首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glycan microarrays are emerging as increasingly used screening tools with a high potential for unraveling protein–carbohydrate interactions: probing hundreds or even thousands of glycans in parallel, they provide the researcher with a vast amount of data in a short time-frame, while using relatively small amounts of analytes. Natural glycan microarrays focus on the glycans’ repertoire of natural sources, including both well-defined structures as well as still-unknown ones. This article compares different natural glycan microarray strategies. Glycan probes may comprise oligosaccharides from glycoproteins as well as glycolipids and polysaccharides. Oligosaccharides may be purified from scarce biological samples that are of particular relevance for the carbohydrate-binding protein to be studied. We give an overview of strategies for glycan isolation, derivatization, fractionation, immobilization and structural characterization. Detection methods such as fluorescence analysis and surface plasmon resonance are summarized. The importance of glycan density and multivalency is discussed. Furthermore, some applications of natural glycan microarrays for studying lectin and antibody binding are presented.  相似文献   

2.
Glycan microarrays are emerging as increasingly used screening tools with a high potential for unraveling protein-carbohydrate interactions: probing hundreds or even thousands of glycans in parallel, they provide the researcher with a vast amount of data in a short time-frame, while using relatively small amounts of analytes. Natural glycan microarrays focus on the glycans' repertoire of natural sources, including both well-defined structures as well as still-unknown ones. This article compares different natural glycan microarray strategies. Glycan probes may comprise oligosaccharides from glycoproteins as well as glycolipids and polysaccharides. Oligosaccharides may be purified from scarce biological samples that are of particular relevance for the carbohydrate-binding protein to be studied. We give an overview of strategies for glycan isolation, derivatization, fractionation, immobilization and structural characterization. Detection methods such as fluorescence analysis and surface plasmon resonance are summarized. The importance of glycan density and multivalency is discussed. Furthermore, some applications of natural glycan microarrays for studying lectin and antibody binding are presented.  相似文献   

3.
Glycan Atlas is a set of glycan maps over the whole body of an organism. The glycan map that includes data of glycan structure and quantity displays micro-heterogeneity of the glycans in a tissue, an organ, or cells. The two-dimensional glycan mapping is widely used for structure analysis of N-linked oligosaccharides on glycoproteins. In this study we developed a comprehensive method for the mapping of both N- and O-glycans with and without sialic acid. The mapping data of 150 standard pyridylaminated glycans were collected. The empirical additivity rule which was proposed in former reports was able to adapt for this extended glycan map. The adapted rule is that the elution time of pyridylamino glycans on high performance liquid chromatography (HPLC) is expected to be the simple sum of the partial elution times assigned to each monosaccharide residue. The comprehensive mapping method developed in this study is a powerful tool for describing the micro-heterogeneity of the glycans. Furthermore, we prepared 42 pyridylamino (PA-) glycans from human serum and were able to draw the map of human serum N- and O-glycans as an initial step of Glycan Atlas editing.  相似文献   

4.
Glycan array development is limited by the complexity of efficiently generating derivatives of free reducing glycans with primary amines or other functional groups. A novel bi-functional spacer with selective reactivity toward the free glycan and a second functionality, a primary amine, was synthesized. We demonstrated an efficient one-step derivatization of various glycans including naturally isolated N-glycans, O-glycans, milk oligosaccharides, and bacterial polysaccharides in microgram scale. No protecting group manipulations or activation of the anomeric center was required. To demonstrate its utility for glycan microarray fabrication, we compared glycans with different amine-spacers for incorporation onto an amine-reactive glass surface. Our study results revealed that glycans conjugated with this bi-functional linker were effectively printed and detected with various lectins and antibodies.  相似文献   

5.
Although the function of many glycoproteins in the nervous system of fruit flies is well understood, information about the glycosylation profile and glycan attachment sites for such proteins is scarce. In order to fill this gap and to facilitate the analysis of N-linked glycosylation in the nervous system, we have performed an extensive survey of membrane-associated glycoproteins and their N-glycosylation sites isolated from the adult Drosophila brain. Following subcellular fractionation and trypsin digestion, we used different lectin affinity chromatography steps to isolate N-glycosylated glycopeptides. We identified a total of 205 glycoproteins carrying N-linked glycans and revealed their 307 N-glycan attachment sites. The size of the resulting dataset furthermore allowed the statistical characterization of amino acid distribution around the N-linked glycosylation sites. Glycan profiles were analyzed separately for glycopeptides that were strongly and weakly bound to Concanavalin A (Con A), or that failed to bind Concanavalin A, but did bind to wheat germ agglutinin (WGA). High- or paucimannosidic glycans dominated each of the profiles, although the wheat germ agglutinin-bound glycan population was enriched in more extensively processed structures. A sialylated glycan structure was unambiguously detected in the wheat germ agglutinin-bound fraction. Despite the large amount of starting material, insufficient amount of glycopeptides was retained by the Wisteria floribunda (WFA) and Sambucus nigra columns to allow glycan or glycoprotein identification, providing further evidence that the vast majority of glycoproteins in the adult Drosophila brain carry primarily high-mannose, paucimannose, and hybrid glycans. The obtained results should facilitate future genetic and molecular approaches addressing the role of N-glycosylation in the central nervous system (CNS) of Drosophila.  相似文献   

6.
Most proteins within living organisms contain glycans. Glycan structures can modulate the biological properties and functions of glycoproteins. The major glycans of glycoproteins can be classified into two groups, N-glycans and O-glycans, according to their glycan-peptide linkage regions. Developments in glycobiology have revealed a new type of glycosidic linkage to the peptide portion, the O-mannosyl linkage, in mammals, while so far it had been thought to be specific to yeast. This review will give an outline of the O-mannosyl glycans of mammalian glycoproteins. Since one of the most well known O-mannosyl-modified mammalian glycoproteins is dystroglycan, the functional aspects of the O-mannosyl glycan of dystroglycan will be described to help understand this new glycobiological field.  相似文献   

7.
The new field of functional glycomics encompasses information about both glycan structure and recognition by carbohydrate-binding proteins (CBPs) and is now being explored through glycan array technology. Glycan array construction, however, is limited by the complexity of efficiently generating derivatives of free, reducing glycans with primary amines for conjugation. Here we describe a straightforward method to derivatize glycans with 2,6-diaminopyridine (DAP) to generate fluorescently labeled glycans (glycan-DAP conjugates or GDAPs) that contain a primary amine for further conjugation. We converted a wide variety of glycans, including milk sugars, N-glycans, glycosaminoglycans and chitin-derived glycans, to GDAPs, as verified by HPLC and mass spectrometry. We covalently conjugated GDAPs to N-hydroxysuccinimide (NHS)-activated glass slides, maleimide-activated protein, carboxylated microspheres and NHS-biotin to provide quantifiable fluorescent derivatives. All types of conjugated glycans were well-recognized by appropriate CBPs. Thus, GDAP derivatives provide versatile new tools for biologists to quantify and covalently capture minute quantities of glycans for exploring their structures and functions and generating new glycan arrays from naturally occurring glycans.  相似文献   

8.
Quantification of oligosaccharides is of great importance to investigate variations or changes in the glycans of glycoconjugates. Mass spectrometry (MS) has been widely applied to identification and structural analysis of complex oligosaccharides. However, quantification using MS alone is still quite challenging due to heterogeneous charge states and different ionization efficiency of various types of oligosaccharides. To overcome such shortcomings, derivatization with carboxymethyl trimethylammonium hydrazide (Girard’s reagent T [GT]) was introduced to generate a permanent cationic charge at the reducing end of neutral oligosaccharides, resulting in mainly [M]+ ion using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), so that the ambiguities caused by metal adduct peaks such as [M+K]+ and [M + Na]+ were avoided. To verify our method, the relative and absolute quantification of neutral glycans from human immunoglobulin G (IgG) and ovalbumin with internal standards of dextran ladders using MALDI-TOF MS were compared with those performed by conventional normal-phase high-performance liquid chromatography (NP-HPLC) profiling. The quantification using GT derivatization and MALDI-TOF MS agreed well with the HPLC profiling data and showed excellent reliability and reproducibility with better resolution and sensitivity. This method was further applied to quantify the enzymatically desialylated N-glycans from miniature pig kidney membrane proteins. The results showed that the low-abundance structures that could not be resolved by NP-HPLC were quantified with high sensitivity. Thus, this novel method of using modification of neutral sugars with GT is quite powerful for neutral glycan analysis, especially to quantify minute glycan samples with undetectable levels using HPLC.  相似文献   

9.
The structural diversity of glycoprotein N-linked oligosaccharides is determined by the expression and regulation of glycosyltransferase activities and by the availability of the appropriate acceptor/donor substrates. Cells in different tissues and in different developmental stages utilize these control points to manifest unique glycan expression patterns in response to their surroundings. The activity of a Toll-like receptor, called Tollo/Toll-8, induces a pattern of incompletely defined, but neural specific, glycan expression in the Drosophila embryo. Understanding the full extent of the changes in glycan expression that result from altered Tollo/Toll-8 signaling requires characterization of the complete N-linked glycan profile of both wild-type and mutant embryos. N-Linked glycans harvested from wild-type or mutant embryos were subjected to direct structural analysis by analytic and preparative high pressure liquid chromatography, by multidimensional mass spectrometry, and by exoglycosidase digestion, revealing a predominance of high mannose and paucimannose glycans. Di-, mono-, and nonfucosylated forms of hybrid, complex biantennary, and triantennary glycans account for 12% of the total wild-type glycan profile. Two sialylated glycans bearing N-acetylneuraminic acid were detected, the first direct demonstration of this modification in Drosophila. Glycan profiles change during normal development consistent with increasing alpha-mannosidase II and core fucosyl-transferase enzyme activities, and with decreasing activity of the Fused lobes processing hexosaminidase. In tollo/toll-8 mutants, a dramatic, expected loss of difucosylated glycans is accompanied by unexpected decreases in monofucosylated and nonfucosylated hybrid glycans and increases in some nonfucosylated paucimannose and biantennary glycans. Therefore, tollo/toll-8 signaling influences flux through several processing steps that affect the maturation of N-linked glycans.  相似文献   

10.
哺乳动物中约有50%以上的蛋白质都发生了糖基化修饰.连接在丝氨酸或苏氨酸上的O-连接糖链是常见的蛋白质糖基化修饰方式之一,其主要功能是维持与其连接的蛋白质部分的空间构象,保护其免受蛋白酶水解及覆盖某些抗原决定簇.糖链结构的解析有助于更清楚地认识糖蛋白及其功能.本研究建立了一种基于超滤膜辅助(FASP)富集细胞、血清和尿液中糖蛋白全O-连接糖链的方法,根据糖蛋白与其糖链结构之间的分子质量差异,利用10 KD超滤膜富集蛋白质样品中由β消除反应释放的全O-连接糖链,将糖链甲基化修饰后再使用MALDI-TOF/TOF-MS进行解析,同时利用二级质谱进行结构确认.通过上述方法可从标准糖蛋白mucin、细胞、血清和尿液样本中分别鉴定到83、29、33和85种O-连接糖链结构,利用该方法可以从复杂样品中富集和解析糖蛋白全O-连接糖链,实现快速、高效、高通量地解析糖蛋白O-连接糖链的目的.  相似文献   

11.
基于超滤膜辅助的糖蛋白全N-连接糖链的富集和质谱解析   总被引:1,自引:1,他引:0  
糖基化作为一种常见的蛋白质翻译后修饰,对蛋白质的空间结构、生物功能等具有重要的影响.解析糖蛋白糖链结构有助于更清楚地认识糖蛋白及其功能.本研究建立了一种基于超滤膜富集血清中糖蛋白全N-连接糖链,并利用质谱技术对糖链结构进行分析的方法.根据糖蛋白及其糖链结构之间的分子质量差异,利用Millipore公司的10 ku超滤膜富集血清糖蛋白上酶解(PNGase F)释放的全N-连接糖链,并使用MALDI-TOF/TOF-MS解析糖链结构.通过该技术可以从血清中富集并鉴定到23种独特的N-连接的糖链结构,并且利用二级质谱进行了结构确认.该方法可以被用于从大量生物样本中富集糖蛋白全N-连接糖链,可以达到快速、高通量地解析糖蛋白N-连接糖链的目的.  相似文献   

12.
Many proteins in the living body are glycoproteins, which present glycans linked on their surface. Glycan structures reflect the degree of cell differentiation or canceration and are cell specific. These characteristics are advantageous in the development of various disease biomarkers. Glycoprotein-based biomarkers (glyco-biomarkers) are developed by utilizing the specific changes in the glycan structure on a glycoprotein secreted from the diseased cells of interest. Therefore, quantification of the altered glycan structures is the key to developing a new glyco-biomarker. Glycoscience is a relatively new area of molecular science, and recent advancement of glycotechnologies is remarkable. In the author’s institute, new glycoscience technologies have been designed to be efficiently utilized for the development of new diagnostic agents. This paper introduces a strategy for glyco-biomarker development, which was successfully applied in the development of Wisteria floribunda agglutinin-positive Mac-2 binding protein M2BPGi, a liver fibrosis marker now commercially available for clinical use.  相似文献   

13.
We present a new method for the analysis of glycans enzymatically released from monoclonal antibodies (MAbs) employing a zwitterionic-type hydrophilic interaction chromatography (ZIC–HILIC) column coupled with electrospray ionization mass spectrometry (ESI–MS). Both native and reduced glycans were analyzed, and the developed procedure was compared with a standard HILIC procedure used in the pharmaceutical industry whereby fluorescent-labeled glycans are analyzed using a TSK Amide-80 column coupled with fluorescence detection. The separation of isobaric alditol oligosaccharides present in monoclonal antibodies and ribonuclease B is demonstrated, and ZIC–HILIC is shown to have good capability for structural recognition. Glycan profiles obtained with the ZIC–HILIC column and ESI–MS provided detailed information on MAb glycosylation, including identification of some less abundant glycan species, and are consistent with the profiles generated with the standard procedure. This new ZIC–HILIC method offers a simpler and faster approach for glycosylation analysis of therapeutic antibodies.  相似文献   

14.
The current interest in applying systems biology approaches to studying an organism's form or function promises to reveal further insights into the role of glycosylation in cells and whole organisms. This has prompted the development of a rapid, sensitive method of profiling the glycan component of both glycosphingolipids and glycoproteins from a single sample. Here we report a new mass spectrometric screening strategy for characterizing glycosphingolipid-derived oligosaccharides, which can be integrated into an existing highly sensitive glycoprotein glycomics strategy. Using ceramide glycanase to release the glycans from glycosphingolipids, this method provides a reliable profile of the glycosphingolipid-derived glycans present in a sample and has revealed new glycan structures. Glycoproteins are also efficiently recovered using this method, allowing the subsequent analysis of glycoprotein-derived glycans by mass spectrometry. The high sensitivity of this glycomic screening method allowed us to directly characterize the sialyl Le(x) epitope from mouse brain for the first time, where it was observed on an O-mannose structure. Thus, we present a mass spectrometric method that allows glycomic screening of N- and O-glycans as well as glycosphingolipid-derived glycans from a single tissue.  相似文献   

15.
Protocols have been developed for the characterization of carbohydrate covalently attached (N-linked) to an asparagine residue in glycoproteins, after separation by two-dimensional polyacrylamide gel electrophoresis (2-D PAGE). Mixtures of proteins (each at a level from 0.5 to 50 microg) were resolved in the first dimension according to their isoelectric points (pI), followed by separation in the orthogonal axis on the basis of their molecular weights. Glycans were released directly from excised gel spots after digestion with PNGase F, with or without prior treatment with trypsin. In a third method, glycoproteins were electroblotted onto poly(vinylidene difluoride) before glycans were released by PNGase F. For all these procedures profiles of the neutral and sialic acid-containing oligosaccharide mixtures were obtained after derivatization with 3-acetamido-6-aminoacridine, and analysis by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and/or high-performance liquid chromatography. Potential applications to proteomics are discussed.  相似文献   

16.
We established a ‘seize-and-release’ purification method to eliminate polyhexose contaminants for a highly sensitive glycan profiling. Pig liver membrane lysates were pretreated with sodium dodecyl sulfate (SDS) surfactant and subsequently dialyzed to remove polyhexose contaminants. From the purified membrane glycoproteins, glycans were released and identified by mass spectrometry. As a result, we clearly obtained N- and O-glycan profiles of a pig liver, which were not achieved without any pre-treatments. This technique demonstrates a powerful approach for enhancing the sensitivity of MS-based glycan profiling.  相似文献   

17.
Quality control and assurance of glycan profiles of a recombinant glycoprotein from lot to lot is a critical issue in the pharmaceutical industry. To develop an easy and simple quantitative and qualitative glycan profile method based on matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS), the modification with Girard’s reagent T (GT) was exploited. Because GT-derivatized quantification of oligosaccharides using MALDI-TOF MS is possible only with neutral glycans, sialylated glycans are not subjected to quantitative analysis with MALDI-TOF MS. To solve this problem, mild methyl esterification and subsequent GT derivatization were employed, enabling us to perform rapid qualitative and quantitative analysis of sialylated and neutral N-linked oligosaccharides using MALDI-TOF MS. This modified method was used in the comparative quantification of N-glycans from the recombinant therapeutic glycoprotein expressed in two different Chinese hamster ovary (CHO) cell lines. The percentages of sialylated N-glycans to total were 22.5 and 5.2% in CHO-I and CHO-II cells, respectively, resulting in a significant difference in the biological activity of the recombinant glycoprotein.  相似文献   

18.
While glycoproteins are abundant in nature, and changes in glycosylation occur in cancer and other diseases, glycoprotein characterization remains a challenge due to the structural complexity of the biopolymers. This paper presents a general strategy, termed GlyDB, for glycan structure annotation of N-linked glycopeptides from tandem mass spectra in the LC-MS analysis of proteolytic digests of glycoproteins. The GlyDB approach takes advantage of low-energy collision-induced dissociation of N-linked glycopeptides that preferentially cleaves the glycosidic bonds while the peptide backbone remains intact. A theoretical glycan structure database derived from biosynthetic rules for N-linked glycans was constructed employing a novel representation of branched glycan structures consisting of multiple linear sequences. The commonly used peptide identification program, Sequest, could then be utilized to assign experimental tandem mass spectra to individual glycoforms. Analysis of synthetic glycopeptides and well-characterized glycoproteins demonstrate that the GlyDB approach can be a useful tool for annotation of glycan structures and for selection of a limited number of potential glycan structure candidates for targeted validation.  相似文献   

19.
Glycan structures can modulate the biological properties and functions of glycoproteins. This has been shown by investigation of the biological activities and glycan structures of several recombinant glycoproteins. Glycan structures of glycoproteins differ according to the species and tissue producing them, and selection of an appropriate host-cell type can generate recombinant glycoproteins with new characteristics.  相似文献   

20.
Taylor AM  Holst O  Thomas-Oates J 《Proteomics》2006,6(10):2936-2946
Glycosylation is a widespread PTM of proteins; the carbohydrate moieties provide various functional, immunological and structural aspects of both eukaryotic and prokaryotic glycoproteins. Traditional strategies used to analyse glycoprotein O-glycans involve glycoprotein isolation, followed by glycan release using solution-phase base-catalysed beta-elimination. However, in a proteomics context, mixtures of proteins and glycoproteins are routinely separated using SDS-PAGE. We have therefore developed a method to enable the profiling of O-linked glycans directly from glycoproteins on gels. This is achieved using in-gel reductive beta-elimination followed by mass spectrometric analysis of the released glycans. Here we describe our demonstration of the feasibility of this approach, our development and optimisation of the procedure using bovine submaxillary gland glycoproteins as a standard, and then show its usefulness by applying the developed procedure to the analysis of the O-glycans from a glycoprotein band from a Coomassie-stained SDS-PAGE separation of a mixture of Mycobacterium avium capsular proteins and glycoproteins. The procedure has been shown to be applicable to both CBB- and silver-stained gels. The method offers a quick and easy way to identify the O-glycans from gel-separated glycoproteins within gel-based proteomics workflows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号