, the role of zinc in the DNA cleavage activity of RAG1 is not well resolved. To address this issue, we determined the stoichiometry of Zn2+ ions bound to the catalytically active core region of RAG1 under various conditions. Using metal quantitation methods, we determined that core RAG1 can bind up to four Zn2+ ions. Stripping the full complement of bound Zn2+ ions to produce apoprotein abrogated DNA cleavage activity. Moreover, even partial removal of zinc-binding equivalents resulted in a significant diminishment of DNA cleavage activity, as compared to holo-Zn2+ core RAG1. Mutants of the intact core RAG1 and the isolated core RAG1 domains were studied to identify the location of zinc-binding sites. Significantly, the C-terminal domain in core RAG1 binds at least two Zn2+ ions, with one zinc-binding site containing C902 and C907 as ligands (termed the CC zinc site) and H937 and H942 coordinating a Zn2+ ion in a separate site (HH zinc site). The latter zinc-binding site is essential for DNA cleavage activity, given that the H937A and H942A mutants were defective in both in vitro DNA cleavage assays and cellular recombination assays. Furthermore, as mutation of the active-site residue E962 reduces Zn2+ coordination, we propose that the HH zinc site is located in close proximity to the DDE active site. Overall, these results demonstrate that Zn2+ serves an important auxiliary role for RAG1 DNA cleavage activity. Furthermore, we propose that one of the zinc-binding sites is linked to the active site of core RAG1 directly or indirectly by E962.  相似文献   

3.
Effect of extraneous zinc on calf intestinal alkaline phosphatase   总被引:1,自引:0,他引:1  
The effect of extraneous zinc on calf intestinal alkaline phosphatase was studied for quick reversible binding and slow irreversible binding of zinc ions at various concentrations. Under the conditions of slow binding of zinc to CIP increasing Zn2+ (less than 1.0 mM, nM/nE 1.0 × 106) inhibited enzymatic activity, and further increasing Zn2+ resulted in an increase of activity. For quick reversible binding of Zn2+, the effect on CIP activity changed at lower concentrations of substrate, indicating a complex cooperativity between Zn2+ and pNPP. Both protein intrinsic emission fluorescence and ANS-bound protein fluorescence, as well as circular dichroism spectra have shown that the binding of zinc ions changed the enzyme conformation, which was the reason for the changes in enzyme activity induced by extraneous zinc.  相似文献   

4.
Nucleotide pyrophosphatase from yeast was inhibited by thiols, o-phenanthroline, 8-hydroxyquinoline, EDTA, and 8-hydroxyquinoline-5-sulfonic acid. The inhibition by chelating agents was time and concentration dependent. Inhibition by EDTA was decreased by complexing the EDTA with metal ions before addition to the enzyme. The effectiveness of the metal ions in preventing inhibition by EDTA paralleled the stability constants of the EDTA-metal complexes. Partial recovery of EDTA-inhibited enzyme activity was achieved with Zn2+, Co2+, Fe2+, and Mn2+. Analyses for zinc in the purified enzyme by atomic absorption spectroscopy and by titration with 8-hydroxyquinoline-5-sulfonic acid revealed the presence of approximately 1 g atom/mol of enzyme (Mr 65,000). The data indicate that yeast nucleotide pyrophosphatase is a metalloenzyme in which the zinc plays some role in activity.  相似文献   

5.
The effect of shock-loading of zinc, copper and cadmium ions on the removal of total organic carbon (TOC) and phosphate in an anaerobic-aerobic activated sludge process was investigated. TOC removal was not sensitive to shock-loading of Zn2+ and Cd2+ ions, and complete removal was achieved even at 20 mg Zn2+/l and 20 mg Cd2+/l. However, with over 1 mg Cu2+/1 TOC removal efficiency decreased. PO inf4 sup3- removal, in contrast, was extremely sensitive to these metal ions, with the threshold being 1 mg Zn2+/l and 1 mg Cd2+/l. Higher concentrations adversely affected PO inf4 sup3- removal. Copper again proved detrimental; no PO inf4 sup3- removal was achieved even at 1 mg Cu/l. These results highlight the sensitivity of the removal efficiencies of TOC and PO inf4 sup3- to shock loadings of these heavy metals.Y.P. Ting is with the Department of Chemical Engineering, National University of Singapore, Kent Ridge, 0511, Singapore; H. Imai and S. Kinoshita are with the Department of Chemical Process Engineering, Hokkaido University, Sapporo 060, Japan.  相似文献   

6.
Prokaryotic enzymes formamidopyrimidine-DNA glycosylase (Fpg) and endonuclease VIII (Nei) and their eukaryotic homologs NEIL1, NEIL2, and NEIL3 define the Fpg family of DNA glycosylases, which initiate the process of repair of oxidized DNA bases. The repair of oxidative DNA lesions is known to be impaired in vivo in the presence of ions of some heavy metals. We have studied the effect of salts of several alkaline earth and transition metals on the activity of Fpg-family DNA glycosylases in the reaction of excision of 5,6-dihydrouracil, a typical DNA oxidation product. The reaction catalyzed by NEIL1 was characterized by values K m = 150 nM and k cat = 1.2 min−1, which were in the range of these constants for excision of other damaged bases by this enzyme. NEIL1 was inhibited by Al3+, Ni2+, Co2+, Cd2+, Cu2+, Zn2+, and Fe2+ in Tris-HCl buffer and by Cd2+, Zn2+, Cu2+, and Fe2+ in potassium phosphate buffer. Fpg and Nei, the prokaryotic homologs of NEIL1, were inhibited by the same metal ions as NEIL1. The values of I50 for NEIL1 inhibition were 7 μM for Cd2+, 16 μM for Zn2+, and 400 μM for Cu2+. The inhibition of NEIL1 by Cd2+, Zn2+, and Cu2+ was at least partly due to the formation of metal-DNA complexes. In the case of Cd2+ and Cu2+, which preferentially bind to DNA bases rather than phosphates, the presence of metal ions caused the enzyme to lose the ability for preferential binding to damaged DNA. Therefore, the inhibition of NEIL1 activity in removal of oxidative lesions by heavy metal ions may be a reason for their comutagenicity under oxidative stress.  相似文献   

7.
Transhydrogenase couples proton translocation across a bacterial or mitochondrial membrane to the redox reaction between NAD(H) and NADP(H). Purified intact transhydrogenase from Escherichia coli was prepared, and its His tag removed. The forward and reverse transhydrogenation reactions catalysed by the enzyme were inhibited by certain metal ions but a “cyclic reaction” was stimulated. Of metal ions tested they were effective in the order Pb2+ > Cu2+ > Zn2+ = Cd2+ > Ni2+ > Co2+. The results suggest that the metal ions affect transhydrogenase by binding to a site in the proton-transfer pathway. Attenuated total-reflectance Fourier-transform infrared difference spectroscopy indicated the involvement of His and Asp/Glu residues in the Zn2+-binding site(s). A mutant in which βHis91 in the membrane-spanning domain of transhydrogenase was replaced by Lys had enzyme activities resembling those of wild-type enzyme treated with Zn2+. Effects of the metal ion on the mutant were much diminished but still evident. Signals in Zn2+-induced FTIR difference spectra of the βHis91Lys mutant were also attributable to changes in His and Asp/Glu residues but were much smaller than those in wild-type spectra. The results support the view that βHis91 and nearby Asp or Glu residues participate in the proton-transfer pathway of transhydrogenase.  相似文献   

8.
The relation between Zn2+ binding of E. coli alkaline phosphatase and enzymatic activity and anion binding (using 35Cl NMR) has been investigated. The results suggest the existence of two forms of the enzyme with different zinc binding properties. The anion binding associated with the enzyme's function appears to be an amino acid residue and not the Zn2+ ions; furthermore, there is a rapid internal motion at the anion binding site. 35Cl relaxation studies in the presence of Mg2+ ions point to a marked interdependence of Mg2+ and Zn2+ binding.  相似文献   

9.
Lee  Kun Jong  Kim  Mee Ree  Kim  Yun-Bae  Myung  Pyung-Keun  Sok  Dai-Eun 《Neurochemical research》1997,22(12):1471-1476
The effect of divalent metal ions on the activity of glycerophosphocholine cholinephosphodiesterse from ox brain was examined. Zn2+- and Co2+-glycerophosphocholine cholinephosphodiesterases were prepared from the exposure of apoenzyme to Zn2+ and Co2+, respectively, and the properties of two metallo-phosphodiesterases were compared to those of native phosphodiesterase. Although two metallo-enzymes were similar in expressing Km value, optimum pH or sensitivity to Cu2+, they differed in the susceptibility to the inhibition by thiocholine or tellurite; while Co2+-phosphodiesterase was more sensitive to tellurites, Zn2+-phosphodiesterase was more susceptible to inhibition by thiocholine. In addition, Zn2+-phosphodiesterase was more thermo-stable than Co2+ enzyme. Separately, when properties of native phosphodiesterase were compared to those of each metallo-phosphodiesterase, native phosphodiesterase was found to be quite similar to Zn2+-phosphodiesterase in many respects. Even in thermo-stability, native enzyme resembled Zn2+-phosphodiesterase rather than Co2+-enzyme. Consistent with this, the stability of native phosphodiesterase was maintained in the presence of Zn2+, but not Co2+. Mn2+ was also as effective as Zn2+ in the stabilization of the enzyme. Noteworthy, the native enzyme was found to be inhibited competitively by Cu2+ with a Ki value of 20 M, and its inhibitory action was antagonized effectively by Zn2+ or Co2+. Also, choline, another competitive inhibitor of the enzyme, appeared to antagonize the inhibitory action of Cu2+. Taken together, it is suggested that there may be multiple binding sites for divalent metal ions in the molecule of glycerophosphocholine cholinephosphodiesterase.  相似文献   

10.
Zinc is an essential trace element for human nutrition and is critical to the structure, stability, and function of many proteins. Zinc ions were shown to enhance activation of the intrinsic pathway of coagulation but down-regulate the extrinsic pathway of coagulation. The protein C pathway plays a key role in blood coagulation and inflammation. At present there is no information on whether zinc modulates the protein C pathway. In the present study we found that Zn2+ enhanced the binding of protein C/activated protein C (APC) to endothelial cell protein C receptor (EPCR) on endothelial cells. Binding kinetics revealed that Zn2+ increased the binding affinities of protein C/APC to EPCR. Equilibrium dialysis with 65Zn2+ revealed that Zn2+ bound to the Gla domain as well as sites outside of the Gla domain of protein C/APC. Intrinsic fluorescence measurements suggested that Zn2+ binding induces conformational changes in protein C/APC. Zn2+ binding to APC inhibited the amidolytic activity of APC, but the inhibition was reversed by Ca2+. Zn2+ increased the rate of APC generation on endothelial cells in the presence of physiological concentrations of Ca2+ but did not further enhance increased APC generation obtained in the presence of physiological concentrations of Mg2+ with Ca2+. Zn2+ had no effect on the anticoagulant activity of APC. Zn2+ enhanced APC-mediated activation of protease activated receptor 1 and p44/42 MAPK. Overall, our data show that Zn2+ binds to protein C/APC, which results in conformational changes in protein C/APC that favor their binding to EPCR.  相似文献   

11.
Adenylate kinases (AK) from Gram-negative bacteria are generally devoid of metal ions in their LID domain. However, three metal ions, zinc, cobalt, and iron, have been found in AK from Gram-negative bacteria. Crystal structures of substrate-free AK from Desulfovibrio gigas with three different metal ions (Zn2+, Zn-AK; Co2+, Co-AK; and Fe2+, Fe-AK) bound in its LID domain have been determined by X-ray crystallography to resolutions 1.8, 2.0, and 3.0 Å, respectively. The zinc and iron forms of the enzyme were crystallized in space group I222, whereas the cobalt-form crystals were C2. The presence of the metals was confirmed by calculation of anomalous difference maps and by X-ray fluorescence scans. The work presented here is the first report of a structure of a metal-containing AK from a Gram-negative bacterium. The native enzyme was crystallized, and only zinc was detected in the LID domain. Co-AK and Fe-AK were obtained by overexpressing the protein in Escherichia coli. Zn-AK and Fe-AK crystallized as monomers in the asymmetric unit, whereas Co-AK crystallized as a dimer. Nevertheless, all three crystal structures are very similar to each other, with the same LID domain topology, the only change being the presence of the different metal atoms. In the absence of any substrate, the LID domain of all holoforms of AK was present in a fully open conformational state. Normal mode analysis was performed to predict fluctuations of the LID domain along the catalytic pathway.  相似文献   

12.
Heavy metal pumps (P1B-ATPases) are important for cellular heavy metal homeostasis. AtHMA4, an Arabidopsis thaliana heavy metal pump of importance for plant Zn2+ nutrition, has an extended C-terminal domain containing 13 cysteine pairs and a terminal stretch of 11 histidines. Using a novel size-exclusion chromatography, inductively coupled plasma mass spectrometry approach we report that the C-terminal domain of AtHMA4 is a high affinity Zn2+ and Cd2+ chelator with capacity to bind 10 Zn2+ ions per C terminus. When AtHMA4 is expressed in a Zn2+-sensitive zrc1 cot1 yeast strain, sequential removal of the histidine stretch and the cysteine pairs confers a gradual increase in Zn2+ and Cd2+ tolerance and lowered Zn2+ and Cd2+ content of transformed yeast cells. We conclude that the C-terminal domain of AtHMA4 serves a dual role as Zn2+ and Cd2+ chelator (sensor) and as a regulator of the efficiency of Zn2+ and Cd2+ export. The identification of a post-translational handle on Zn2+ and Cd2+ transport efficiency opens new perspectives for regulation of Zn2+ nutrition and tolerance in eukaryotes.  相似文献   

13.
In contrast to the voltage-gated K+ channels, the voltage-gated proton channel Hv1 contains a voltage-sensor domain but lacks a pore domain. Here, we showed that Hv1 is expressed in the highly metastatic glioma cell SHG-44, but lowly in the poorly metastatic glioma cell U-251. Inhibition of Hv1 activity by 140 μM zinc chloride induces apoptosis in the human highly metastatic glioma cells. Zn2+ ions markedly inhibit proton secretion, and reduce the gelatinase activity in the highly metastatic glioma cells. In vivo, the glioma tumor sizes of the implantation of the SHG-44 xenografts in nude mice that were injected zinc chloride solution, were dramatically smaller than that in the controlled groups. The results demonstrated that the inhibition of Hv1 activity via Zn2+ ions can effectively retard the cancer growth and suppress the cancer metastasis by the decrease of proton extrusion and the down-regulation of gelatinase activity. Our results suggest that Zn2+ ions may be used as a potential anti-glioma drug for glioma therapy.  相似文献   

14.
Vesicular zinc transporters (ZnTs) play a critical role in regulating Zn2+ homeostasis in various cellular compartments and are linked to major diseases ranging from Alzheimer disease to diabetes. Despite their importance, the intracellular localization of ZnTs poses a major challenge for establishing the mechanisms by which they function and the identity of their ion binding sites. Here, we combine fluorescence-based functional analysis and structural modeling aimed at elucidating these functional aspects. Expression of ZnT5 was followed by both accelerated removal of Zn2+ from the cytoplasm and its increased vesicular sequestration. Further, activity of this zinc transport was coupled to alkalinization of the trans-Golgi network. Finally, structural modeling of ZnT5, based on the x-ray structure of the bacterial metal transporter YiiP, identified four residues that can potentially form the zinc binding site on ZnT5. Consistent with this model, replacement of these residues, Asp599 and His451, with alanine was sufficient to block Zn2+ transport. These findings indicate, for the first time, that Zn2+ transport mediated by a mammalian ZnT is catalyzed by H+/Zn2+ exchange and identify the zinc binding site of ZnT proteins essential for zinc transport.  相似文献   

15.
35Cl? quadrupole relaxation was measured in the presence of metal-free alkaline phosphatase and in the presence of Zn2+-alkaline phosphatase. The relaxation data show that for an enzyme containing the minimum amount of zinc needed for full activity—2 g atoms of zinc per mole of protein—there appears to be no binding of halide ions to the protein-bound zinc ions. In contrast, when there is a high metal-enzyme ratio, a large relaxation enhancement is observed, demonstrating coordination of halide ions to the metal ions.Addition of inorganic phosphate causes no change in the 35Cl? relaxation in the presence of metal-free enzyme. However, marked decreases in relaxation are observed upon addition of phosphate to the Zn2+-alkaline phosphatase. The relaxation measurements carried out in the presence of phosphate show that substrate binding does prove to be metal-ion dependent. Furthermore, experiments with inorganic phosphate suggest the tight binding of one phosphate to the alkaline phosphatase.  相似文献   

16.
Metal ion homeostasis is a critical function of many integral and peripheral membrane proteins. The genome of the etiologic agent of syphilis, Treponema pallidum, is compact and devoid of many metabolic enzyme genes. Nevertheless, it harbors genes coding for homologs of several enzymes that typically require either iron or zinc. The product of the tp0971 gene of T. pallidum, designated Tp34, is a periplasmic lipoprotein that is thought to be tethered to the inner membrane of this organism. Previous work on a water-soluble (nonacylated) recombinant version of Tp34 established that this protein binds to Zn2+, which, like other transition metal ions, stabilizes the dimeric form of the protein. In this study, we employed analytical ultracentrifugation to establish that four transition metal ions (Ni2+, Co2+, Cu2+, and Zn2+) readily induce the dimerization of Tp34; Cu2+ (50% effective concentration [EC50] = 1.7 μM) and Zn2+ (EC50 = 6.2 μM) were the most efficacious of these ions. Mutations of the crystallographically identified metal-binding residues hindered the ability of Tp34 to dimerize. X-ray crystallography performed on crystals of Tp34 that had been incubated with metal ions indicated that the binding site could accommodate the metals examined. The findings presented herein, coupled with bioinformatic analyses of related proteins, point to Tp34''s likely role in metal ion homeostasis in T. pallidum.  相似文献   

17.
Summary A d-hydantoinase was expressed in the soluble form by a recombinant E. coli strain, pE-HDT/E. coli BL21 in LB medium. The enzymatic activity of cultured cells reached 5.2–6.5 IU/ml culture at a cell turbidity of 10 at 600 nm. The expressed enzyme was efficiently purified by three steps, ammonium sulfate fractionation, Phenyl-Sepharose hydrophobic interaction chromatography and Sephacryl S-200 size-exclusion chromatography. With the above purification process, the enzyme was purified to more than 95% purity as estimated by SDS-PAGE. The overall recovery of enzymatic activity was 54.4% and the specific activity for substrate dl-hydantoin achieved 48 U/mg. The purified enzyme appeared as a dimer with a molecular mass of 103 kDa, as measured by size-exclusion chromatography. The enzyme was stable from pH 6 to 12 with an optimum pH at 9.5 The optimum temperature of the enzyme was 45 °C and it activity was rapidly lost over 55 °C. Divalent metal ions, including Co2+, Mn2+ and Ni 2+ ions obviously enhanced the enzymatic activity, while Zn2+ ion had a slight inhibitory effect. In addition, the dissociation of purified enzyme into its subunits occurred in the presence of 1 mM Zn2+ ion. The effect of different metal ions on the d-hydantoinase activation/attenuation was discussed.  相似文献   

18.
A reversible and easy assembled fluorescent sensor based on calix[4]arene and phenolphthalein (C4P) was developed for selective zinc ion (Zn2+) sensing in aqueous samples. The probe C4P demonstrated high selective and sensitive detection towards Zn2+ over other competitive metal ions. Interaction of Zn2+ with a solution of C4P resulted in a considerable increment in emission intensity at 440 nm (λex = 365 nm) due to the suppression of photoinduced electron transfer (PET) process and the restriction of C=N isomerization . The binding constant (Ka) of C4P with Zn2+ was calculated to be 4.50 × 1011 M?2 and also the limit of detection of C4P for Zn2+ was as low as 0.108 μM (at 10?7 M level). Moreover, the fluorescence imaging in the human colon cancer cells suggested that C4P had great potential to be used to examine Zn2+ in vivo.  相似文献   

19.
《Process Biochemistry》1999,34(1):77-85
Oscillatoria anguistissima showed a very high capacity for Zn2+ biosorption (641 mg g−1 dry biomass at a residual concentration of 129·2 ppm) from solution and was comparable to the commmercial ion-exchange resin IRA-400C. Zn2+ biosorption was rapid, pH dependent and temperature independent phenomenon. Zn2+ adsorption followed both Langmuir and Freundlich models. The specific uptake (mg g−1 dry biomass) of metal decreased with increase in biomass concentration. Pretreatment of biomass did not significantly affect the biosorption capacity of O. anguistissima. The biosorption of zinc by O. anguistissima was an ion-exchange phenomenon as a large concentration of magnesium ions were released during zinc adsorption. The zinc bound to the biomass could be effectively stripped using EDTA (10 mM) and the biomass was effectively used for multiple sorption–desorption cycles with in-between charging of the biomass with tap water washings. The native biomass could also efficiently remove zinc from effluents obtained from Indian mining industries.  相似文献   

20.
Yuan Li 《Experimental cell research》2009,315(14):2463-11343
Zinc is essential for cell proliferation, differentiation, and viability. When zinc becomes limited for cultured cells, DNA synthesis ceases and the cell cycle is arrested. The molecular mechanisms of actions of zinc are believed to involve changes in the availability of zinc(II) ions (Zn2+). By employing a fluorescent Zn2+ probe, FluoZin-3 acetoxymethyl ester, intracellular Zn2+ concentrations were measured in undifferentiated and in nerve growth factor (NGF)-differentiated rat pheochromocytoma (PC12) cells. Intracellular Zn2+ concentrations are pico- to nanomolar in PC12 cells and are higher in the differentiated than in the undifferentiated cells. When following cellular Zn2+ concentrations for 48 h after the removal of serum, a condition that is known to cause cell cycle arrest, Zn2+ concentrations decrease after 30 min but, remarkably, increase after 1 h, and then decrease again to about one half of the initial concentration. Cell proliferation, measured by an MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay, decreases after both serum starvation and zinc chelation. Two peaks of Zn2+ concentrations occur within one cell cycle: one early in the G1 phase and the other in the late G1/S phase. Thus, fluctuations of intracellular Zn2+ concentrations and established modulation of phosphorylation signaling, via an inhibition of protein tyrosine phosphatases at commensurately low Zn2+ concentrations, suggest a role for Zn2+ in the control of the cell cycle. Interventions targeted at these picomolar Zn2+ fluctuations may be a way of controlling cell growth in hyperplasia, neoplasia, and diseases associated with aberrant differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号