首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Primate cells evolved a plasma membrane to restrict the loss of important molecules. The osmotic problems that then arose were solved in one of several ways. Of major importance was the evolution of specific ion pumps, to actively extrude those salts whose inward diffusion would have led to swelling and lysis. In addition, these pumps allowed the cell to store energy in the form of ion gradients across the membrane. Thus, even in the earliest stages, the evolution of ion transport systems coincided with the development of mechanisms which catalyzes the energy transformations. It is postulated that an "ATP"-driven proton pump was one of the first ion transport systems. Such a proton pump would extrude hydrogen ions from the cell, establishing both a transmembrane pH gradient (alkaline inside) and a membrane potential (negative inside). This difference in electrochemical potential for protons (the proton-motive force) could then drive a variety of essential membrane functions, such as the active transport of ions and nutrients. A second major advance was the evolution of an ion transport system that converted light energy into a form which could be used by the cell. The modern model for this is the "purple membrane" of Halobacterium halobium, which catalyzes the extrusion of protons after the capture of light. The protonmotive force generated by such a light-driven proton pump could then power net synthesis of ATP by a reversal of the ATP-driven proton pump. A third important evolutionary step associated with ion transport was the development of a system to harness energy released by biological oxidations. Again, the solution of this problem was to conserve energy as a protonmotive force by coupling the activity of a respiratory chain to the extrusion of protons. Finally, with the development of animal cells a more careful regulation of internal and external pH was required. Thus, an ATP-driven Na+-K+ pump replaced the proton-translocating ATPase as the major ion pump found in plasma membranes.  相似文献   

2.
Proteorhodopsins (PRs) are retinal-binding photoproteins that mediate light-driven proton translocation across prokaryotic cell membranes. Despite their abundance, wide distribution and contribution to the bioenergy budget of the marine photic zone, an understanding of PR function and physiological significance in situ has been hampered as the vast majority of PRs studied to date are from unculturable bacteria or culturable species that lack the tools for genetic manipulation. In this study, we describe the presence and function of a horizontally acquired PR and retinal biosynthesis gene cluster in the culturable and genetically tractable bioluminescent marine bacterium Vibrio campbellii. Pigmentation analysis, absorption spectroscopy and photoinduction assays using a heterologous over-expression system established the V. campbellii PR as a functional green light absorbing proton pump. In situ analyses comparing PR expression and function in wild type (WT) V. campbellii with an isogenic ΔpR deletion mutant revealed a marked absence of PR membrane localization, pigmentation and light-induced proton pumping in the ΔpR mutant. Comparative photoinduction assays demonstrated the distinct upregulation of pR expression in the presence of light and PR-mediated photophosphorylation in WT cells that resulted in the enhancement of cellular survival during respiratory stress. In addition, we demonstrate that the master regulator of adaptive stress response and stationary phase, RpoS1, positively regulates pR expression and PR holoprotein pigmentation. Taken together, the results demonstrate facultative phototrophy in a classical marine organoheterotrophic Vibrio species and provide a salient example of how this organism has exploited lateral gene transfer to further its adaptation to the photic zone.  相似文献   

3.
Proteorhodopsin (PR) is a light-driven proton pump that has been found in a variety of marine bacteria. Recently, many PR-like genes were found in non-marine environments. The goal of this study is to explore the function of rhodopsins that exist only as partial proteo-opsin genes using chimeras with marine green PR (GPR). We isolated nine partial genes of PR homologues using polymerase chain reaction (PCR) and chose three homologues of GPR from the surface of the Ganges River, which has earned them the name “CFR, Chimeric Freshwater Rhodopsin.” In order to characterize the proteins, we constructed the cassette based on GPR sequence without helices C to F and inserted the isolated conserved partial sequences. When expressed in E. coli, we could observe light-driven proton pumping activity similar to proteorhodopsin, however, photocycle kinetics of CFRs are much slower than proteorhodopsin. Half-time decay of O intermediates of CFRs ranged between 143 and 333 ms at pH 10; their absorption maxima were between 515 and 522 nm at pH 7. We can guess that the function of native rhodopsin, a retinal protein of fresh water bacteria, may be a light-driven proton transport based on the results from chimeric freshwater rhodopsins. This approach will enable many labs that keep reporting partial PCR-based opsin sequences to finally characterize their proteins.  相似文献   

4.
质子泵型视紫红质是一种在自然界广泛存在的简单光合系统,它可以结合视黄醛,在光照下将质子由胞内泵向胞外,形成质子梯度势,在一定程度上促进ATP的合成。在非光合工程菌中引入视紫红质将光能转化为化学能有助于促进微生物生长、生产以及提高细胞耐受性。文中在大肠杆菌Escherichia coli中异源表达了来自Gloeobacter violaceus PCC 7421的质子泵型视紫红质Gloeorhodopsin(GR),并验证了它的功能活性。在大肠杆菌中表达时,GR可以正确行使光驱质子泵功能,最大吸收波长位于539 nm。GR分布在细胞膜表面,没有在胞内形成包涵体。在通过核糖体结合位点(Ribosome binding site,RBS)优化的手段提升GR的表达水平之后,观察到了胞内ATP水平的提高,证实在特定的条件下,GR可以为异源宿主带来额外的能量补充。  相似文献   

5.
Proteorhodopsins (PRs), the recently discovered light-driven proton pumps, play a major role in supplying energy for microbial organisms of oceans. In contrast to PR, rhodopsins found in Archaea and Eukarya are structurally well characterized. Using single-molecule microscopy and spectroscopy, we observed the oligomeric assembly of native PR molecules and detected their folding in the membrane. PR showed unfolding patterns identical with those of bacteriorhodopsin and halorhodopsin, indicating that PR folds similarly to archaeal rhodopsins. Surprisingly, PR predominantly assembles into hexameric oligomers, with a smaller fraction assembling into pentamers. Within these oligomers, PR arranged into radial assemblies. We suggest that this structural assembly of PR may have functional implications.  相似文献   

6.
7.
Photoelectric properties of bacteriorhodopsin incorporated into a bimolecular lipid membrane were investigated with special regard to the mechanism of photoelectric field generation. It was shown that besides its proton pump and electric generator functions bacteriorhodopsin works as a possible molecular regulator of the light-induced membrane potential. When a bimolecular lipid membrane containing bacteriorhodopsin is continuously illuminated in its main visible absorption band, and afterwards by superimposed blue light matching the absorption band of the long-living photobleached bacteriorhodopsin (M412) as well, the latter either enhances or decreases the steady-state photoresponse, depending upon the intensity of the green light. Thus, the additional blue-light illumination tends to cause the resultant photoelectric membrane potential to become stabilized. Two alternative schemes are tentatively proposed for the photochemical cycle of bacteriorhodopsin whereby blue light can control photovoltage generation. A kinetic model of the proton pump and the regulation of the photoelectric membrane potential is presented. This model fits all the experimental findings, even quantitatively. From the model some kinetic and physical parameters of this light-driven pump could be determined.  相似文献   

8.
P. Ormos  Zs. Dancsházy  B. Karvaly 《BBA》1978,503(2):304-315
Photoelectric properties of bacteriorhodopsin incorporated into a bimolecular lipid membrane were investigated with special regard to the mechanism of photoelectric field generation. It was shown that besides its proton pump and electric generator functions bacteriorhodopsin works as a possible molecular regulator of the light-induced membrane potential. When a bimolecular lipid membrane containing bacteriorhodopsin is continuously illuminated in its main visible absorption band, and afterwards by superimposed blue light matching the absorption band of the long-living photobleached bacteriorhodopsin (M412) as well, the latter either enhances or decreases the steady-state photoresponse, depending upon the intensity of the green light. Thus, the additional blue-light illumination tends to cause the resultant photoelectric membrane potential to become stabilized. Two alternative schemes are tentatively proposed for the photochemical cycle of bacteriorhodopsin whereby blue light can control photovoltage generation. A kinetic model of the proton pump and the regulation of the photoelectric membrane potential is presented. This model fits all the experimental findings, even quantitatively. From the model some kinetic and physical parameters of this light-driven pump could be determined.  相似文献   

9.
In Halobacterium halobium, proton pumping driven by light or by respiration generates an electrochemical potential difference across the membrane. Energy storage in this form is only transient. Cellular energy transducers competing with proton leaks stabilize this free energy as high energy phosphate bonds, electrochemical potential of other ions, and chemical potential of amino acids and possibly other chemical species. The pH changes induced by light or by respiration in cell suspensions are complicated by proton flows associated with the functioning of the cellular energy transducers. Dominant is the proton inflow coupled to the synthesis of ATP, which has been kinetically resolved. A proton-per-ATP ratio of about 3 is calculated from simultaneous measurements of photophosphorylation and the proton inflow. This value is compatible with the chemiosmotic coupling hypothesis. The time course of the light-induced changes in membrane potential indicates that light-driven pumping increases a dark preexisting potential of about 130 mV only by a small amount (20-30 mV). The complex kinetic features of the membrane potential changes do not closely follow those of the pH changes, indicating that flows of ions other than protons are involved. A qualitative model consistent with the available data is presented. A salient feature of this model is a sudden relaxation of the protonmotive force by a proton inflow through the ATPase when the preexisting protonmotive force is increased by light or respiration and reaches a critical value. The trigger could be either the proton-motive force, the pH gradient, or possibly the internal pH.  相似文献   

10.
Bacteriorhodopsin (bR), a membrane protein that can generate a light-driven proton pump, was successfully reconstituted into vesicles composed of an artificial cyclic lipid that mimics archaeal membrane lipids. Unlike reconstituted bR in 1,2-dimyristoyl-sn-glycero-3-phosphocholine vesicles, the net topology and structure of bR molecules in cyclic lipid vesicles are identical to those in the native purple membrane of Halobacterium salinarum.  相似文献   

11.
Microorganisms can use complex photosystems or light-dependent proton pumps to generate membrane potential and/or reduce electron carriers to support growth. The discovery that proteorhodopsin is a light-dependent proton pump that can be expressed readily in recombinant bacteria enables development of new strategies to probe microbial physiology and to engineer microbes with new light-driven properties. Here, we describe functional expression of proteorhodopsin and light-induced changes in membrane potential in the bacterium Shewanella oneidensis strain MR-1. We report that there were significant increases in electrical current generation during illumination of electrochemical chambers containing S. oneidensis expressing proteorhodopsin. We present evidence that an engineered strain is able to consume lactate at an increased rate when it is illuminated, which is consistent with the hypothesis that proteorhodopsin activity enhances lactate uptake by increasing the proton motive force. Our results demonstrate that there is coupling of a light-driven process to electricity generation in a nonphotosynthetic engineered bacterium. Expression of proteorhodopsin also preserved the viability of the bacterium under nutrient-limited conditions, providing evidence that fulfillment of basic energy needs of organisms may explain the widespread distribution of proteorhodopsin in marine environments.Classic experiments in microbial bioenergetics used light-driven reactions from halobacterial bacteriorhodopsin or the photosynthetic reaction center to provide a temporary driving force for understanding transport and chemiosmotic coupling (6, 7, 19, 35). However, light-driven reactions have not been used in metabolic engineering to alter microbial physiology and production of chemicals. The recent discovery of proteorhodopsin (PR) in ocean microorganisms and the ease with which this membrane protein can be functionally expressed by recombinant bacteria have made possible many engineering strategies previously not available (1, 16). In this paper, we describe progress toward the goal of integrating light-driven reactions with biocatalysis.In contrast to the situation for established industrial microorganisms, such as Escherichia coli, our current understanding of less-studied algal and phototrophic bacteria may limit metabolic engineering strategies which require genetic manipulation. Metabolic engineering strategies using photosynthetic bacteria have focused largely on methods to increase hydrogen production, and improvements rely mainly on engineering of nitrogenase and hydrogenase to produce H2. Algae appear to be suited to large-scale cultivation for lipid production, but so far little has been done to engineer these organisms (36). In principle, platform microbial hosts capable of producing a diverse range of products could be boosted by addition of light-driven processes from phototrophic metabolism.To demonstrate the feasibility of transferring a light-driven process into a nonphotosynthetic bacterium, we chose to study proteorhodopsin (PR) first because it is one of the simplest mechanisms for harnessing the energy from light. The proteorhodopsins are a group of transmembrane proteins that use the light-induced isomerization of retinal, the oxidative cleavage product of the carotenoid β-carotene, either to initiate signaling pathways or to catalyze the transfer of ions across cell membranes (8). PR was discovered by metagenomic analysis of marine samples (1) and is related to the well-studied bacteriorhodopsin of archaea (33) and rhodopsin (34), a eukaryotic light-sensing protein. The membrane potential generated by light-driven proton pumping by PR has been confirmed to drive ATP synthesis in a heterologous system (25). However, bacteria expressing heterologous PR were shown not to benefit from this pumping activity, as no significant increases in growth rates were observed (9). This led to the suggestion that PR may benefit the organism only under starvation conditions. In agreement with this hypothesis, Gomez-Consarnau et al. (10) have reported that the light-dependent growth rates of a marine flavobacterium that has a native PR are increased only when the organism is cultured under energy-limited conditions.Studies of both native and recombinant systems in which rhodopsins are expressed have generated light-dependent membrane potentials. In membrane vesicles isolated from a native host, the light-dependent membrane potential generated by bacteriorhodopsin provides the driving force for ATP synthesis (35) and uptake of leucine and glutamate (20, 22). More recently, studies of recombinant systems have coupled the membrane potential to other transport processes. In one example, the membrane potential-dependent export of specific toxic molecules increased when E. coli cells expressing both an archaeal rhodopsin and a specific efflux pump were exposed to light (17). In another experiment, starved E. coli cells expressing PR increased the swimming motion of their flagella when they were illuminated (44). Based upon measurements of flagellar motion as a function of light intensity and azide concentration, the proton motive force generated by PR was estimated to be −0.2 V, a value similar to the value for aerobic respiration in E. coli (42).As a nonphotosynthetic host for recombinant PR expression, we chose the dissimilatory metal-reducing bacterium Shewanella oneidensis strain MR-1, which is genetically tractable for engineering and is able to use a variety of terminal electron acceptors, including insoluble metal oxides (11, 30). Key to the ability of this bacterium to reduce metal oxides is a multicomponent extracellular respiratory pathway that transports electrons from menaquinol to cytochromes in the outer membrane. This pathway is composed of a cytoplasmic membrane tetraheme protein (CymA), a periplasmic decaheme protein (MtrA), an integral outer membrane protein (MtrB), and a decaheme lipoprotein (MtrC) that is associated with MtrB (14, 37, 40). The ability of S. oneidensis to reduce extracellular metal oxides has made it possible to harvest electrons from this organism by coupling it to an electrode which serves as the electron acceptor (21). The electron flow to the outer surface allows respiration rates to be measured directly by electrochemistry.In the current work, we introduced PR into an electricity-generating bacterium, S. oneidensis strain MR-1, and demonstrated that there was integration of a light-driven process into the metabolism of a previously nonphotosynthetic organism that resulted in a useful output. We show here that PR allows cells to survive for extended periods in stationary phase and that the presence of light results in an increase in electricity generation. A possible physiological model to explain these effects is discussed.  相似文献   

12.
Proteorhodopsin (PR), a light-driven proton pump from marine proteobacteria, exhibits photocycle characteristics similar to bacteriorhodopsin (BR) at neutral pH, including an M-like photointermediate. However, at acidic pH, spectroscopic evidence for an M-like species was absent, and the vectoriality of proton pumping was inverted. To gain further insight into this unusual property, we examined the voltage dependence of stationary and laser flash-induced photocurrents of PR under different pH conditions upon expression in Xenopus oocytes. The current-voltage curves were linear under all conditions tested, and photocurrent reversal potentials distinctly depended on the pH gradient. PR mutants D97N and D97T exhibited transient and stationary inward currents already at neutral pH, showing that neutralization of the proton acceptor abolishes forward pumping and permits only inward proton transport. Mutation E108G, which disrupts the donor site for Schiff base (SB) reprotonation, resulted in largely reduced photocurrents, which could be strongly stimulated by azide, similar to previous observations on BR mutant D96G. When PR and BR photocurrents in response to blue or green laser flashes during or after continuous illumination were compared, direct electrical evidence for the occurrence of an M-like intermediate at neutral pH could only be obtained when reprotonation of the SB was slowed down by PR mutation E108G. For PR at acidic pH, laser flashes only produced inwardly directed photocurrents, independent from background illumination, thus precluding electrical identification of an M-like species. However, when visible absorption spectroscopy was carried out at low temperatures, occurrence of an M-like species was robustly observed at low pH. This indicates that SB deprotonation and reprotonation occur during the PR photocycle also at low pH. Our results corroborate the conclusion that in PR, the direction of proton pumping can be switched by changes in pH and membrane potential, with the protonation state of Asp-97 being the key determinant for selecting between transport modes.  相似文献   

13.
14.
Abundant proteorhodopsin genes in the North Atlantic Ocean   总被引:5,自引:0,他引:5  
Proteorhodopsin (PR) is a light-driven proton pump that has been found in a variety of marine bacteria, including Pelagibacter ubique , a member of the ubiquitous SAR11 clade. The goals of this study were to explore the diversity of PR genes and to estimate their abundance in the North Atlantic Ocean using quantitative polymerase chain reaction (QPCR). We found that PR genes in the western portion of the Sargasso Sea could be grouped into 27 clusters, but five clades had the most sequences. Sets of specific QPCR primers were designed to examine the abundance of PR genes in the following four of the five clades: SAR11 ( P. ubique and other SAR11 Alphaproteobacteria ), BACRED17H8 ( Alphaproteobacteria ), HOT2C01 ( Alphaproteobacteria ) and an uncultured subgroup of the Flavobacteria . Two groups (SAR11 and HOT2C01) dominated PR gene abundance in oligotrophic waters, but were significantly less abundant in nutrient- and chlorophyll-rich waters. The other two groups (BACRED17H8 and Flavobacteria subgroup NASB) were less abundant in all waters. Together, these four PR gene types were found in 50% of all bacteria in the Sargasso Sea. We found a significant negative correlation between total PR gene abundance and nutrients and chlorophyll but no significant correlation with light intensity for three of the four PR types in the depth profiles north of the Sargasso Sea. Our data suggest that PR is common in the North Atlantic Ocean, especially in SAR11 bacteria and another marine alphaproteobacterial group (HOT2C01), and that these PR-bearing bacteria are most abundant in oligotrophic waters.  相似文献   

15.
Nicole Pfleger 《BBA》2009,1787(6):697-11946
Proteins of the proteorhodopsin (PR) family are found abundantly in many marine bacteria in the photic zone of the oceans. They are colour-tuned to their environment. The green absorbing species has been shown to act as a light-driven proton pump and thus could form a potential source of energy. The pKa of the primary proton acceptor is close to the pH of seawater which could also indicate a regulatory role. Here, we review and summarize our own recent findings in the context of known data and present some new results. Proton transfer in vitro by PR is shown by a fluorescence assay which confirms a pH dependent vectoriality. Previously reported low diffracting 2D crystal preparations of PR are assessed for their use for solid-state NMR by two dimensional 13C-13C DARR spectra. 15N-1H HETCOR MAS NMR experiments show bound water in the vicinity of the protonated Schiff base which could play a role in proton transfer. The effect of highly conserved H75 onto the properties of the chromophore has been investigated by single site mutations. They do show a pronounced effect onto the optical absorption maximum and the pKa of the proton acceptor but have only a small effect onto the 15N chemical shifts of the protonated Schiff base.  相似文献   

16.
We have measured the light-induced short-circuit current generated by a planar membrane containing bacteriorhodopsin incorporated by vesicle fusion. The experimental results are consistent with an equivalent electrical circuit analogue that assumes that the vesicles remain intact after fusion and that the current generator equivalent of the light-driven proton pump is linearly dependent on bias voltage. The transient response to light of the planar membrane has also been examined. Slow response times are seen to be associated with the capacitive charging and discharging of the fused vesicles. A study of the leading edge of the light response curve of the planar membrane yields information about the transient response of the light-driven proton pump. We propose that the translocation of protons across the membrane is associated with a first-order process characterized by a rate constant lambda.  相似文献   

17.
The light-driven proton pump bacteriorhodopsin (bR) undergoes a bleaching reaction with hydroxylamine in the dark, which is markedly catalyzed by light. The reaction involves cleavage of the (protonated) Schiff base bond, which links the retinyl chromophore to the protein. The catalytic light effect is currently attributed to the conformational changes associated with the photocycle of all-trans bR, which is responsible for its proton pump mechanism and is initiated by the all-trans --> 13-cis isomerization. This hypothesis is now being tested in a series of experiments, at various temperatures, using three artificial bR molecules in which the essential C13==C14 bond is locked by a rigid ring structure into an all-trans or 13-cis configuration. In all three cases we observe an enhancement of the reaction by light despite the fact that, because of locking of the C13==C14 bond, these molecules do not exhibit a photocycle, or any proton-pump activity. An analysis of the rate parameters excludes the possibility that the light-catalyzed reaction takes place during the approximately 20-ps excited state lifetimes of the locked pigments. It is concluded that the reaction is associated with a relatively long-lived (micros-ms) light-induced conformational change that is not reflected by changes in the optical spectrum of the retinyl chromophore. It is plausible that analogous changes (coupled to those of the photocycle) are also operative in the cases of native bR and visual pigments. These conclusions are discussed in view of the light-induced conformational changes recently detected in native and artificial bR with an atomic force sensor.  相似文献   

18.
P R Maycox  T Deckwerth    R Jahn 《The EMBO journal》1990,9(5):1465-1469
Active accumulation of neurotransmitters by synaptic vesicles is an essential component of the synaptic transmission cycle. Isolated vesicles show energy-dependent uptake of several transmitters by processes which are apparently mediated by a proton electrochemical potential across the vesicle membrane. Although this energy gradient is probably generated by a proton ATPase, the functional separation of ATP cleavage and transmitter uptake activity has only been shown clearly for monoamine transport. We report here that the light-driven proton pump, bacteriorhodopsin, can replace the endogenous proton ATPase in proteoliposomes reconstituted from vesicular detergent extracts. The system shows light-dependent uptake of glutamate with properties very similar to those observed in intact vesicles, e.g. chloride dependence or stimulation by NH4+. Our experiments show that the proton pump and the glutamate transporter are separate entities and provide a powerful tool for further characterization of the glutamate carrier.  相似文献   

19.
Among the major obstacles to pharmacological and structural studies of integral membrane proteins (MPs) are their natural scarcity and the difficulty in overproducing them in their native form. MPs can be overexpressed in the non-native state as inclusion bodies, but inducing them to achieve their functional three-dimensional structure has proven to be a major challenge. We describe here the use of an amphipathic polymer, amphipol A8-35, as a novel environment that allows both beta-barrel and alpha-helical MPs to fold to their native state, in the absence of detergents or lipids. Amphipols, which are extremely mild surfactants, appear to favor the formation of native intramolecular protein-protein interactions over intermolecular or protein-surfactant ones. The feasibility of the approach is demonstrated using as models OmpA and FomA, two outer membrane proteins from the eubacteria Escherichia coli and Fusobacterium nucleatum, respectively, and bacteriorhodopsin, a light-driven proton pump from the plasma membrane of the archaebacterium Halobacterium salinarium.  相似文献   

20.
One of the earliest signal transduction events that trigger the hypersensitive response (HR) of plants against pathogen attack is thought to be an alteration of proton flux across the plasma membrane (PM). However, no direct genetic evidence for the involvement of PM-localised proton channels or pumps in the induction of this response has been reported. We previously showed that expression of the bacterial proton pump bacterio-opsin (bO) in transgenic plants resulted in the spontaneous activation of the HR. Here we show that the bO protein is likely localised to the PM in transgenic tobacco plants. Furthermore, mutational analysis shows that induction of the HR by bO expression is dependent upon the capability of bO to translocate protons. Although bO functions as a light-driven proton pump in Halobacteria when assembled with retinal, we also show by mutational analysis that this chromophore binding is unnecessary for its in planta activity. Taken together, our results suggest that expression of bO in plants leads to the insertion of a passive proton channel into the PM. The activity of this channel in the PM results in spontaneous activation of cell death and HR-associated phenotypes including enhanced resistance to a broad spectrum of plant pathogens. Our work provides direct molecular evidence to support a working model in which alterations in ionic homeostasis at the level of the PM may work as one of the critical steps in the signalling pathway for the activation of the HR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号